How Moderate Water Stress Can Affect Water Use Efficiency Indices in Potato
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design, Plant Material, and Management Practices
2.2. Irrigation Treatments
2.3. Data Collection and Calculations
2.4. Meteorological Data
2.5. Data Analysis
3. Results
3.1. Temperature and Rainfall
3.2. Aboveground and Whole Dry Biomass Yield
3.3. Tuber Yield
3.4. Irrigation Water Use Efficiency (IWUE)
3.5. Water Use Efficiency (WUE)
3.6. Sink/Source
3.7. Tuber Dry Matter Content
4. Discussion
5. Conclusions
- (1)
- supplying 50% of the ETm induced only moderate water deficits, so it compared to well-watered conditions reduced the yield slightly but increased the IWUE considerably, saving irrigation water (650 m3 ha−1 in the I planting and 550 m3 ha−1 in the II planting);
- (2)
- the moderate water stress had a lesser effect in the II planting date, in which the plants made better use of the water than in the I planting, allowing further improvements in WUE and saving irrigation water;
- (3)
- in both planting dates Spunta appeared more suitable to moderate water deficit for early harvest while Sieglinde for final harvest.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mastrorilli, M.; Zucaro, R. Towards sustainable use of water in rainfed and irrigated cropping systems: Review of some technical and policy issues. AIMS Agric. Food 2016, 1, 294–314. [Google Scholar] [CrossRef]
- Katerji, N.; Mastrorilli, M.; Ranab, G. Water use efficiency of crops cultivated in the Mediterranean region: Review and analysis. Eur. J. Agron. 2008, 28, 493–507. [Google Scholar] [CrossRef]
- Reddy, P.P. Sustainable Intensification of Crop. Production; Springer: Singapore, 2016; pp. 241–252. [Google Scholar]
- Hamdy, A.; Ragab, R.; Scarascia-Mugnozza, E. Coping with water scarcity: Water saving and increasing water productivity. Irrig. Drain. 2003, 52, 3–20. [Google Scholar] [CrossRef]
- Pereira, L.S.; Cordery, I.; Iacovides, I. Improved indicators of water use performance and productivity for sustainable water conservation and saving. Agric. Water Manag. 2012, 108, 39–51. [Google Scholar] [CrossRef]
- FAOSTAT (Food and Agriculture Organization of the United Nations), Statistics Division. Forestry Production and Trade. Available online: http://www.fao.org/faostat/en/#data (accessed on 26 March 2020).
- Ierna, A. Tuber yield and quality characteristics of potatoes for off-season crops in a Mediterranean environment. J. Sci. Food Agric. 2010, 90, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Opena, G.B.; Porter, G.A. Soil management and supplemental irrigation effects on potato: II. Root growth. Agron. J. 1999, 91, 426–431. [Google Scholar] [CrossRef]
- Foti, S.; Mauromicale, G.; Ierna, A. Response of Seed-Grown Globe Artichoke to Different Levels of Nitrogen Fertilization and Water Supplies. Acta Hort. 2005, 681, 237–242. [Google Scholar] [CrossRef]
- Ierna, A.; Mauromicale, G. Tuber yield and irrigation water productivity in early potatoes as acted by irrigation regime. Agric. Water Manag. 2012, 115, 276–284. [Google Scholar] [CrossRef]
- Lamm, F.R.; Ayars, J.E.; Nakayama, F.S. Microirrigation for Crop Production: Design, Operation, and Management; Elsevier Science: Amsterdam, The Netherlands, 2007; p. 642. [Google Scholar]
- Chai, Q.; Gan, Y.; Zhao, C.; Xu, H.L.; Waskom, R.M.; Niu, Y.; Siddique, K.H.M. Regulated deficit irrigation for crop production under drought stress. A review. Agron. Sustain. Dev. 2016, 36, 1–21. [Google Scholar] [CrossRef] [Green Version]
