Strip-Till One-Pass Technology in Central and Eastern Europe: A MZURI Pro-Til Hybrid Machine Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hybrid Machine
2.2. Study Area
2.3. Strip-Till One-Pass Technology with Mzuri Pro-Til Machines
2.4. Scientific Observations and Field Experiments
- Soil moisture in spring–summer months of plant vegetation (volumetric soil water content directly in the field experiment—four points in each treatment).
- Soil moisture, bulk density, soil aggregate water stability (soil samples in laboratories), and penetration resistance in the field after 6 years of the application of Mzuri Pro-Til technology and CT. Soil sampling and measurements were performed at 10 points in the treatment.
- The total organic carbon and organic carbon fraction (in soil samples—ten points in each treatment after 6 years of different tillage methods).
- The count of microorganisms at 10 points in the treatment (the total count of bacteria, cellulolytic microorganisms, Actinobacteria, filamentous fungi), the activity of soil enzymes (dehydrogenase), the number of earthworms in the top layer of soil—after 6 years of field experiment.
- The evenness of winter wheat emergence in large-acreage fields (based on plant density on plantations over 10 ha). Measurement of plant density was performed at 15 points in the plantation.
- Fuel inputs on the performance of agrotechnical practices, especially tillage, pre-seeding application of fertilizers and the seeding of crops, on average, in the 6-year research period (register of fuel consumption by the tractor’s on-board computer).
- Yield of winter crops (main crops in the area of study): rapeseed, wheat, barley yield determined from the entire surface of the experimental plots in four replications.
2.5. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bai, Z.; Caspari, T.; Gonzales, M.R.; Batjes, N.H.; Bunemann, E.K.; Goede, R.; Brussard, L.; Xu, M.; Ferreira, C.S.S.; Reitam, E.; et al. Effects of agricultural management practices on soil quality: A review of long-term experiments for Europe and China. Agric. Ecosyst. Environ. 2018, 265, 1–7. [Google Scholar] [CrossRef]
- O’Brien, P.; Daigh, A. Tillage practices alter the surface energy balance—A review. Soil Tillage Res. 2019, 195. [Google Scholar] [CrossRef]
- Odey, S.O.; Manuwa, S.I. Design steps of narrow tillage tools for draught reduction and increased soil disruption—A review. Agric. Eng. Int. CIGR J. 2016, 18, 91–102. [Google Scholar]
- Prem, M.; Swarnkar, R.; Kantilal, V.D.K.; Jeetsinh, P.S.K.; Chitharbhai, K.B. Combined tillage tools—A review. Curr. Agri. Res. 2016, 4, 179–185. [Google Scholar] [CrossRef]
- Townsend, T.J.; Ramsden, S.J.; Wilson, P. How do we cultivate in England? Tillage practices in crop production systems. Soil Use Manag. 2016, 32, 106–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, F.; Don, A.; Hennings, I.; Schmittmann, O.; Seidel, S.J. The effect of deep tillage on crop yield —What do we really know? Soil Tillage Res. 2017, 174, 193–204. [Google Scholar] [CrossRef]
- Sewell, M.C. Tillage: A review of the literature. J. Am. Soc. Agron. 1919, 11, 269–290. [Google Scholar] [CrossRef]
- Lal, R.; Reicosky, D.C.; Hanson, J.D. Evolution of the plow over 10,000 years and the rationale for no-till farming. Soil Tillage Res. 2007, 93, 1–12. [Google Scholar] [CrossRef]
- Mitchell, J.P.; Carter, L.M.; Reicosky, D.C.; Shrestha, A.; Pettygrove, G.S.; Klonsky, K.M.; Marcum, D.B.; Chessman, D.; Roy, R.; Hogan, P.; et al. A history of tillage in California’s Central Valley. Soil Tillage Res. 2016, 157, 52–64. [Google Scholar] [CrossRef]
- Birkás, M.; Dekemati, I.; Kende, Z.; Pósa, B. Review of soil tillage history and new challenges in Hungary. Hung. Geo. Bull. 2017, 66, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Kassam, A.; Friedrich, T.; Derpsch, R. Global spread of conservation agriculture. Int. J. Environ. Stud. 2019, 76, 29–51. [Google Scholar] [CrossRef]
- Eurostat 2020. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Agri-environmental_indicators (accessed on 18 June 2020).
