State and Progress of Andean Lupin Cultivation in Europe: A Review
Abstract
:1. Introduction
2. Andean Lupin Genetic Material Tested under European Conditions
3. Abiotic Restrictive Factors and Cropping Practices
3.1. High and Low Temperature Effects
3.2. Impact of Day Length on Growth and Production
3.3. Effects of Water Logging and Water Deficit on Growth and Seed Quality
3.4. Alkaline, Calcareous Soils and Their Effects on L. mutabilis as a Crop
4. Biotic Constraints in Europe for Lupinus mutabilis
4.1. Fungal and Bacterial Diseases
4.2. Virus Diseases and Carriers
4.3. Main Insect Pests of L. mutabilis in Europe
4.4. Weed Species and Management in L. mutabilis Cultivation
5. Symbiosis with Other Species Abundant in Europe
5.1. Rhizobium–L. mutabilis Symbiosis and Nitrogen Fixation Potential
5.2. Andean Lupin Interaction with Pollinator Species Abundant in Europe
6. Future Uses and Investigation Prospects
6.1. Prospects of Using L. mutabilis as Feed and Biomass for Bioenergy
6.2. Opportunities and Challenges for Breeding
7. Crop Modeling for Yield Production Enhancement
8. Conclusions and Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Eastwood, R.J.; Drummond, C.S.; Schifino-Wittmann, M.T.; Hughes, C.E. Diversity and Evolutionary History of Lupins—Insights from New Phylogenies. In Proceedings of the 12th International Lupin Conference—Lupins for Health and Wealth, Fremantle, Australia, 14–18 September 2008; pp. 346–354. [Google Scholar]
- Gresta, F.; Wink, M.; Prins, U.; Abberton, M.; Capraro, J.; Scarafoni, A.; Hill, G. Lupins in European cropping systems. Legum. Crop. Syst. 2017, 88–108. [Google Scholar] [CrossRef]
- Sherasia, P.L.; Garg, M.R.; Bhanderi, B.M. Pulses and Their By-Products As Animal Feed; Calles, T., Makkar, H.P.S., Eds.; FAO: Rome, Italy, 2018; ISBN 9789251099155. [Google Scholar]
- Mousavi-Derazmahalleh, M.; Nevado, B.; Bayer, P.E.; Filatov, D.A.; Hane, J.K.; Edwards, D.; Erskine, W.; Nelson, M.N. The western Mediterranean region provided the founder population of domesticated narrow-leafed lupin. Theor. Appl. Genet. 2018, 131, 2543–2554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abraham, E.M.; Ganopoulos, I.; Madesis, P.; Mavromatis, A.; Mylona, P.; Nianiou-Obeidat, I.; Parissi, Z.; Polidoros, A.; Tani, E.; Vlachostergios, D. The use of lupin as a source of protein in animal feeding: Genomic tools and breeding approaches. Int. J. Mol. Sci. 2019, 20, 851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cowling, W.; Buirchell, B.J.; Tapia, M.E. Lupin. Lupinus spp. In Plant Genetic Resources of Legumes in the Mediterranean; Maxted, N., Bennett, S.J., Eds.; Springer: Dordrecht, The Netherlands, 2001; pp. 191–206. [Google Scholar]
- Aïnouche, A.K.; Bayer, R.J. Phylogenetic relationships in Lupinus (Fabaceae: Papilionoideae) based on internal transcribed spacer sequences (ITS) of nuclear ribosomal DNA. Am. J. Bot. 1999, 86, 590–607. [Google Scholar] [CrossRef] [PubMed]
- Wolko, B.; Clements, J.C.; Naganowska, B.; Nelson, M.N.; Yang, H. Lupinus. In Wild Crop Relatives: Genomic and Breeding Resources: Legume Crops and Forages; Kole, C., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 153–206. ISBN 978-3-642-14387-8. [Google Scholar]
- Finch, H.J.S.; Samuel, A.M.; Lane, G.P.F. Lockhart & Wiseman’s Crop Husbandry Including Grassland; Woodhead Publishing: Cambridge, UK, 2014; pp. 337–361. ISBN 978-1-78242-371-3. [Google Scholar]
- Falconí, C.E. Lupinus mutabilis in Ecuador with Special Emphasis on Anthracnose Resistance; Wageningen University: Wageningen, The Netherlands, 2012. [Google Scholar]
- Heistinger, A.; Pistrick, K. “Altreier Kaffee”: Lupinus pilosus L. cultivated as coffee substitute in Northern Italy (Alto Adige/Südtirol). Genet. Resour. Crop Evol. 2007, 54, 1623–1630. [Google Scholar] [CrossRef]
- Einarsson, S.; Gudmundsson, J.; Sverrisson, H.; Kristjansson, J.K.; Runolfsson, S. Production of Rhizobium inoculants for Lupinus nootkatensis on nutrient- supplemented pumice. Appl. Environ. Microbiol. 1993, 59, 3666–3668. [Google Scholar] [CrossRef] [Green Version]
- Björnsson, H. Fertilization of Notka lupin (Lupinus nootkatensis) for biomass production and carbon sequestration. Icel. Agric. Sci. 2007, 20, 81–92. [Google Scholar]
- Riege, D.A.; Sigurgeirsson, A. Facilitation of afforestation by Lupinus nootkatensis and by black plastic mulch in south-west Iceland. Scand. J. For. Res. 2009, 24, 384–393. [Google Scholar] [CrossRef]
- Aniszewski, T. Nutritive quality of the alkaloid-poor Washington lupin (Lupinus polyphyllus lindl var SF/TA) as a potential protein crop. J. Sci. Food Agric. 1993, 61, 409–421. [Google Scholar] [CrossRef]
- Douglas, G.B.; Foote, A.G. Establishment of perennial species useful for soil conservation and as forages. N. Z. J. Agric. Res. 1994, 37, 1–9. [Google Scholar] [CrossRef]
- Kurlovich, B.S.; Heinanen, J. Breeding of perennial fodder forms of multifoliate lupin (Lupinus polyphyllus Lindl.). In Proceedings of the Wild and Cultivated Lupins from the Tropics to the Poles, Laugarvatn, Iceland, 19–24 June 2002; Jónsdóttir, R.S., Ed.; International North Express: Laugarvatn, Iceland, 2002; pp. 67–69. [Google Scholar]
- Tello, F.T. Lupinus mutabilis sweet—A potent food source from the Andean region. Am. J. Clin. Nutr. 1976, 29, 933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurlovich, B.S.; Stankevich, A.K.; Stepanova, S.I. The history of lupin domestication. In Lupins (Geography, Classification, Genetic Resources and Breeding); Kurlovich, B.S., Ed.; OY International North Express: St. Petersburg, Russia, 2002; pp. 147–165. [Google Scholar]
- Eastwood, R.J.; Hughes, C.E. Origins of domestication o Lupinus mutabilis in the Andes. In Proceedings of the Lupins for Health and Wealth Proceedings 12th International Lupin Conference, Fremantle, Australia, 14–18 September 2008; pp. 14–18. [Google Scholar]
- Atchison, G.W.; Nevado, B.; Eastwood, R.J.; Contreras-Ortiz, N.; Reynel, C.; Madriñán, S.; Filatov, D.A.; Hughes, C.E. Lost crops of the incas: Origins of domestication of the Andean pulse crop Tarwi, Lupinus mutabilis. Am. J. Bot. 2016, 103, 1592–1606. [Google Scholar] [CrossRef] [PubMed]
- Neves Martins, J.M.; Talhinhas, P.; Bruno de Sousa, R. Yield and seed chemical composition of Lupinus mutabilis in Portugal. Rev. Ciências Agrárias 2016, 39, 518–525. [Google Scholar] [CrossRef] [Green Version]
