Long-Term Productivity of Thirteen Lowland and Upland Switchgrass Ecotypes in the Mediterranean Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Set Up
2.2. Data Collection
2.3. Statistical Analysis
3. Results
3.1. Meteorological Conditions
3.2. Switchgrass Productivity
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McLaughlin, S.B.; Kszos, L.A. Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass Bioenerg. 2005, 28, 515–535. [Google Scholar] [CrossRef]
- Christian, D.G.; Elbersen, H.W. Switchgrass (Panicum virgatum L.). In Energy Plant Species. Their Use and Impact on Environment and Development; El Bassam, N., Ed.; Tailor & Francis Ltd.: Abingdon, UK, 1998; pp. 257–263. [Google Scholar]
- Alexopoulou, E.; Sharma, N.; Papatheohari, Y.; Christou, M.; Piscioneri, I.; Panoutsou, C.; Pignatelli, V. Biomass yields for lowland and upland varieties grown in the Mediterranean region. Biomass Bioenerg. 2008, 10, 926–932. [Google Scholar] [CrossRef]
- Alexopoulou, E.; Zanetti, F.; Papazoglou, E.G.; Christou, M.; Papatheohari, Y.; Tsiotas, K.; Papamichael, I. Long-term studies on switchgrass grown on a marginal area in Greece under different varieties and nitrogen fertilization rates. Ind. Crop. Prod. 2017, 107, 446–452. [Google Scholar] [CrossRef]
- Monti, A.; Venturi, P.; Elbersen, W. Evaluation of the establishment of lowland and upland switchgrass (Panicum virgatum L.) varieties under different tillage and seedbed conditions in northern Italy. Soil Tillage Res. 2001, 63, 75–83. [Google Scholar] [CrossRef]
- Monti, A.; Bezzi, G.; Pritoni, G.; Venturi, G. Long-term productivity of lowland and upland switchgrass cytotypes as affected by cutting frequency. Bioresour. Technol. 2008, 99, 7425–7432. [Google Scholar] [CrossRef]
- Nocentini, A.; Di Virgilio, N.; Monti, A. Model simulation of cumulative carbon sequestration by Switchgrass (Panicum virgatum L.) in the Mediterranean area using the DAYCENT Model. Bioenerg. Res. 2015, 8, 1512–1522. [Google Scholar] [CrossRef]
- Bhandari, H.S.; Walker, D.W.; Bouton, J.H.; Saha, M.C. Effects of ecotypes and morphotypes in feedstock composition of switchgrass (Panicum virgatum L.). GCB Bioenergy 2014, 6, 26–34. [Google Scholar] [CrossRef]
- Blanco-Canqui, H. Growing dedicated energy crops on marginal lands and ecosystem services. Soil Sci. Soc. Am. J. 2016, 80, 845–858. [Google Scholar] [CrossRef]
- Fernando, A.L.; Costa, J.; Barbosa, B.; Monti, A.; Rettenmaier, N. Environmental impact assessment of perennial crops cultivation on marginal soils in the Mediterranean region. Biomass Bioenerg. 2015, 111, 174–186. [Google Scholar] [CrossRef]
- Soldatos, P. Economic Aspects of bioenergy production from perennial grasses in marginal lands of South Europe. Bioenerg. Res. 2015, 8, 1562–1573. [Google Scholar] [CrossRef]
- Monti, A.; Fazio, S.; Lychnaras, V.; Soldatos, P.; Venturi, G. A full economic analysis of switchgrass under different scenarios in Italy estimated by BEE model. Biomass Bioenerg. 2007, 31, 177–185. [Google Scholar] [CrossRef]
- Bransby, D.; Huang, P. Twenty-Year biomass yields of eight Switchgrass cultivars in Alabama. Bioenerg. Res. 2014, 7, 1186–1190. [Google Scholar] [CrossRef]
- Casler, M.D. Ecotypic variation among switchgrass populations from the northern USA. Crop Sci. 2005, 45, 388–398. [Google Scholar] [CrossRef] [Green Version]
- Hultquist, S.J.; Vogel, K.P.; Lee, D.J.; Arumuganathan, K.; Kaeppler, S. Chloroplast DNA and nuclear DNA content variations among cultivars of switchgrass, Panicum virgatum L. Crop Sci. 1996, 36, 1049–1052. [Google Scholar] [CrossRef] [Green Version]