- English, M.J.; Musick, J.T.; Murty, V.V.N. Deficit irrigation. In Management of Farm Irrigation Systems; Hoffman, G.J., Soloman, K.H., Eds.; American Society of Agricultural Engineers: St. Joseph, MI, USA, 1990; pp. 631–663. [Google Scholar]
- Geerts, S.; Raes, D. Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agric. Water Manag. 2009, 96, 1275–1284. [Google Scholar] [CrossRef] [Green Version]
- Onder, S.; Caliskan, M.E.; Onder, D.; Caliskan, S. Different irrigation methods and water stress effects on potato yield and yield components. Agric. Water Manag 2005, 73, 73–86. [Google Scholar] [CrossRef]
- Unlu, M.; Kanber, R.; Senyigit, U.; Onaran, H.; Diker, K. Trickle and sprinkler irrigation of potato (Solanum tuberosum L.) in the middle Anatolian region in Turkey. Agric. Water Manag. 2006, 79, 43–71. [Google Scholar] [CrossRef]
- Iqbal, M.M.; Shah, S.M.; Mohammad, W.; Nawaz, H. Field response of potato subjected to water stress at different growth stages. In Crop Yield Response to Deficit Irrigation; Kirda, C., Moutonnet, P., Hera, C., Nielsen, D.R., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 1999; pp. 213–224. [Google Scholar]
- Fabeiro, C.; Martin de santa Olalla, F.; De Juan, J.A. Yield and size of deficit irrigated potatoes. Agric. Water Manag. 2001, 48, 255–266. [Google Scholar] [CrossRef]
- Ierna, A.; Pandino, G.; Lombardo, S.; Mauromicale, G. Tuber yield, water and fertilizer productivity in early potato as affected by a combination of irrigation and fertilization. Agric. Water Manag. 2011, 101, 35–41. [Google Scholar] [CrossRef]
- Ierna, A.; Mauromicale, G. Potato growth, yield and water productivity response to different irrigation and fertilization regimes. Agric. Water Manag. 2018, 201, 21–26. [Google Scholar] [CrossRef]
- Darwish, T.M.; Atallah, T.W.; Hajhasan, S.; Haidar, A. Nitrogen and water use efficiency of fertigated processing potato. Agric. Water Manag. 2006, 85, 95–104. [Google Scholar] [CrossRef]
- Badr, M.A.; El-Tohamy, W.A.; Zaghloul, A.M. Yield and water use efficiency of potato grown under different irrigation and nitrogen levels in an arid region. Agric. Water Manag. 2012, 110, 9–15. [Google Scholar] [CrossRef]
- Ferreira, T.C.; Carr, M.K.V. Responses of potatoes (Solanum tuberosum L.) to irrigation and nitrogen in a hot, dry climate. I. Water use. Field Crops Res. 2002, 78, 51–64. [Google Scholar] [CrossRef]
- Camargo, D.C.; Montoya, F.; Córcoles, J.I.; Ortega, J.F. Modeling the impacts of irrigation treatments on potato growth and development. Agric. Water Manag. 2015, 150, 119–128. [Google Scholar] [CrossRef]
- Ierna, A.; Mauromicale, G. Sustainable and profitable nitrogen fertilization management of potato. Agronomy 2019, 9, 582. [Google Scholar] [CrossRef] [Green Version]
- Ierna, A.; Mauromicale, G. Physiological and growth response to moderate water deficit of off-season potatoes in a Mediterranean environment. Agric. Water Manag. 2006, 82, 193–209. [Google Scholar] [CrossRef]
- Hack, H.; Gal, H.; Klemke, T.H.; Klose, R.; Meier, U.; Stauss, R.; Witzenberger, A. The BBCH scale for phenological growth stages of potato (Solanum tuberosumL.). In Growth Stages of Mono- and Dicotyledonous Plants BBCH Monograph, 2nd ed.; Meier, U., Ed.; Federal Biological Research Centre for Agriculture and Forestry: Berlin/Braunschweig, Germany, 2001; pp. 7–16. [Google Scholar]
- Doorenbos, J.; Kassam, A.H. Yield Response to Water. In Irrigation and Drainage Paper No. 33; FAO: Rome, Italy, 1979. [Google Scholar]