- Gulisano, A.; Alves, S.; Martins, J.N.; Trindade, L.M. Genetics and Breeding of Lupinus mutabilis: An Emerging Protein Crop. Front. Plant Sci. 2019, 10, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Carvajal-Larenas, F.E.; Linnemann, A.R.; Nout, M.J.R.; Koziol, M.; van Boekel, M.A.J.S. Lupinus mutabilis: Composition, Uses, Toxicology, and Debittering. Crit. Rev. Food Sci. Nutr. 2016, 56, 1454–1487. [Google Scholar] [CrossRef] [Green Version]
- Gross, R.; von Baer, E.; Koch, F.; Marquard, R.; Trugo, L.; Wink, M. Chemical composition of a new variety of the Andean lupin (Lupinus mutabilis cv. Inti) with low-alkaloid content. J. Food Compos. Anal. 1988, 1, 353–361. [Google Scholar] [CrossRef]
- Caligari, P.D.S.; Römer, P.; Rahim, M.A.; Huyghe, C.; Neves-Martins, J.; Sawicka-Sienkiewicz, E.J. The Potential of Lupinus mutabilis as a crop. In Linking Research and Marketing Opportunities for Pulses in the 21st Century: Proceedings of the Third International Food Legumes Research Conference; Knight, R., Ed.; Springer: Dordrecht, The Netherlands, 2000; pp. 569–573. ISBN 978-94-011-4385-1. [Google Scholar]
- Jacobsen, S.E.; Mujica, A. Geographical distribution of the Andean lupin (Lupinus mutabilis Sweet). Plant Genet. Resour. Newsl. 2008, 155, 1–8. [Google Scholar]
- Fischer, A.; Von Sengbusch, R. Geschichte des Lupinenanbaus und die Verbreitung der Lupinen in Deutschland, sowie die Möglichkeiten der Erweiterung des Lupinenbaus. Der Züchter (Zeitschrift für Theor. und Angew. Genet.) 1935, 7, 182–207. [Google Scholar]
- Raabe, A.; von Sengbusch, R. Züchterisch wichtige Beobachtungen an einigen Lupinenarten. Der Züchter 1935, 7, 244–248. [Google Scholar] [CrossRef]
- Lucas, M.M.; Stoddard, F.L.; Annicchiarico, P.; Frías, J.; Martínez-Villaluenga, C.; Sussmann, D.; Duranti, M.; Seger, A.; Zander, P.M.; Pueyo, J.J. The future of lupin as a protein crop in Europe. Front. Plant Sci. 2015, 6, 705. [Google Scholar] [CrossRef]
- Święcicki, W.; Kroc, M.; Kamel, K.A. Lupins. In Grain Legumes; De Ron, A.M., Ed.; Springer: New York, NY, USA, 2015; pp. 179–218. ISBN 978-1-4939-2797-5. [Google Scholar]
- van de Noort, M. Lupin: An Important Protein and Nutrient Source. In Sustainable Protein Sources; Nadathur, S.R., Wanasundara, J.P.D., Scanlin, L.B.T., Eds.; Academic Press: San Diego, CA, USA, 2017; pp. 165–183. ISBN 978-0-12-802778-3. [Google Scholar]
- Frick, K.M.; Kamphuis, L.G.; Siddique, K.H.M.; Singh, K.B.; Foley, R.C. Quinolizidine Alkaloid Biosynthesis in Lupins and Prospects for Grain Quality Improvement. Front. Plant Sci. 2017, 8, 87. [Google Scholar] [CrossRef] [PubMed]
- Galek, R.; Sawicka-Sienkiewicz, E.; Zalewski, D.; Stawiński, S.; Spychała, K. Searching for low alkaloid forms in the Andean lupin (Lupinus mutabilis) collection. Czech J. Genet. Plant Breed. 2017, 53, 55–62. [Google Scholar] [CrossRef] [Green Version]
- FAOSTAT Lupin Production in Tonnes in Europe. Available online: http://www.fao.org/faostat/en (accessed on 31 March 2020).
- Golubev, A.A.; Kurlovich, B.S. Diseases and pests. In Lupins (Geography, Classification, Genetic Resources and Breeding); Kurlovich, B.S., Ed.; OY International North Express: St. Petersburg, Russia, 2002; pp. 205–225. [Google Scholar]
- Talhinhas, P.; Baroncelli, R.; Le Floch, G. Anthracnose of lupins caused by Colletotrichum lupini: A recent disease and a successful worldwide pathogen. J. Plant Pathol. 2016, 98, 5–14. [Google Scholar] [CrossRef]
- Hill, G.D. The composition and nutritive value of lupin seed. Nutr. Abstr. Rev. Ser. B Livest. Feeds Feed. 1977, 47, 511–529. [Google Scholar]
- Horn, P.E.; Hill, G.D.; Porter, N.G. Yield and nutrient composition of seventeen Lupinus mutabilis lines. In Proceedings of the 8th Agronomy Society Conference; 1978; pp. 73–77. [Google Scholar]
- Adomas, B.; Galek, R.; Gas-Smereka, M.; Helios, W.; Hurej, M.; Kotecki, A.; Kozak, M.; Malarz, W.; Okorski, A.; Agnieszka, I.P.-C.; et al. Adaptation of the Andean lupin (Lupinus mutabilis Sweet) to Natural Conditions of South-Western Poland; Kotecki, A., Ed.; University of Life Sciences Publishing House in Wroclaw: Wrocław, Poland, 2015; ISBN 9788377172353. [Google Scholar]
- Olczak, T.; Rurek, M.; Janska, H.; Augustyniak, H.; Sawicka-Sienkiewicz, E. Screening of cytoplasmic DNA diversity between and within Lupinus mutabilis Sweet and Lupinus albus sensu lato by restriction fragment length polymorphism (RFLP). J. Appl. Genet. 2001, 42, 127–137. [Google Scholar]
- Pszczółkowska, A.; Okorski, A.; Kotecki, A.; Gas, M.; Kulik, T.; Reczek, A. Incidence of seed-borne fungi on Lupinus mutabilis depending on a plant morphotype, sowing date and plant density. J. Elem. 2016, 21, 501–512. [Google Scholar] [CrossRef] [Green Version]
- Neves-Martins, J.M.; Silva, P.M.R.; Sousa, R.F.X. Evaluation of Lupinus mutabilis accessions for protein and oil in Portugal. In Lupinus mutabilis: Its Adaptation and Production under European Pedoclimatic Conditions, Proceedings of a Workshop of the Agrimed Research Program, Cascais, Portugal, 26–27 April 1991; Commission of the European Communities: Cascais, Portugal, 1992; pp. 1–10. [Google Scholar]
- Jones, R.A.C.; Burchell, G.M. Resistance to Cucumber mosaic virus in Lupinus mutabilis (pearl lupin). Australas. Plant Pathol. 2004, 33, 591–593. [Google Scholar] [CrossRef]
- Hurej, M.; Kucharczyk, H.; Twardowski, J.P.; Kotecki, A. Thrips (Thysanoptera) associated with two morphological forms of Andean lupin (Lupinus mutabilis). Biologia (Bratisl) 2015, 70, 935–942. [Google Scholar] [CrossRef]
- Mikić, A.; Ćupina, B.; Mihailović, V.; Krstić, D.; Antanasović, S.; Zorić, L.; Dordević, V.; Perić, V.; Srebrić, M. Intercropping white (Lupinus albus) and Andean (Lupinus mutabilis) lupins with other annual cool season legumes for forage production. S. Afr. J. Bot. 2013, 89, 296–300. [Google Scholar] [CrossRef] [Green Version]
- Zoga, M.; Pawelec, A.; Galek, R.; Sawicka-Sienkiewicz, E. Morphological, cytological and molecular characteristics of parents and interspecific hybrid (Lupinus mutabilis LM-13 × Lupinus albus sensu lato). In Proceedings of the 12th International Lupin Conference, Fremantle, Australia, 14–18 September 2008; International Lupin Association: Canterbury, New Zealand, 2008; pp. 173–176. [Google Scholar]
- Galek, R.; Kozak, B.; Sawicka-Sienkiewicz, E.; Zalewski, D.; Nowosad, K. Searching for the most useful genotypes of Lupinus mutabilis sweet for breeding purpose. Electron. J. Pol. Agric. Univ. 2017, 20. [Google Scholar] [CrossRef]
- Masefield, G.B. A Preliminary Trial of the Pearl Lupin in England. Exp. Agric. 1975, 11, 113–118. [Google Scholar] [CrossRef]