- Narasimhamoorthy, B.; Saha, M.C.; Swaller, T.; Bouton, J.H. Genetic diversity in switchgrass collections assessed by EST-SSR markers. Bioenerg. Res. 2008, 1, 136–146. [Google Scholar] [CrossRef] [Green Version]
- Porter, C.L. An analysis of variation between upland and lowland switchgrass, Panicum virgatum L., in central Oklahoma. Ecology 1966, 47, 980–992. [Google Scholar] [CrossRef]
- Alderson, J.; Sharp, W.C. Grass varieties in the United States. In Agricultural Handbook; USDA: Washington, DC, USA, 1993. [Google Scholar]
- Gunter, L.E.; Tuskan, G.A.; Wullschleger, S.D. Diversity among populations of switchgrass based on RAPD markers. Crop Sci. 1996, 36, 1017–1022. [Google Scholar] [CrossRef]
- Hopkins, A.A.; Taliaferro, C.M.; Murphy, C.D.; Christian, D.A. Chromosome number and nuclear DNA content of several switchgrass populations. Crop Sci. 1996, 36, 1192–1195. [Google Scholar] [CrossRef]
- Taliaferro, C.M.; Hopkins, A.A. Breeding and Selecting of New Switchgrass Varieties for Increased Biomass Production; Five-year summary report; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 1997. [Google Scholar]
- Jung, G.A.; Shaffer, J.A.; Stout, W.L.; Panciera, M.T. Warm-season grass diversity in yield, plant morphology, and nitrogen concentration and removal in Northeastern USA. Agron. J. 1990, 82, 21–26. [Google Scholar] [CrossRef]
- Stout, W.L.; Jung, G.A.; Shaffer, J.A. Effects of soil and nitrogen on water use efficiency of tall fescue and switchgrass under humid conditions. Soil Sci. Soc. Am. J. 1988, 52, 429–434. [Google Scholar] [CrossRef]
- Hein, M.A. Registration of varieties and strains of grasses. Agron. J. 1958, 50, 399–401. [Google Scholar] [CrossRef] [Green Version]
- George, J.R.; Reigh, G.S. Spring growth and tiller characteristics of switchgrass. Can. J. Plant Sci. 1987, 67, 167–174. [Google Scholar] [CrossRef] [Green Version]
- Barker, R.E.; Haas, R.J.; Jacobson, E.T.; Berdahl, J.D. Registration of ’Forestburg’ switchgrass. Crop Sci. 1988, 28, 192–193. [Google Scholar] [CrossRef]
- Metzger, M.J.; Bunce, R.G.H.; Jongman, R.H.G.; Mücher, C.A.; Watkins, J.W. A climatic stratification of the environment of Europe. Global Ecol. Biogeogr. 2005, 14, 549–563. [Google Scholar] [CrossRef]
- Pedroso, G.M.; Van Kessel, C.; Six, J.; Putnam, D.H.; Linquist, B.A. Productivity, 15N dynamics and water use efficiency in low- and high-input switchgrass systems. GCB Bioenergy 2014, 6, 704–716. [Google Scholar] [CrossRef] [Green Version]
- Heaton, E.A.; Voigt, F.G.; Long, S. A quantitative review comparing the yields of two candidate C4 perennial biomass crops in relation to nitrogen, temperature and water. Biomass Bioenerg. 2004, 27, 21–30. [Google Scholar] [CrossRef]
- Nassi o Di Nasso, N.; Lasorella, M.V.; Roncucci, N.; Bonari, E. Soil texture and crop management affect switchgrass (Panicum virgatum L.) productivity in the Mediterranean. Ind. Crop. Prod. 2015, 65, 21–26. [Google Scholar] [CrossRef]
- Zanetti, F.; Scordia, D.; Calcagno, S.; Acciai, M.; Grasso, A.; Cosentino, S.L.; Monti, A. Trade-off between harvest date and lignocellulosic crop choice for advanced biofuel production in the Mediterranean area. Ind. Crop. Prod. 2019, 138, 111439. [Google Scholar] [CrossRef]
- Von Cossel, M.; Lewandowski, I.; Elbersen, B.; Staritsky, I.; Van Eupen, M.; Iqbal, Y.; Mantel, S.; Scordia, D.; Testa, G.; Cosentino, S.L.; et al. Marginal agricultural land low-input systems for biomass production. Energies 2019, 12, 3123. [Google Scholar] [CrossRef] [Green Version]