- Sands, P.J.; Hackett, C.; Nix, H.A. A model of the development and bulking of potatoes (Solanum tuberosum L.). I. Derivation from well-managed field crops. Field Crop. Res. 1979, 2, 309–331. [Google Scholar] [CrossRef]
- Gardner, F.P.; Pearce, R.B.; Mitchell, R.L. Physiology of Crop Plants; Iowa State University Press: Ames, IA, USA, 1985; p. 327. [Google Scholar]
- Proietti, S.; Moscatello, S.; Battistelli, A.; Mauromicale, G.; Ierna, A. Quality of early potato in Sicily as affected by cultivar, sowing time and irrigation. Acta Hort. 2005, 684, 171–175. [Google Scholar] [CrossRef]
- Ferreira, T.C.; Gonçalves, D.A. Crop-yield/water-use production functions of potatoes (Solanum tuberosum L.) grown under differential nitrogen and irrigation treatments in a hot dry climate. Agric. Water Manag. 2007, 90, 45–55. [Google Scholar] [CrossRef]
- Kashyap, P.S.; Panda, R.K. Effect of irrigation scheduling on potato crop parameters under water stressed conditions. Agric. Water Manag. 2003, 59, 49–66. [Google Scholar] [CrossRef]
- Yuan, B.; Nishiyama, S.; Kamg, Y. Effects of different irrigation regimes on the growth and yield of drip-irrigated potato. Agric. Water Manag. 2003, 63, 153–167. [Google Scholar] [CrossRef]
- Shahnazari, A.; Liu, F.; Andersen, M.N.; Jacobsen, S.E.; Jensen, C.R. Effects of partial root-zone drying on yield, tuber size, and water use efficiency in potato under field conditions. Field Crops Res. 2007, 100, 117–124. [Google Scholar] [CrossRef]
- Ahmadi, S.H.; Andersen, M.N.; Plauborg, F.; Poulsen, R.T.; Jensen, C.R.; Sepaskhah, A.R.; Hansen, S. Effects of irrigation strategies and soils on field grown potatoes: Yield and water productivity. Agric. Water Manag. 2010, 97, 1923–1930. [Google Scholar] [CrossRef]
- Shae, J.B.; Steele, D.D.; Gregor, B.L. Irrigation scheduling methods for potatoes in the northern Great Plains. Trans. ASAE 1999, 42, 351–360. [Google Scholar] [CrossRef]
- Kang, Y.; Wang, F.X.; Liu, H.J.; Yuan, B.Z. Potato evapotranspiration and yield under different drip irrigation regimes. Irrig. Sci. 2004, 23, 133–143. [Google Scholar] [CrossRef]
- Jefferies, R.A.; Mackerron, D.K.L. Response of potato genotypes to drought. II. Leaf area index, growth and yield. Ann. Appl. Biol. 1993, 122, 105–112. [Google Scholar] [CrossRef]
- Nagaz, K.; Masmoudi, M.M.; Mechlia, N.B. Soil salinity and yield of drip-irrigated potato under different irrigation regimes with saline water in arid conditions of southern Tunisia. J. Agron. 2007, 6, 324–330. [Google Scholar]
- Bowen, W.T. Water productivity and potato cultivation. In Water Productivity in Agriculture: Limits and Opportunities for Improvement; Kijne, J.W., Barker, R., Molden, D., Eds.; CABI Publishing: Wallingford, UK, 2003; pp. 229–238. [Google Scholar]
- Nagarajan, S.; Bansal, K.C. Growth and distribution of dry matter in a drought tolerant and a susceptible potato cultivar under normal and water deficit condition. J. Agron. Crop. Sci. 1991, 167, 112–118. [Google Scholar] [CrossRef]
Planting Date | Irrigation Rate (% ETm) | Harvest Time | Irrigation (mm) | Rainfall (mm) | Total (mm) | Seasonal ET (mm) |
---|---|---|---|---|---|---|
I | 50 | early | 35 | 174 | 209 | 2200 |
late | 65 | 206 | 271 | 2850 | ||
100 | early | 70 | 174 | 244 | 2550 | |
late | 130 | 206 | 336 | 3490 | ||
II | 50 | early | 40 | 144 | 184 | 1930 |
late | 55 | 159 | 214 | 2180 | ||
100 | early | 80 | 144 | 224 | 2330 | |
late | 110 | 159 | 269 | 2730 |
Planting Date (P) | Irrigation Rate (I) | Cultivar (C) | (P) × (I) | (P) × (C) | (I) × (C) | (P) × (I) × (C) | |
---|---|---|---|---|---|---|---|