- Masefield, G.B. Further Trials of Pearl Lupins in England. Exp. Agric. 1976, 12, 97–102. [Google Scholar] [CrossRef]
- Gnatowska, M.; Święcicki, W.K.; Wolko, B. Preliminary data on the outcrossing rate in sweet Lupinus mutabilis. In Lupin, an Ancient Crop for the New Millennium: Proceedings of the 9th International Lupin Conference, Klink/Müritz, Germany, 20–24 June 1999; International Lupin Association: Lima, Peru, 1999; pp. 167–168. [Google Scholar]
- Hardy, A.; Huyghe, C.; Rahim, M.A.; Roemer, P.; Neves-Martins, J.M.; Sawicka-Sienkiewicz, E.; Caligari, P.D.S. Effects of genotype and environment on architecture and flowering time of indeterminate Andean lupins (Lupinus mutabilis Sweet). Aust. J. Agric. Res. 1998, 49, 1241–1251. [Google Scholar] [CrossRef]
- Hardy, A.; Huyghe, C. Physiological bases of the poor adaptation of current Lupinus mutabilis genotypes to European conditions. Grain Legum. 1997, 15, 9–10. [Google Scholar]
- Lopez-Bellido, L.; Fuentes, M. Growth, Yield, and Yield Components of Lupin Cultivars. Agron. J. 1990, 82, 1050–1056. [Google Scholar] [CrossRef]
- Galek, R.A.; Kozak, B.; Biela, A.; Zalewski, D.; Sawicka-Sienkiewicz, E.; Spychała, K.; Stawiński, S. Seed coat thickness differentiation and genetic polymorphism for Lupinus mutabilis sweet breeding. Turk. J. Field Crops 2016, 21, 305–312. [Google Scholar] [CrossRef]
- Guilengue, N.; Alves, S.; Talhinhas, P.; Neves-Martins, J. Genetic and genomic diversity in a tarwi (Lupinus mutabilis sweet) germplasm collection and adaptability to mediterranean climate conditions. Agronomy 2020, 10, 21. [Google Scholar] [CrossRef] [Green Version]
- Lazaridi, E.; Sideris, E.; Tani, E.; Sotirakoglou, K.; Neves-Martins, J.; Bebeli, P.J. Assessing phenotypic diversity of lupin landraces (Lupinus mutabilis Sweet). In Proceedings of the 15th International Lupin Conference, Cochabamba, Bolivia, 18–21 March 2019; p. 130. [Google Scholar]
- Lazaridi, E.; Kapsi, E.; Papadopoulos, G.; Neves-Martins, J.; Bebeli, P.J. Lupinus mutabilis growth, seed yield and biological nitrogen fixation ability under different Rhizobia inoculation treatmentsin comparison to other lupin species. In Proceedings of the 15th International Lupin Conference, Cochabamba, Bolivia, 18–21 March 2019; p. 160. [Google Scholar]
- Keatinge, J.D.H.; Qi, A.; Wheeler, T.R.; Ellis, R.H.; Summerfield, R.J. Effects of temperature and photoperiod on phenology as a guide to the selection of annual legume cover and green manure crops for hillside farming systems. Field Crops Res. 1998, 57, 139–152. [Google Scholar] [CrossRef]
- Zou, L. Effects of Gradual and Sudden Heat Stress on Seed Quality of Andean Lupin, Lupinus mutabilis. Ph.D. Thesis, University of Helsinki, Helsinki, Finland, September 2009. [Google Scholar]
- López-Bellido, L. The potential of lupins in agriculture of the Iberian Peninsula. In Lupinus mutabilis: Its Adaptation and Production under European Pedoclimatic Conditions, Proceedings of a Workshop of the Agrimed Research Program, Cascais, Portugal, 26–27 April 1991; Commission of the European Communities: Cascais, Portugal, 1992; pp. 117–123. [Google Scholar]
- Sawicka-Sienkiewicz, E.J.; Augiewicz, J. Genetic studies of Andean lupin (Lupinus mutabilis Sweet). In Wild and Cultivated Lupins from the Tropics to the Poles, Proceedings of the 10th International Lupin Conference, Laugarvatn, Iceland, 19–24 June 2002; van Santen, E., Hill, H.D., Eds.; International Lupin Association: Canterbury, New Zealand, 2002; p. 136. [Google Scholar]
- Von Sengbusch, R.; Zimmermann, K. Die Auffindung der ersten gelben und blauen Lupinen (Lupinus luteus und Lupinus angustifolius) mit nichtplatzenden Hülsen und die damit zusammenhängenden Probleme, insbesondere die der Süßlupinenzüchtung. Der Züchter 1937, 9, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Lazaridi, E.; Bebeli, P.J. Effect of sowing date on Andean lupin accessions performance under a Mediterranean climate. Manuscript under Preparation.
- Adhikari, K.N.; Buirchell, B.J.; Sweetingham, M.W. Length of vernalization period affects flowering time in three lupin species. Plant Breed. 2012, 131, 631–636. [Google Scholar] [CrossRef]
- Rahman, M.S.; Gladstones, J.S. Control of lupin flower initiation by vernalization, photoperiod and temperature under controlled environment. Aust. J. Exp. Agric. 1972, 12, 638–645. [Google Scholar] [CrossRef]
- Taylor, C.M.; Kamphuis, L.G.; Zhang, W.; Garg, G.; Berger, J.D.; Mousavi-Derazmahalleh, M.; Bayer, P.E.; Edwards, D.; Singh, K.B.; Cowling, W.A.; et al. INDEL variation in the regulatory region of the major flowering time gene LanFTc1 is associated with vernalization response and flowering time in narrow-leafed lupin (Lupinus angustifolius L.). Plant Cell Environ. 2019, 42, 174–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ksiazkiewicz, M.; Nazzicari, N.; Yang, H.; Nelson, M.N.; Renshaw, D.; Rychel, S.; Ferrari, B.; Carelli, M.; Tomaszewska, M.; Stawiński, S.; et al. A high-density consensus linkage map of white lupin highlights synteny with narrow-leafed lupin and provides markers tagging key agronomic traits. Sci. Rep. 2017, 7, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Hackbarth, J. Die genzentren der Gattung Lupinus in der Neuen Welt und ihre Bedeutung für die Züchtung. Zeitschrift fur Pflanzenzuecht 1961, 63, 237–245. [Google Scholar]
- Huyghe, C. Possible ways to control the vegetative development in Lupinus mutabilis. Retrospects and Prospects. In Lupinus mutabilis: Its Adaptation and Production under European Pedoclimatic Conditions, Proceedings of a Workshop of the Agrimed Research Program; Commission of the European Communities: Cascais, Portugal, 1992; pp. 147–154. [Google Scholar]
- Carvalho, I.S.; Ricardo, C.P.; Chaves, M. Quality and distribution of assimilates within the whole plant of lupines (L. albus and L. mutabilis) influenced by water stress. J. Agron. Crop Sci. 2004, 190, 205–210. [Google Scholar] [CrossRef]
- Carvalho, I.S.; Chaves, M.; Pinto Ricardo, C. Influence of Water Stress on the Chemical Composition of Seeds of Two Lupins (Lupinus albus and Lupinus mutabilis). J. Agron. Crop Sci. 2005, 191, 95–98. [Google Scholar] [CrossRef]
- Lizarazo, C.; Stoddard, F.; Mäkelä, P.; Santanen, A. Genetic variability in the physiological responses of Andean lupin to drought stress. Suom. Maatal. Seuran Tied. NRO 2010, 1–5. [Google Scholar] [CrossRef]
- Sweetingham, M. The Potential of the Pearl Lupin (Lupinus mutabilis) for Southern Australia; Department of Agriculture and Food WA: Canberra, Australia, 2014.