- Scordia, D.; Cosentino, S.L. Perennial energy grasses: Resilient crops in a changing European agriculture. Agriculture 2019, 9, 169. [Google Scholar] [CrossRef] [Green Version]
- Fike, J.H.; Pease, J.W.; Owens, V.N.; Farris, R.L.; Hansen, J.L.; Heaton, E.A.; Hong, C.O.; Mayton, H.S.; Mitchell, R.B.; Viands, D.R. Switchgrass nitrogen response and estimated production costs on diverse sites. GCB Bioenergy 2017, 9, 1526–1542. [Google Scholar] [CrossRef]
- Scordia, D.; Zanetti, F.; Varga, S.S.; Alexopoulou, E.; Cavallaro, V.; Monti, A.; Copani, V.; Cosentino, S.L. New insights into the propagation methods of Switchgrass, Miscanthus and Giant Reed. Bioenerg. Res. 2015, 8, 1480–1491. [Google Scholar] [CrossRef]
- An, Y.; Gao, Y.; Ma, Y. Growth performance and weed control effect in response to nitrogen supply for switchgrass after establishment in the semiarid environment. Field Crop Res. 2018, 221, 175–181. [Google Scholar] [CrossRef]
- Nazli, R.I.; Tansi, V.; Öztürk, H.H.; Kusvuran, A. Miscanthus, switchgrass, giant reed, and bulbous canary grass as potential bioenergy crops in a semi-arid Mediterranean environment. Ind. Crop. Prod. 2018, 125, 9–23. [Google Scholar] [CrossRef]
- Oliveira, J.A.; West, C.P.; Afif, E.; Palencia, P. Comparison of Miscanthus and Switchgrass cultivars for biomass yield, soil nutrients, and nutrient removal in Northwest Spain. Agron. J. 2017, 109, 122–130. [Google Scholar] [CrossRef] [Green Version]
- Vamvuka, D.; Topouzi, V.; Sfakiotakis, S. Evaluation of production yield and thermal processing of switchgrass as a bio-energy crop for the Mediterranean region. Fuel Process. Technol. 2010, 91, 988–996. [Google Scholar] [CrossRef]
- Aurangzaib, M.; Moore, K.J.; Lenssen, A.W.; Archontoulis, S.V.; Heaton, E.A.; Fei, S. Developmental morphology and biomass yield of Upland and Lowland switchgrass ecotypes grown in Iowa. Agronomy 2018, 8, 61. [Google Scholar] [CrossRef] [Green Version]
- Casler, M.D.; Vogel, K.P. Selection for biomass yield in Upland, Lowland, and hybrid switchgrass. Crop Sci. 2014, 54, 626–636. [Google Scholar] [CrossRef] [Green Version]
- Casler, M.D.; Sosa, S.; Boe, A.R.; Bonos, S.A. Soil quality and region influence performance and ranking of Switchgrass genotypes. Crop Sci. 2019, 59, 221–232. [Google Scholar] [CrossRef] [Green Version]
Variety | Ploidy | Origin | Maturity | 100-Seed Weight (mg) | Description/Selection |
---|---|---|---|---|---|
Lowland | |||||
Alamo [18,19,20] | 4X | South Texas 27° | Very late | 94 | Selected for its high forage potential. Up to 2.5 m high with wide leaves. It has late maturity. Alamo was a USDA NRCS release from Knox City Texas. |
Kanlow [18,19,20] | 4X | Central Oklahoma ~ 34.8° | Very late | 85 | Selected for leafiness, vigor, and retention of green leaf blades late in season. It is a tall coarse type adapted to lowlands with high water tables but performs well on upland soils. It was released by USDA NRCS (Kansas Agricultural Experiment Station). |
Pangburn [20] | 4X | Arkansas (34°) | 96 | Developed at USDA-NRCS Plant Material Center, Cape May, N.J. | |
SL 93-2 [21] | 4X | 26–30° | 87 | Developed at OSU by Taliaferro and Hopkins; derived from Alamo and relative germplasms | |
SL 93-3 [21] | 4X | 100 | |||
SL 94-1 [21] | 4X | 91 | |||
Upland | |||||
Blackwell [18,19,20] | 8X | Northern Oklahoma ~ 36.7° | Mid/late | 142 | Has medium height with large and leafy stems. Although upland it can be grown on lowland sandy areas. Total forage yield, disease resistance, and seedling vigor is good. It was released by the USDA NRCS (Kansas Agricultural Experiment Station). |