Degree of freedom | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
AB-Y a (kg DW ha−1) | 502 *** | 68 *** | 115 *** | 2 NS | 3 NS | 5 NS | 54 *** |
WB-Y b (kg DW ha−1) | 9 NS | 182 *** | 609 *** | 4 NS | 107 *** | 45 *** | 8 NS |
E-TY c (kg FW ha−1) | 46 *** | 918 *** | 926 *** | 26 *** | 52 *** | 24 *** | 0.4 NS |
F-TY d (kg FW ha−1) | 2 NS | 207 *** | 1347 *** | 3 NS | 120 *** | 74 *** | 0.1 NS |
E-IWUE e (kg FW m−3) | 726 *** | 6545 *** | 2099 *** | 6 NS | 196 *** | 1657 *** | 633 *** |
F-IWUE (kg FW m−3) | 524 *** | 7201 *** | 1170 *** | 19 *** | 284 *** | 23 *** | 27 *** |
E-WUE f (kg FW m−3) | 92 *** | 5 NS | 1582 *** | 67 *** | 175 *** | 1187 *** | 768 *** |
F-WUE (kg FW m−3) | 1346 *** | 221 *** | 1926 *** | 2 NS | 350 *** | 30 *** | 2 NS |
AB-WUE (kg DW m−3) | 1310 *** | 50 *** | 96 *** | 6 NS | 13 ** | 14 ** | 51 *** |
WB-WUE (kg DW m−3) | 1767 *** | 308 *** | 782 *** | 4 NS | 239 *** | 17 *** | 18 *** |
Sink/source | 340 *** | 1 NS | 3 NS | 1 NS | 17 ** | 13 ** | 17 ** |
Tuber dry matter (%) | 8067 *** | 4630 *** | 20582 *** | 4 NS | 210 *** | 5145 *** | 5 NS |
Planting Date | Irrigation Rate (% ETm) | Cultivar | AB-Y (kg DW ha−1) | E-IWUE (kg FW m−3) | F-IWUE (kg FW m−3) | Sink/Source |
---|---|---|---|---|---|---|
I | 50 | Spunta | 985 | 75.2 | 47.4 | 5.88 |
Sieglinde | 923 | 60.0 | 41.3 | 6.07 | ||
100 | Spunta | 1171 | 43.4 | 27.6 | 5.68 | |
Sieglinde | 952 | 38.1 | 21.3 | 5.95 | ||
II | 50 | Spunta | 1457 | 78.3 | 59.6 | 4.14 |
Sieglinde | 1109 | 37.9 | 42.6 | 4.31 | ||
100 | Spunta | 1458 | 31.9 | 35.1 | 4.82 | |
Sieglinde | 1414 | 33.9 | 23.0 | 3.58 | ||
LSD interaction P ≤ 0.01 | 82.1 | 1.7 | 1.3 | 0.54 |
WB-Y (kg DW ha−1) | E-TY (kg FW ha−1) | F-TY (kg FW ha−1) | F-YWUE (kg FW m−3) | ||
---|---|---|---|---|---|
Planting date | |||||
I | Spunta | 7286 | 28346 | 33386 | 10.54 |
Sieglinde | 6555 | 23848 | 27275 | 8.70 | |
II | Spunta | 7961 | 28436 | 35700 | 14.59 |
Sieglinde | 6180 | 21124 | 24371 | 10.00 | |
LSD interaction P ≤ 0.01 | 188.6 | 718.6 | 882.1 | 0.27 | |
I. rate (% ETm) | |||||
50 | Spunta | 7109 | 28831 | 31813 | 12.91 |
Sieglinde | 6195 | 18076 | 25133 | 10.10 | |
100 | Spunta | 8138 | 27951 | 37273 | 12.22 |
Sieglinde | 6540 | 26896 | 26513 | 8.61 | |
LSD interaction P ≤ 0.01 | 188.6 | 718.6 | 882.1 | 0.27 |
Planting Date | Irrigation Rate (% ETm) | Cultivar | E-YWUE (kg FW m−3) | AB-WUE (kg DW m−3) | WB-WUE (kg DW m−3) |
---|---|---|---|---|---|
I | 50 | Spunta | 12.0 | 0.34 | 2.36 |
Sieglinde | 9.5 | 0.33 | 2.29 | ||
100 | Spunta | 11.9 | 0.34 | 2.24 | |
Sieglinde | 10.5 | 0.27 | 1.89 | ||
II | 50 | Spunta | 16.2 | 0.67 | 3.43 |
Sieglinde | 7.9 | 0.51 | 2.70 | ||
100 | Spunta | 11.0 | 0.53 | 3.10 | |
Sieglinde | 11.6 | 0.52 | 2.37 | ||
LSD interaction P ≤ 0.01 | 0.4 | 0.03 | 0.09 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ierna, A.; Mauromicale, G. How Moderate Water Stress Can Affect Water Use Efficiency Indices in Potato. Agronomy 2020, 10, 1034. https://doi.org/10.3390/agronomy10071034
Ierna A, Mauromicale G. How Moderate Water Stress Can Affect Water Use Efficiency Indices in Potato. Agronomy. 2020; 10(7):1034. https://doi.org/10.3390/agronomy10071034
Chicago/Turabian StyleIerna, Anita, and Giovanni Mauromicale. 2020. "How Moderate Water Stress Can Affect Water Use Efficiency Indices in Potato" Agronomy 10, no. 7: 1034. https://doi.org/10.3390/agronomy10071034
APA StyleIerna, A., & Mauromicale, G. (2020). How Moderate Water Stress Can Affect Water Use Efficiency Indices in Potato. Agronomy, 10(7), 1034. https://doi.org/10.3390/agronomy10071034