- Peiter, E.; Yan, F.; Schubert, S. Lime-induced growth depression in Lupinus species: Are soil pH and bicarbonate involved? J. Plant Nutr. Soil Sci. 2001, 164, 165–172. [Google Scholar] [CrossRef]
- Annicchiarico, P.; Thami Alami, I. Enhancing white lupin (Lupinus albus L.) adaptation to calcareous soils through selection of lime-tolerant plant germplasm and Bradyrhizobium strains. Plant Soil 2012, 350, 131–144. [Google Scholar] [CrossRef]
- Ding, W.; Clode, P.L.; Clements, J.C.; Lambers, H. Sensitivity of different Lupinus species to calcium under a low phosphorus supply. Plant Cell Environ. 2018, 41, 1512–1523. [Google Scholar] [CrossRef]
- Barda, M. Characterization of Andean Lupin (L. mutabilis Sweet) Germplasm and Recording of Pollinators at Two Locations at Greece. Masters’s Thesis, Agricultural University of Athens, Athens, Greece, 5 March 2018. [Google Scholar]
- Tang, C.; Thomson, B.D. Effects of solution pH and bicarbonate on the growth and nodulation of a range of grain legume species. Plant Soil 1996, 186, 321–330. [Google Scholar] [CrossRef]
- Tang, C.; Robson, A.D.; Longnecker, N.E.; Buirchell, B.J. The growth of Lupinus species on alkaline soils. Aust. J. Agric. Res. 1995, 46, 255–268. [Google Scholar] [CrossRef]
- Yánez-Mendizábal, V.; Falconí, C.E. Efficacy of Bacillus spp. to biocontrol of anthracnose and enhance plant growth on Andean lupin seeds by lipopeptide production. Biol. Control 2018, 122, 67–75. [Google Scholar] [CrossRef]
- Falconí, C.E.; Yánez–Mendizábal, V. Dry heat treatment of Andean lupin seed to reduce anthracnose infection. Crop Prot. 2016, 89, 178–183. [Google Scholar] [CrossRef]
- Jacob, I.; Feuerstein, U.; Heinz, M.; Schott, M.; Urbatzka, P. Evaluation of new breeding lines of white lupin with improved resistance to anthracnose. Euphytica 2017, 213. [Google Scholar] [CrossRef]
- Guilengue, N.; Neves-Martins, J.; Talhinhas, P. Response to Anthracnose in a Tarwi (Lupinus mutabilis) Collection Is Influenced by Anthocyanin Pigmentation. Plants 2020, 9, 583. [Google Scholar] [CrossRef]
- Dewitte, K.; Landschoot, S.; Carrette, J.; Audenaert, K.; Haesaert, G. Exploration of essential oils as alternatives to conventional fungicides in lupin cultivation. Org. Agric. 2019, 9, 107–116. [Google Scholar] [CrossRef]
- Johnson, S.K.; Clements, J.; Villarino, C.B.J.; Coorey, R. Chapter 8—Lupins: Their Unique Nutritional and Health-Promoting Attributes. In Gluten-Free Ancient Grains: Cereals, Pseudocereals, and Legumes: Sustainable, Nutritious, and Health-Promoting Foods for the 21st Century; Taylor, J.R.N., Awika, Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 179–221. ISBN 978-0-08-100866-9. [Google Scholar]
- Guaytarilla, C.P.B.; Falconí, C.S. Seleccion por arquitectura de la planta y resistencia a la Antracnosis de 7 Genotipos de Chocho (Lupinus mutabilis). Congr. Cienc. Tecnol. 2014, 9, 63–70. [Google Scholar]
- Tapia, M.E. Cultivos Andinos Subexplotados y so Aporte a la Alimentacion, 2nd ed.; Oficina Regional de la FAO para América Latina y el Caribe: Santiago, Chile, 2000. [Google Scholar]
- von Bayer, E. Domestication of Andean Lupin (L. mutabilis). In Lupin Crops—An Opportunity for Today, a Promise for the Future, Proceedings of the 13th International Lupin Conference, Poznań, Poland, 6–10 June 2011; Naganowska, B., Kachlicki, P., Wolko, B., Eds.; International Lupin Association: Poznan, Poland, 2011; pp. 129–132. [Google Scholar]
- Falconi, C.E.; Visser, R.G.F.; van Heusden, S. Influence of plant growth stage on resistance to anthracnose in Andean lupin (Lupinus mutabilis). Crop Pasture Sci. 2015, 66, 729–734. [Google Scholar] [CrossRef] [Green Version]
- Falconí, C.E.; Visser, R.G.F.; van Heusden, A.W. Phenotypic, Molecular, and Pathological Characterization of Colletotrichum acutatum Associated with Andean Lupine and Tamarillo in the Ecuadorian Andes. Plant Dis. 2013, 97, 819–827. [Google Scholar] [CrossRef] [Green Version]
- Caicedo, C.V.; Peralta, E. El cultivo de chocho Lupinus mutabilis Sweet: Fitonutrición, Enfermedades y Plagas. INIAP Quito Equador 2001. [Google Scholar]
- Falconí, C.E.; Yánez-Mendizábal, V. Efficacy of UV-C radiation to reduce seedborne anthracnose (Colletotrichum acutatum) from Andean lupin (Lupinus mutabilis). Plant Pathol. 2018, 67, 831–838. [Google Scholar] [CrossRef]
- Lamichhane, J.R.; Dürr, C.; Schwanck, A.; Robin, M.-H.; Sarthou, J.-P.; Cellier, V.; Messean, A.; Aubertot, J.-N. Integrated management of damping-off diseases. A review. Agron. Sustain. Dev. 2017, 37, 1–25. [Google Scholar] [CrossRef]
- Singh, R.J.; Jauhar, P.P. Genetic Resources, Chromosome Engineering, and Crop Improvement. Vol 1: Grain Legumes; Taylor & Francis: Boca Raton, FL, USA, 2005; ISBN 0849314305. [Google Scholar]
- Sweetingham, M.W. Anthracnose workshop report. In Lupin, an Ancient Crop for the New Millennium, Proceedings of the 9th International Lupin Conference, Klink/Müritz, Germany, 20–24 June 1999; International Lupin Association: Klink/Muritz, Germany, 2000; pp. 63–69. [Google Scholar]
- Sweetingham, M.W.; Jones, R.A.C.; Brown, A.G.P. Diseases and Pests. In Lupin as Crop Plants. Biology, Production and Utilization; Gladstones, J., Atkins, C., Hamblin, J., Eds.; CAB International: Cambridge, UK, 1998; pp. 263–289. [Google Scholar]
- Thomas, G.; Jones, R.; Vanstone, V. Diseases of lupin. In Producing lupins; White, P., French, B., McLarty, A., Eds.; Department of Agriculture and Food: Perth, Australia, 2008; pp. 101–120. [Google Scholar]
- French, R.J. Lupin: Agronomy. In Encyclopedia of Food Grains, 2nd ed.; Wrigley, C., Corke, H., Seetharaman, K., Faubion, J., Eds.; Academic Press: Oxford, UK, 2016; pp. 231–239. ISBN 978-0-12-394786-4. [Google Scholar]
- Meng, Y.; Zhang, Q.; Ding, W.; Shan, W. Phytophthora parasitica: A model oomycete plant pathogen. Mycology 2014, 5, 43–51. [Google Scholar] [CrossRef]
- Duke, J. Handbook of Legumes of World Economic Importance, 1st ed.; Springer: New York, NY, USA, 1981. [Google Scholar]
- Sator, C. Lupins (Lupinus spp.) Legumes and Oilseed Crops I. In Biotechnology in Agriculture and Forestry; Bajaj, Y.P.S., Ed.; Springer: Berlin/Heidelberg, Germany, 1990; pp. 288–311. ISBN 978-3-642-74448-8. [Google Scholar]
- Landers, K.; Sutherland, S.; Sykes, J. Lupin, best practice management for sustainable production. In Lupin; NSW Agriculture: Orange, Australia, 2000; pp. 3–44. [Google Scholar]
- Wunderlich, N.; Ash, G.J.; Harper, J.D.I.; Cowley, R.B.; Luckett, D.J. Penetration and symptom development of Pleiochaeta root rot in susceptible and resistant Lupinus albus cultivars. Australas. Plant Pathol. 2008, 37, 387–391. [Google Scholar] [CrossRef]
- Wijayanto, T.; Barker, S.J.; Wylie, S.J.; Gilchrist, D.G.; Cowling, W.A. Significant reduction of fungal disease symptoms in transgenic lupin (Lupinus angustifolius) expressing the anti-apoptotic baculovirus gene p35. Plant Biotechnol. J. 2009, 7, 778–790. [Google Scholar] [CrossRef] [Green Version]
- Loughman, R.; Sweetingham, M.W. Control of Pleiochaeta setosa diseases of lupin using seed and fertiliser applied fungicides. Aust. J. Exp. Agric. 1991, 31, 493–498. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Y. Phytophthora Sojae Biological Invasions and Its Management in China: Volume 2; Wan, F., Jiang, M., Zhan, A., Eds.; Springer: Singapore, 2017; pp. 199–223. ISBN 978-981-10-3427-5. [Google Scholar]
- Torrena, P.S. Phytophthora Parasitica and Lupin (Lupinus angustifolius) Interactions: Changes in Gene Expression during Infection and after Phosphate Treatment. Ph.D. Thesis, Australian National University, Canberra, Australia, 11 May 2017. [Google Scholar] [CrossRef]
- Blackman, L.M.; Cullerne, D.P.; Torreña, P.; Taylor, J.; Hardham, A.R. RNA-Seq Analysis of the Expression of Genes Encoding Cell Wall Degrading Enzymes during Infection of Lupin (Lupinus angustifolius) by Phytophthora parasitica. PLoS ONE 2015, 10. [Google Scholar] [CrossRef] [Green Version]
- Nishimura, M.; Nishizawa, Y.; Fujikawa, T.; Mitsuhara, I.; Minami, E.; Abe, K.; Tachiki, T.; Yano, S. Methods for Preventing or Inhibiting Microbial Infection of Plants and Plant Excibiting Resistance to Microbial Infection. U.S. Patent 002361.6, 26 January 2012. [Google Scholar]
- Curry, P.J.; Diehl, F.I. Antimicrobial Composition. U.S. Patent 0323,037 A1, 23 December 2010. [Google Scholar]
- Shaikh, S.; Wani, S.; Sayyed, R. Impact of Interactions between Rhizosphere and Rhizobacteria: A Review. J Bacteriol. Mycol. 2018, 5, 1058. [Google Scholar]
- Sato, T.; Tomioka, K.; Nakanishi, T.; Koganezawa, H. Charcoal rot of yacon (Smallanthus sonchifolius (Poepp. et Endl.) H. Robinson), Oca (Oxalis tuberosa Molina) and pearl lupin (Tarwi, Lupinus mutabilis Sweet) caused by Macrophomina phaseolina (Tassi) Goid. Bull. Shikoku Natl. Agric. Exp. Stn. 1999, 64, 1–8. [Google Scholar]
- Dankevych, L.; Leonova, N.; Dragovoz, I.; Patyka, V.; Kalinichenko, A.; Wlodarczyk, P.; Wlodarczyk, B. The synthesis of plant growth stimulators by phytopathogenic bacteria as factor of pathogenicity. Appl. Ecol. Environ. Res. 2018, 16, 1581–1593. [Google Scholar] [CrossRef]
- Gould, C.J.J. Diseases of Cultivated Lupines. Proc. Iowa Acad. Sci. 1939, 46, 119–125. [Google Scholar]
- DPIRD, G. My Crop. Lupins. Available online: https://www.agric.wa.gov.au/crops/grains/lupins (accessed on 31 October 2019).