Carthage [18,22,23] | 8X | North Carolina 36° | Late | 148 | Grows better than CIR & Blackwell in northern and mid-Atlantic areas in USA. High protein content (8–10%). It grows best on sandy to loamy soils and not well on heavier soils. Carthage was released from the USDA NRCS, Cape May, New Jersey (2006). |
Caddo [18,19,20,24] | 8X | Northern Oklahoma ~ 34.8° | Late | 159 | Tall plant, robust, high seed production and outstanding forage yield under irrigation. Excellent seedling vigor, resistant to leaf rust. |
Cave-in-rock (CIR) [18,19,20,25] | 8X | Southern Illinois ~ 38.8° | Late | 166 | Selected for seedling vigor, disease resistance, higher seed yields, and resistance to lodging. It is tolerant to flooding but will also withstand droughty soils. Resistance to zonate leafspot and rust, good in humid conditions. 1.5 m tall, well-drained soils, moderate seedling vigor, coarser than Pathfinder and Blackwell. Realized by USDA NRCS (Elsberry, Missouri and the Agricultural Experiment Station). |
Forestburg [18,19,26] | 4X | South Dakota ~44.2° | Early | 146 | Mix of four accessions collected near the town of Forestburg. Selected for early cycle, persistence, high forage yields and quality. At northern latitudes it’s quite comparable with Nebraska 28 and Sunburst. It was released by USDA NRCS and Agricultural Research Service release. |
SU 94-1 [21] | 8X | Oklahoma | 183 | Developed at OSU by Taliaferro and Hopkins | |
Summer [19,20] | 4X | South Nebraska ~ 40.8° | Late/mid | 113.5 | Mostly rust resistant, tall for north, upright, coarse leaves, high yield of forage and seed. |
Factors | AGB | DSW | DLW | PH | STD | TILLER |
---|---|---|---|---|---|---|
Variety | * | ns | * | ** | ** | ** |
Ecotype | ns | * | ns | ** | ** | * |
AGB | DSW | DLW | Plant Height | Diameter | TILLER | |
---|---|---|---|---|---|---|
AGB | 0.95 | 0.89 | 0.30 | ns | 0.42 | |
DSW | 0.95 | 0.72 | 0.38 | ns | 0.38 | |
DLW | 0.89 | 0.72 | 0.12 | ns | 0.40 | |
Plant height | 0.30 | 0.38 | 0.12 | 0.37 | ns | |
Diameter | ns | ns | ns | 0.37 | ns | |
TILLER | 0.42 | 0.38 | 0.40 | ns | ns |
AGB | DSW | DLW | Plant Height | Diameter | TILLER | |
---|---|---|---|---|---|---|
AGB | 0.95 | 0.90 | 0.29 | 0.12 | 0.43 | |
DSW | 0.95 | 0.74 | 0.40 | 0.15 | 0.40 | |
DLW | 0.90 | 0.74 | ns | ns | 0.40 | |
Plant height | 0.29 | 0.40 | ns | 0.28 | 0.18 | |
Diameter | 0.12 | 0.15 | ns | 0.28 | ns | |
TILLER | 0.43 | 0.40 | 0.40 | 0.18 | ns |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alexopoulou, E.; Zanetti, F.; Papazoglou, E.G.; Iordanoglou, K.; Monti, A. Long-Term Productivity of Thirteen Lowland and Upland Switchgrass Ecotypes in the Mediterranean Region. Agronomy 2020, 10, 923. https://doi.org/10.3390/agronomy10070923
Alexopoulou E, Zanetti F, Papazoglou EG, Iordanoglou K, Monti A. Long-Term Productivity of Thirteen Lowland and Upland Switchgrass Ecotypes in the Mediterranean Region. Agronomy. 2020; 10(7):923. https://doi.org/10.3390/agronomy10070923
Chicago/Turabian StyleAlexopoulou, Efthymia, Federica Zanetti, Eleni G. Papazoglou, Konstantinos Iordanoglou, and Andrea Monti. 2020. "Long-Term Productivity of Thirteen Lowland and Upland Switchgrass Ecotypes in the Mediterranean Region" Agronomy 10, no. 7: 923. https://doi.org/10.3390/agronomy10070923
APA StyleAlexopoulou, E., Zanetti, F., Papazoglou, E. G., Iordanoglou, K., & Monti, A. (2020). Long-Term Productivity of Thirteen Lowland and Upland Switchgrass Ecotypes in the Mediterranean Region. Agronomy, 10(7), 923. https://doi.org/10.3390/agronomy10070923