- Jones, R.A.C.; McLean, G.D. Virus diseases of lupins. Ann. Appl. Biol. 1989, 114, 609–637. [Google Scholar] [CrossRef]
- Ferenc, B.; István, L.; János, K.G. Csillagfürtfajok Növény Védelme. Tecnológia 2008, 44, 279–296. [Google Scholar]
- Hull, R. Virus diseases of garden lupin in Great Britain. Ann. Appl. Biol. 1968, 61, 373–380. [Google Scholar] [CrossRef]
- Eppler, A.; Hinz, U.; Romer, P. Virus-diseases of Lupinus mutabilis Sweet in Germany. Meded. Fac. Landbou Wet. Rijksuniv. Gent 1986, 51, 817–826. [Google Scholar]
- Robertson, N.L.; Coyne, C.J. Evaluation of USDA Lupinus sp. collection for seed-borne potyviruses. Plant Genet. Resour. Characterisation Util. 2009, 7, 227–229. [Google Scholar] [CrossRef] [Green Version]
- Coutts, B. Diagnosing Bean Yellow Mosaic Virus—Early Symptoms in Narrow-Leafed Lupins. Available online: https://www.agric.wa.gov.au/mycrop/diagnosing-bean-yellow-mosaic-virus-early-symptoms-narrow-leafed-lupins (accessed on 16 June 2020).
- Jones, R.; Coutts, B.; Burchell, G.; Wylie, S. Bean yellow mosaic virus in lupins: Strains, losses, epidemiology and control. In Lupins for Health and Wealth, Proceedings of the 12th International Lupin Conference, Fremantle, Australia, 14–18 September 2008; Palta, J.A., Berger, J.B., Eds.; International Lupin Association: Canterbury, New Zealand, 2008; pp. 420–424. [Google Scholar]
- Thackray, D.J.; Diggle, A.J.; Berlandier, F.A.; Jones, R.A.C. Forecasting aphid outbreaks and epidemics of Cucumber mosaic virus in lupin crops in a Mediterranean-type environment. Virus Res. 2004, 100, 67–82. [Google Scholar] [CrossRef]
- Jones, R.A.C.; Latham, L.J. Natural resistance to cucumber mosaic virus in lupin species. Ann. Appl. Biol. 1996, 129, 523–542. [Google Scholar] [CrossRef]
- Makkouk, K.M.; Kumari, S.G.; van Leur, J.A.G.; Jones, R.A.C. Control of Plant Virus Diseases in Cool-Season Grain Legume Crops, 1st ed.; Elsevier Inc.: Cambridge, MA, USA, 2014; Volume 90, ISBN 9780128012468. [Google Scholar]
- Coutts, B.A.; Prince, R.T.; Jones, R.A.C. Further studies on Pea seed-borne mosaic virus in cool-season crop legumes: Responses to infection and seed quality defects. Aust. J. Agric. Res. 2008, 59, 1130–1145. [Google Scholar] [CrossRef]
- Sarkisova, T.; Petrzik, K. Determination of the complete nucleotide sequence of a lupine potyvirus isolate from the Czech Republic reveals that it belongs to a new member of the genus Potyvirus. Arch. Virol. 2011, 156, 167–169. [Google Scholar] [CrossRef]
- Jones, R.A.C. Developing Integrated Disease Management Strategies Against Non-persistently Aphid-borne Viruses: A Model Programme. Integr. Pest Manag. Rev. 2001, 6, 15–46. [Google Scholar] [CrossRef]
- Berlandier, F.A.; Thackray, D.J.; Jones, R.A.C.; Latham, L.J.; Cartwright, L. Determining the relative roles of different aphid species as vectors of cucumber mosaic and bean yellow mosaic viruses in lupins. Ann. Appl. Biol. 1997, 131, 297–314. [Google Scholar] [CrossRef]
- Berlandier, F.A.; Sweetingham, M.W. Aphid feeding damage causes large losses in susceptible lupin cultivars. Aust. J. Exp. Agric. 2003, 43, 1357–1362. [Google Scholar] [CrossRef]
- Valenzuela, I.; Hoffmann, A.A. Effects of aphid feeding and associated virus injury on grain crops in Australia. Austral Entomol. 2015, 54, 292–305. [Google Scholar] [CrossRef]
- Ferguson, A.W. Pests and plant injury on lupins in the south of England. Crop Prot. 1994, 13, 201–210. [Google Scholar] [CrossRef]
- Stary, P.; Havelka, J. Macrosiphum albifrons Essig, an invasive lupin aphid and its natural- enemy complex in Czechoslovakia (Homoptera, Aphididae). Acta Entomol. Bohemoslov. 1991, 88, 111–120. [Google Scholar]
- Tsitsipis, J.A.; Katis, N.I.; Margaritopoulos, J.T.; Lykouressis, D.P.; Avgelis, A.D.; Gargalianou, I.; Zarpas, K.D.; Perdikis, D.C.; Papapanayotou, A. A contribution to the aphid fauna of Greece. Bull. Insectol. 2007, 60, 31–38. [Google Scholar]
- Vučetić, A.; Jovičić, I.; Petrović-Obradović, O. Several new and one invasive aphid species (Aphididae, Hemiptera) caught by yellow water traps in Serbia. Phytoparasitica 2014, 42, 247–257. [Google Scholar] [CrossRef]
- Havelka, J.; Tomanović, Ž.; Kos, K.; Kavallieratos, N.G.; Janeček, J.; Pons, X.; Rakhshani, E.; Starý, P. Mountain aphid and parasitoid guilds on Aconitum spp. in Europe. Bull. Insectol. 2014, 67, 57–62. [Google Scholar]
- Avtzis, D.N.; Coyle, D.R.; Christopoulos, V.; Roques, A. Biological invasions, national borders, and the current state of non-native insect species in Greece and the neighbouring Balkan countries. Bull. Insectol. 2017, 70, 161–169. [Google Scholar]
- Jones, D.R. Plant Viruses Transmitted by Thrips. Eur. J. Plant Pathol. 2005, 113, 119–157. [Google Scholar] [CrossRef]
- Ströcker, K.; Wendt, S.; Kirchner, W.H.; Struck, C. Feeding preferences of the weevils Sitona gressorius and Sitona griseus on different lupin genotypes and the role of alkaloids. Arthropod. Plant. Interact. 2013, 7, 579–589. [Google Scholar] [CrossRef]
- Cantot, P.; Papineau, J. Discrimination des lupins a basse teneur en alcaloides par les adultes de Sitona lineatus L. (Col., Curculionidae). Agron. Sci. Prod. Veg. L’environnement 1983, 3, 937–940. [Google Scholar] [CrossRef] [Green Version]
- Gruppe, A.; Roemer, P. The Lupin Aphid (Macrosiphum albifrons Essig, 1911) (Hom., Aphididae) in West Germany: Its occurrence, host plants and natural enemies. J. Appl. Entomol. 1988, 106, 135–143. [Google Scholar] [CrossRef]
- Wink, M.; Witte, L. Storage of Quinolizidine Alkaloids in Macrosiphum albifrons and Aphis genistae (Homoptera: Aphididae). Entomol. Gen. 1991, 15, 237–254. [Google Scholar] [CrossRef]
- Barda, M.; Bebeli, P.J. Recording of pollinators and studying the relationship plant-pollinator in lupin breeding. In Proceedings of the 17th Conference of the Hellenic Scientific Society of Plant Genetics and Breeding, Patras, Greece, 17–19 October 2018; pp. 86–87. [Google Scholar]
- Callohuari, Y.; Vergara, C.; Jiménez, J. Insect pests associated with Andean lupin (Lupinus mutabilis Sweet) and their parasitoids in Peruvian central coast – (Lima, La Molina). Peruv. J. Agron. 2018, 2, 27–33. [Google Scholar] [CrossRef]
- Ivany, J.A.; McCully, K.V. Evaluation of Herbicides for Sweet White Lupin (Lupinus albus). Weed Technol. 1994, 8, 819–823. [Google Scholar] [CrossRef]
- Herbert, S.J.; Lucas, R.J.; Pownall, D.B. Weed suppression in high density sowings of lupins. N. Z. J. Exp. Agric. 1978, 6, 299–303. [Google Scholar] [CrossRef] [Green Version]
- Cheriere, T. White lupin (Lupinus albus L.) Yield in Pays de la Loire and Its Nitrogen Provisioning Services. Master’s Thesis, Wageningen University & Research, Wageningen, The Netherlands & Ecole Supérieure d’Agricultures, Angers, France, 22 September 2016. [Google Scholar]
- Rodrigues-Alves, A.F. Herbicide Screening on Lupinus mutabilis Sweet. Licentiate Thesis, Instituto Politécnico de Santarém, Santarém, Portugal, 2019. [Google Scholar]
- Prins, U.; van Haren, R. Andean lupin (Lupinus mutabilis) Cropping and Its Opportunities for Europe; Hanzehogeschool Groningen: Groningen, The Netherlands, 2019. [Google Scholar]
- Glowacka, A. The influence of strip cropping and weed control methods on weed diversity in dent maize (Zea mays L.), narrow-leafed Lupin (Lupinus angustifolius L.) and oats (Avena sativa L.). Acta Agrobot. 2013, 66, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Hashem, A.; Collins, R.M.; Bowran, D.G. Efficacy of Interrow Weed Control Techniques in Wide Row Narrow-Leaf Lupin. Weed Technol. 2011, 25, 135–140. [Google Scholar] [CrossRef]
- Duran, D.; Pacheco, A.; Ruiz-Argüeso, T.; Palacios, J.M.; Imperial, J.; De Rey, L. Centro Relevance of bacterial secretion systems Type III and Type VI in the Bradyrhizobium-Lupinus symbiosis. In Proceedings of the 14th International Lupin Conference, Milan, Italy, 21–26 June 2015; p. 48. [Google Scholar]
- Eckhardt, M.M.; Baldwin, I.L.; Fred, E.B. Studies of the Root-Nodule Organism of Lupinus. J. Bacteriol. 1931, 21, 273–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stȩpkowski, T.; Hughes, C.E.; Law, I.J.; Markiewicz, Ł.; Gurda, D.; Chlebicka, A.; Moulin, L. Diversification of lupine Bradyrhizobium strains: Evidence from nodulation gene trees. Appl. Environ. Microbiol. 2007, 73, 3254–3264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrews, M.; Andrews, M.E. Specificity in Legume-Rhizobia Symbioses. Int. J. Mol. Sci. 2017, 18, 705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beligala, D.H.; Michaels, H.J.; Devries, M.; Phuntumart, V. Multilocus Sequence Analysis of Root Nodule Bacteria Associated with Lupinus spp. and Glycine max. Adv. Microbiol. 2017, 07, 790–812. [Google Scholar] [CrossRef] [Green Version]
- USDA Crop Germplasm Committees (CGC). Available online: https://www.ars-grin.gov/Rhizobium/Search (accessed on 31 October 2019).
- Reeve, W.; Terpolilli, J.; Melino, V.; Ardley, J.; Tian, R.; De Meyer, S.; Tiwari, R.; Yates, R.; O’Hara, G.; Howieson, J.; et al. Genome sequence of the lupin-nodulating Bradyrhizobium sp. strain WSM1417. Stand. Genomic Sci. 2013, 9, 273–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unkovich, M.J.; Pate, J.S. An appraisal of recent field measurements of symbiotic N2 fixation by annual legumes. Field Crops Res. 2000, 65, 211–228. [Google Scholar] [CrossRef]
- Kurlovich, B.S.; Kartuzova, L.T.; Cheremisov, B.M.; Emeljanenko, T.A.; Tikhonovich, I.A.; Kozhemyakov, A.P.; Tchetkova, S.A. Evaluation of the biological nitrogen-fixing ability. Plant Genet. Resour. Newsl. 2000, 123, 68–77. [Google Scholar]
- Tapia, M.E. El Tarwi, Lupino Andino, 1st ed.; Corporación Gráfica Universal SAC: Lima, Peru, 2015. [Google Scholar]
- Robinson, K.O.; Beyene, D.A.; Van Berkum, P.; Knight-Mason, R.; Bhardwaj, H.L. Variability in plant-microbe interaction between Lupinus lines and Bradyrhizobium strains. Plant Sci. 2000, 159, 257–264. [Google Scholar] [CrossRef]
- Howieson, J.G.; Fillery, I.R.P.; Legocki, A.B.; Sikorski, M.M.; Stepkowski, T.; Minchin, F.R.; Dilworth, M.J. Nodulation, nitrogen fixation and nitrogen balance. In Lupins As Crop Plants: Biology, Production and Utilization; Gladstones, J.S., Atkins, C., Hamblin, J., Eds.; CAB International: Oxon, UK, 1998; pp. 149–180. [Google Scholar]
- Papineau, J.; Huyghe, C. Le Lupin Doux Protéagineux; France Agricole: Paris, France, 2004. [Google Scholar]
- Walker, J.; Hertel, K.; Parker, P.; Edwards, J. Lupin Growth and Development; Edwards, J., Walker, J., McIntosh, G., Eds.; Industry & Investment NSW: New South Wales, Australia, 2011; ISBN 978 1 74256 059 5. [Google Scholar]
- Sánchez-Cañizares, C.; Rey, L.; Durán, D.; Temprano, F.; Sánchez-Jiménez, P.; Navarro, A.; Polajnar, M.; Imperial, J.; Ruiz-Argüeso, T. Endosymbiotic bacteria nodulating a new endemic lupine Lupinus mariae-josephi from alkaline soils in Eastern Spain represent a new lineage within the Bradyrhizobium genus. Syst. Appl. Microbiol. 2011, 34, 207–215. [Google Scholar] [CrossRef] [Green Version]
- Navarro, A.; Fos, S.; Laguna, E.; Durán, D.; Rey, L.; Rubio-Sanz, L.; Imperial, J.; Ruiz-Argüeso, T. Conservation of Endangered Lupinus mariae-josephae in Its Natural Habitat by Inoculation with Selected, Native Bradyrhizobium Strains. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Raza, S.; Jørnsgård, B.; Abou-Taleb, H.; Christiansen, J.L. Tolerance of Bradyrhizobium sp. (Lupini) strains to salinity, pH, CaCO3 and antibiotics. Lett. Appl. Microbiol. 2001, 32, 379–383. [Google Scholar] [CrossRef] [Green Version]
- Dracup, M.; Turner, N.; Tang, C.; Reader, M.; Palta, J.; Gladstones, J.; Atkins, C.; Hamblin, J. Responses to abiotic stresses. In Lupins As Crop Plants: Biology, Production and Utilization; Gladstones, J.S., Atkins, C.A., Hamblin, J., Eds.; CAB International: Wallingford, UK, 1998; pp. 227–262. [Google Scholar]
- Fernández-Pascual, M.; Pueyo, J.J.; de Felipe, M.R.; Golvano, M.P.; Lucas, M.M. Singular Features of the Bradyrhizobium-Lupinus Symbiosis. Dyn. Soil Dyn. Plant 2007, 1, 1–16. [Google Scholar]
- Fernández-Pascual, M.; De Lorenzo, C.; Pozuelo, J.M.; De Felipe, M.R. Alterations Induced by four Herbicides on Lupine Nodule Cortex Structure, Protein Metabolism and some Senescence-Related Enzymes. J. Plant Physiol. 1992, 140, 385–390. [Google Scholar] [CrossRef]
- De Felipe, M.R.; Fernandez-Pascual, M.; Pozuelo, J.M. Effects of the herbicides Lindex and Simazine on chloroplast and nodule development, nodule activity, and grain yield in Lupinus albus L. Plant Soil 1987, 101, 99–105. [Google Scholar] [CrossRef]
- Suso, M.J.; Bebeli, P.J.; Palmer, R.G. Reproductive Biology of Grain Legumes. In Grain Legumes; De Ron, A.M., Ed.; Springer: New York, NY, USA, 2015; pp. 365–399. ISBN 978-1-4939-2797-5. [Google Scholar]
- Kazimierska, E.M.; Kazimierski, T. Biology of flowering, embryological and caryological peculiarilies. In Lupins (Geography, Classification, Genetic Resources and Breeding); Kurlovich, B.S., Ed.; OY International North Express: St. Petersburg, Russia, 2002; pp. 205–239. [Google Scholar]
- Suso, M.J.; del Río, R. A crop–pollinator inter-play approach to assessing seed production patterns in faba bean under two pollination environments. Euphytica 2015, 201, 231–251. [Google Scholar] [CrossRef]
- Chirinos-Arias, M.C.; Jiménez, J.E.; Vilca-Machaca, L.S. Análisis de la Variabilidad Genética entre treinta accesiones de tarwi (Lupinus mutabilis Sweet) usando marcadores moleculares ISSR. Sci. Agropecu. 2015, 6, 17–30. [Google Scholar] [CrossRef] [Green Version]
- Williams, I.H. The Pollination of Lupins. Bee World 1987, 68, 10–16. [Google Scholar] [CrossRef]
- Roder, W.; Kharel, D.R.; Gurung, P.R.; Dukpa, P. Pearl Lupine (Lupinus mutabilis) as a Green Manure Crop in the Highlands of Bhutan. J. Sustain. Agric. 1993, 3, 9–20. [Google Scholar] [CrossRef]
- Hatzold, T.; Elmadfa, I.; Gross, R.; Wink, M.; Hartmann, T.; Witte, L. Quinolizidine alkaloids in seeds of Lupinus mutabilis. J. Agric. Food Chem. 1983, 31, 934–938. [Google Scholar] [CrossRef]
- Cortez, A.; Ruíz, H.; Torres, R. Substitution of Cow’s Milk for Milk of Lupinus mutabilis in the Production of Fresh Cheese. Int. J. Sci. Res. 2017, 6, 2156–2162. [Google Scholar] [CrossRef]
- Zambrana, S.; Lundqvist, C.E.L.; Mamani, O.; Catrina, S.-B.; Gonzales, E.; Östenson, C.-G. Lupinus mutabilis Extract Exerts an Anti-Diabetic Effect by Improving Insulin Release in Type 2 Diabetic Goto-Kakizaki Rats. Nutrients 2018, 10, 933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Msika, P.; Piccirilli, A.; Piccardi, N. Use of a Cosmetic of Pharmaceutical Composition, Comprising a Lupeol-Rich Extract As an Active Ingredient for Stimulating the Synthesis of Heat Shock Protens. U.S. Patent 8,747,815, 10 June 2014. [Google Scholar]
- van Haren, R.J.F.; Arnason, P. Lupinus Mutabilis for Increased Biomass from Marginal Lands and Value for BIOrefineries. Available online: http://dev.nmi.is/Libbio_booklet/index.html (accessed on 14 February 2020).
- van Barneveld, R.J. Understanding the nutritional chemistry of lupin (Lupinus spp.) seed to improve livestock production efficiency. Nutr. Res. Rev. 1999, 12, 203–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sedláková, K.; Straková, E.; Suchý, P.; Krejcarová, J.; Herzig, I. Lupin as a perspective protein plant for animal and human nutrition—A review. Acta Vet. Brno 2016, 85, 165–175. [Google Scholar] [CrossRef] [Green Version]
- Jeroch, H.; Kozłowski, K.; Mikulski, D.; Jamroz, D.; Schöne, F.; Zduńczyk, Z. Lupinen (Lupinus spp.) als Eiweißfuttermittel für Geflügel. 2) Ergebnisse mit Lupinen in Fütterungsversuchen mit Geflügel und Empfehlungen für Geflügelalleinfutter. Eur. Poult. Sci. 2016, 80. [Google Scholar] [CrossRef]
- Jeroch, H.; Kozłowski, K.; Schöne, F.; Zduńczyk, Z. Lupinen (Lupinus spp.) als eiweißfuttermittel für geflügel. 1) sorten, zusammensetzung und nährwert für geflügel. Eur. Poult. Sci. 2016, 80, 1–14. [Google Scholar] [CrossRef]
- Glencross, B.; Sweetingham, M.; Hawkins, W. A digestibility assessment of pearl lupin (Lupinus mutabilis) meals and protein concentrates when fed to rainbow trout (Oncorhynchus mykiss). Aquaculture 2010, 303, 59–64. [Google Scholar] [CrossRef]
- Molina-Poveda, C.; Lucas, M.; Jover, M. Evaluation of the potential of Andean lupin meal (Lupinus mutabilis Sweet) as an alternative to fish meal in juvenile Litopenaeus vannamei diets. Aquaculture 2013, 410–411, 148–156. [Google Scholar] [CrossRef]
- Borreani, G.; Chion, A.R.; Colombini, S.; Odoardi, M.; Paoletti, R.; Tabacco, E. Fermentative profiles of field pea (Pisum sativum), faba bean (Vicia faba) and white lupin (Lupinus albus) silages as affected by wilting and inoculation. Anim. Feed Sci. Technol. 2009, 151, 316–323. [Google Scholar] [CrossRef]
- Carruthers, K.; Prithiviraj, B.; Fe, Q.; Cloutier, D.; Martin, R.C.; Smith, D.L. Intercropping corn with soybean, lupin and forages: Yield component responses. Eur. J. Agron. 2000, 12, 103–115. [Google Scholar] [CrossRef]
- Roux, S.R.; Höppner, F.; Wiedow, D.; Kanswohl, N. Züchterische Evaluierung der Andenlupine im Vergleich zur weißen und zur blauen Lupine für die Bioenergienutzung. In Proceedings of the Kongress “Mit Pflanzenzüchtung zum Erfolg”, Berlin, Germany, 3–4 April 2017; Gülzower Fachgespräche: Berlin, Germany, 2017. [Google Scholar]
- Klein, A.-M.; Vaissière, B.E.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Tscharntke, T. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. 2007, 274, 303–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobayashi, K.; Tsukamoto, S.; Tanaka, A.; Niikura, S.; Ohsawa, R. Selective flower visitation behavior by pollinators in a radish F1 seed production field. Breed. Sci. 2010, 60, 203–211. [Google Scholar] [CrossRef] [Green Version]
- Tester, M.; Langridge, P. Breeding Technologies to Increase Crop Production in a Changing World. Science 2010, 327, 818–822. [Google Scholar] [CrossRef] [PubMed]
- Clements, J.C.; Wilson, J.; Sweetingham, M.W.; Quealy, J.; Francis, G. Male Sterility in three crop Lupinus species. Plant Breed. 2012, 131, 155–163. [Google Scholar] [CrossRef]
- Palmer, R.G.; Perez, P.T.; Ortiz-Perez, E.; Maalouf, F.; Suso, M.J. The role of crop-pollinator relationships in breeding for pollinator-friendly legumes: From a breeding perspective. Euphytica 2009, 170, 35–52. [Google Scholar] [CrossRef] [Green Version]
- Harder, L.D.; Williams, N.M.; Jordan, C.Y.; Nelson, W.A. The effects of floral design and display on pollinator economics and pollen dispersal. In Cognitive Ecology of Pollination: Animal Behaviour and Floral Evolution; Thomson, J.D., Chittka, L., Eds.; Cambridge University Press: Cambridge, UK, 2001; pp. 297–317. ISBN 9780521781954. [Google Scholar]
- Suso, M.J.; Bebeli, P.J.; Christmann, S.; Mateus, C.; Negri, V.; Pinheiro de Carvalho, M.A.A.; Torricelli, R.; Veloso, M.M. Enhancing legume ecosystem services through an understanding of plant–pollinator interplay. Front. Plant Sci. 2016, 7, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Westerkamp, C.; Weber, A. Keel flowers of the Polygalaceae and Fabaceae: A functional comparison. Bot. J. Linn. Soc. 1999, 129, 207–221. [Google Scholar] [CrossRef]
- Suso, M.J.; Harder, L.; Moreno, M.T.; Maalouf, F. New strategies for increasing heterozygosity in crops: Vicia faba mating system as a study case. Euphytica 2005, 143, 51–65. [Google Scholar] [CrossRef]
- Soto, V.C.; Maldonado, I.B.; Gil, R.A.; Peralta, I.E.; Silva, M.F.; Galmarini, C.R. Nectar and Flower Traits of Different Onion Male Sterile Lines Related to Pollination Efficiency and Seed Yield of F1 Hybrids. J. Econ. Entomol. 2013, 106, 1386–1394. [Google Scholar] [CrossRef]
- Mallinger, R.E.; Prasifka, J.R. Bee visitation rates to cultivated sunflowers increase with the amount and accessibility of nectar sugars. J. Appl. Entomol. 2017, 141, 561–573. [Google Scholar] [CrossRef]
- Bailes, E.J.; Pattrick, J.G.; Glover, B.J. An analysis of the energetic reward offered by field bean (Vicia faba) flowers: Nectar, pollen, and operative force. Ecol. Evol. 2018, 8, 3161–3171. [Google Scholar] [CrossRef] [PubMed]
- Portlas, Z.M.; Tetlie, J.R.; Prischmann-Voldseth, D.; Hulke, B.S.; Prasifka, J.R. Variation in floret size explains differences in wild bee visitation to cultivated sunflowers. Plant Genet. Resour. Characterisation Util. 2018, 16, 498–503. [Google Scholar] [CrossRef] [Green Version]
- Prasifka, J.R.; Mallinger, R.E.; Portlas, Z.M.; Hulke, B.S.; Fugate, K.K.; Paradis, T.; Hampton, M.E.; Carter, C.J. Using nectar-related traits to enhance crop-pollinator interactions. Front. Plant Sci. 2018, 9, 1–8. [Google Scholar] [CrossRef]
- Dey, S.S.; Bhatia, R.; Pramanik, A.; Sharma, K.; Parkash, C. A unique strategy to improve the floral traits and seed yield of Brassica oleracea cytoplasmic male sterile lines through honey bee-mediated selection. Euphytica 2019, 215, 111. [Google Scholar] [CrossRef]
- Shu, J.; Liu, Y.; Zhang, L.; Li, Z.; Fang, Z.; Yang, L.; Zhuang, M.; Zhang, Y.; Lv, H. Evaluation and selection of sources of cytoplasmic male sterility in broccoli. Euphytica 2019, 215, 1–16. [Google Scholar] [CrossRef]
- Keeve, R.; Loubser, H.L.; Krüger, G.H.J. Effects of temperature and photoperiod on days to flowering, yield and yield components of Lupinus albus (L.) under field conditions. J. Agron. Crop Sci. 2000, 184, 187–196. [Google Scholar] [CrossRef]
- Christiansen, J.L.; Jørnsgård, B. Influence of day length and temperature on number of main stem leaves and time to flowering in lupin. Ann. Appl. Biol. 2002, 140, 29–35. [Google Scholar] [CrossRef]
- Iannucci, A.; Terribile, M.R.; Martiniello, P. Effects of temperature and photoperiod on flowering time of forage legumes in a Mediterranean environment. Field Crops Res. 2008, 106, 156–162. [Google Scholar] [CrossRef]
- Papastylianou, P.T.; Bilalis, D. Flowering in sulla (Hedysarum coronarium L. cv. Carmen) and persian clover (Trifolium resupinatum L. cv. Laser) as affected by sowing date in a mediterranean environment. Aust. J. Crop Sci. 2011, 5, 1298–1304. [Google Scholar]
- Martos-Fuentes, M.; Fernández, J.A.; Ochoa, J.; Carvalho, M.; Carnide, V.; Rosa, E.; Pereira, G.; Barcelos, C.; Bebeli, P.J.; Egea-Gilabert, C. Genotype by environment interactions in cowpea (Vigna unguiculata L. Walp.) grown in the Iberian Peninsula. Crop Pasture Sci. 2017, 68, 924–931. [Google Scholar] [CrossRef]
- Dracup, M.; Thomson, R.J. Narrow-leafed lupins with restricted branching. Ann. Bot. 2000, 85, 29–35. [Google Scholar] [CrossRef] [Green Version]
- Karaguzel, O.; Baktir, I.; Cakmakci, S.; Ortacesme, V.; Aydinoglu, B.; Atik, M. Responses of native Lupinus varius (L.) to culture conditions: Effects of photoperiod and sowing time on growth and flowering characteristics. Sci. Hortic. (Amsterdam) 2005, 103, 339–349. [Google Scholar] [CrossRef]
- National Research Council. Lost Crops of the Incas: Little-Known Plants of the Andes with Promise for Worldwide Cultivation; The National Academies Press: Washington, DC, USA, 1989; ISBN 978-0-309-04264-2. [Google Scholar]
Fungal Disease | Pathogen | Transmission | Control Method |
---|---|---|---|
Anthracnose | Colletotrichum lupini | Infested seed lots, crop stubble [37,91] | Certified seed [92] Seed disinfection, i.e., dry heat, UV-C 1 [82,93] Fungicide application (e.g., azoxystrobin, chlorothalonil, mancozeb) [85] Crop rotation [37] Bacillus spp. strains [81] |
Fusarium wilt and root rot | Fusarium spp. | Infested seed lots, soilborne [94] | Crop rotation [36] Available resistance: ECU-688, ECU-5920, ECU-7293 breeding lines [92], K2135 [95], chocho type [96] |
Pleiochaeta root rot and brown (leaf) spot | Pleiochaeta setosa (Ceratophorum setosum) | Infested seed lots, plant residuals [97] | Certified seed [98] Minimum tillage application [98] Deep dripping prior to the crop establishment [98] Crop rotation with non-host plant species [98] Deep sowing, up to 5 cm depth [99] |
Root and hypocotyl rot | Phytophthora sojae, Rhizoctonia solani | Soilborne [94,100] | Crop rotation with cereals [92] Improvement of soil drainage or selection of well drained fields [92] Deep dripping (25–30 cm) [98] |
Weed Species | Athens | Kalamata | Santarém | Life Cycle |
---|---|---|---|---|
Abutilon theophrasti Medik. | x | A, Su | ||
Ailanthus altissima (Mill.) Swingle | x | A, Su | ||
Allium roseum L. | x | P, W | ||
Amaranthus hybridus L. | x | A, Su | ||
Amaranthus retroflexus L. | x | A, Su | ||
Ammi majus L. | x | A, Su | ||
Anthemis spp. | x | x | A, W | |
Avena spp. | x | x | A, W | |
Calendula arvensis L. | x | A, Su | ||
Calystegia sepium (L.) R.Br. | x | P, Su | ||
Capsella bursa-pastoris (L.) Medik. | x | x | A, W | |
Chamaemelum fuscatum (Brot.) Vasc. | x | A, Sp | ||
Chamomilla recutita L. | x | x | A, Su | |
Chenopodium album L. | x | A, Su | ||
Chenopodium murale (L.) S. Fuentes, Uotila and Borsch | x | A, Su | ||
Chrysanthemum coronarium (L.) Cass. ex Spach | x | x | A, Su | |
Convolvulus arvensis L. | x | A, Su | ||
Datura stramonium L. | x | x | A, Su | |
Daucus carota L. | x | B, W | ||
Euphorbia peplus L. | x | A, Su/W | ||
Fumaria officinalis L. | x | x | A, W | |
Fumaria parviflora Lam. | x | x | A, W | |
Geranium spp. | x | A/B, W | ||
Hordeum murinum L. | x | A, W | ||
Lactuca serriola L. | x | A, Su | ||
Lamium amplexicaule L. | x | A, W | ||
Lavatera cretica L. | x | A/B, Su | ||
Malva sylvestris L. | x | B, Su | ||
Medicago arabica (L.) Huds. | x | A, W | ||
Oryzopsis miliacea Michx. | x | P, Su | ||
Oxalis pes-carpae L. | x | A, Su | ||
Papaver rhoeas L. | x | A, W | ||
Phalaris minor Retz. | x | A, W | ||
Poa spp. | x | x | A/B, W | |
Portulaca oleracea L. | x | A, Su | ||
Rapistrum rugosum (L.) All. | x | A/B, W | ||
Silybum marianum (L.) Gaertn. | x | A/B, W | ||
Sinapis spp. | x | A, W | ||
Sisymbrium irio L. | x | x | A, W | |
Solanum eleagnifolium Cav. | x | A, Su | ||
Sonchus oleraceus L. | x | A, W | ||
Stellaria media (L.) Vill. | x | A, W | ||
Taraxacum spp. | x | A, W | ||
Trifolium spp. | x | A/B, W | ||
Urtica dioica L. | x | A, Su | ||
Urtica urens L. | x | A, Su | ||
Veronica persica Poir. | x | x | A.W | |
Xanthium strumarium L. | x | A, Su |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bebeli, P.J.; Lazaridi, E.; Chatzigeorgiou, T.; Suso, M.-J.; Hein, W.; Alexopoulos, A.A.; Canha, G.; van Haren, R.J.F.; Jóhannsson, M.H.; Mateos, C.; et al. State and Progress of Andean Lupin Cultivation in Europe: A Review. Agronomy 2020, 10, 1038. https://doi.org/10.3390/agronomy10071038
Bebeli PJ, Lazaridi E, Chatzigeorgiou T, Suso M-J, Hein W, Alexopoulos AA, Canha G, van Haren RJF, Jóhannsson MH, Mateos C, et al. State and Progress of Andean Lupin Cultivation in Europe: A Review. Agronomy. 2020; 10(7):1038. https://doi.org/10.3390/agronomy10071038
Chicago/Turabian StyleBebeli, Penelope J., Efstathia Lazaridi, Tilemachos Chatzigeorgiou, Maria-José Suso, Waltraud Hein, Alexios A. Alexopoulos, Gonçalo Canha, Rob J.F. van Haren, Magnús H. Jóhannsson, Carmen Mateos, and et al. 2020. "State and Progress of Andean Lupin Cultivation in Europe: A Review" Agronomy 10, no. 7: 1038. https://doi.org/10.3390/agronomy10071038
APA StyleBebeli, P. J., Lazaridi, E., Chatzigeorgiou, T., Suso, M. -J., Hein, W., Alexopoulos, A. A., Canha, G., van Haren, R. J. F., Jóhannsson, M. H., Mateos, C., Neves-Martins, J., Prins, U., Setas, F., Simioniuc, D. P., Talhinhas, P., & van den Berg, M. (2020). State and Progress of Andean Lupin Cultivation in Europe: A Review. Agronomy, 10(7), 1038. https://doi.org/10.3390/agronomy10071038