- Kertesz, A.; Madarasz, B. Conservation agriculture in Europe. Int. Soil Water Conserv. Res. 2014, 2, 91–96. [Google Scholar] [CrossRef] [Green Version]
- Porwollik, V.; Rolinski, S.; Heinke, J.; Müller, C. Generating a rule-based global gridded tillage dataset. Earth Syst. Sci. Data. 2019, 11, 823–843. [Google Scholar] [CrossRef] [Green Version]
- Kassam, A.; Friedrich, T.; Derpsch, R.; Kienzle, J. Overview of the worldwide spread of conservation agriculture. Field Actions Sci. Rep. 2015, 8, 1–10. [Google Scholar]
- Boincean, B.; Dent, D. Tillage and Conservation Agriculture. In Farming the Black Earth; Springer: Berlin, Germany, 2019. [Google Scholar]
- Wang, L.; Ma, B.; Wu, F. Effects of wheat stubble on runoff, infiltration, and erosion of farmland on the Loess Plateau, China, subjected to simulated rainfall. Solid Earth. 2017, 8, 281–290. [Google Scholar] [CrossRef] [Green Version]
- Claassen, R.; Bowman, M.; McFadden, J.; Smith, D.; Wallander, S. Tillage intensity and conservation cropping in the United States. U.S. Dep. Agric. Bull. Econ. Rese. Ser. 2018, 197, 1–21. [Google Scholar]
- Peigné, J.; Ball, B.; Roger-Estrade, J.; David, C. Is conservation tillage suitable for organic farming? A review. Soil Use Manag. 2007, 23, 129–144. [Google Scholar] [CrossRef]
- Friedrich, T.; Derpsch, R.; Kassam, A.H. Global overview of the spread of conservation agriculture. J. Agr. Sci. Tech. 2012, 6, 1–7. [Google Scholar]
- Vyn, T.J.; Hooker, D.C. Assessment of multiple- and single-factor stress impacts on corn. Field Crops Res. 2002, 75, 123–137. [Google Scholar] [CrossRef]
- Soane, B.D.; Ball, B.C.; Arvidsson, J.; Basch, G.; Moreno, F.; Roger-Estrade, J. No-till in northern, western and south-western Europe: A review of problems and opportunities for crop production and the environment. Soil Tillage Res. 2012, 118, 66–87. [Google Scholar] [CrossRef] [Green Version]
- Guan, D.; Zhang, Y.; Al-Kaisi, M.M.; Wang, Q.; Zhang, M.; Li, Z. Tillage practices effect on root distribution and water use efficiency of winter wheat under rain-fed condition in the North China Plain. Soil Tillage Res. 2015, 146, 286–295. [Google Scholar] [CrossRef]
- Kouselou, M.; Hashemi, S.; Eskandari, I.; McKenzie, B.M.; Karimi, E.; Rezaei, A.; Rahmati, M. Quantifying soil displacement and tillage erosion rate by different tillage systems in dryland northwestern Iran. Soil Use Manag. 2018, 34, 48–59. [Google Scholar] [CrossRef]
- Ademir, S.F.; Luiz, F.C.; Ana, R.L.; Luis, A.P.; Ricardo, S.D.; Fabio, F.D.; Wanderley, J.D. Different soil tillage systems influence accumulation of soil organic matter in organic agriculture. Afr. J. Agric. Res. 2016, 11, 5109–5115. [Google Scholar] [CrossRef] [Green Version]
- Haddaway, N.R.; Hedlund, K.; Jackson, L.E.; Kätterer, T.; Lugato, E.; Thomsen, I.K.; Jørgensen, H.B.; Isberg, P.-E. How does tillage intensity affect soil organic carbon? A systematic review. Environ. Evid. 2017, 6, 2–48. [Google Scholar] [CrossRef] [Green Version]
- Chi, J.; Waldo, S.; Pressley, S.; O’Keeffe, P.; Huggins, D.; Stöckle, C.; Pan, W.L.; Brooks, E.; Lamb, B. Assessing carbon and water dynamics of no-till and conventional tillage cropping systems in the inland Pacific Northwest US using the eddy covariance method. Agric. For. Meteorol. 2016, 218, 37–49. [Google Scholar] [CrossRef] [Green Version]
- Gathala, M.K.; Timsina, J.; Islam, M.S.; Krupnik, T.J.; Bose, T.K.; Islam, N.; Rahman, M.M.; Hossain, M.I.; Harun-Ar-Rashid, M.; Ghosh, A.K.; et al. Productivity, profitability, and energy: Multi-criteria assessments of tillage and crop establishment options for maize in Bangladesh. Field Crop Res. 2016, 18, 32–46. [Google Scholar] [CrossRef]
- Çelik, A.; Altikat, S.; Thomas, R.W. Strip tillage width effects on sunflower seed emergence and yield. Soil Tillage Res. 2013, 131, 20–27. [Google Scholar] [CrossRef]
- Licht, M.A.; Al-Kaisi, M. Strip-tillage effect on seedbed soil temperature and other soil physical properties. Soil Tillage Res. 2005, 80, 233–249. [Google Scholar] [CrossRef]
- Fernández, F.G.; Sorensen, B.A.; Villamil, M.B. A comparison of soil properties after five years of no-till and strip-till. Agron. J. 2015, 107, 1339–1346. [Google Scholar] [CrossRef]
- Laufer, D.; Koch, H.J. Growth and yield formation of sugar beet (Beta vulgaris L.) under strip tillage compared to full width tillage on silt loam soil in Central Europe. Eur. J. Agron. 2017, 82, 182–189. [Google Scholar] [CrossRef]
- Morrison Jr, J.E.; Sanabria, J. One-pass and two-pass spring strip tillage for conservation row-cropping in adhesive clay soils. Trans. ASABE 2002, 45, 1263–1270. [Google Scholar] [CrossRef]
- Islam, A.K.M.S.; Hossain, M.M.; Saleque, M.A. Conservation agriculture options for a Rice-Maize cropping systems in Bangladesh. Bangladesh Rice J. 2014, 18, 44–53. [Google Scholar] [CrossRef] [Green Version]
- Cociu, A. Tillage system effects on input efficiency of winter wheat, maize and soybean in rotation. Rom. Agric. Res. 2010, 27, 81–89. [Google Scholar]
- Šarauskis, E.; Vaitauskienė, K.; Romaneckas, K.; Jasinskas, A.; Butkus, V.; Kriaučiūnienė, Z. Fuel consumption and CO2 emission analysis in different strip tillage scenarios. Energy 2017, 118, 957–968. [Google Scholar] [CrossRef]
- Overstreet, F.L. Strip tillage for sugarbeet production. Int. Sugar J. 2009, 111, 292–304. [Google Scholar]
- Laufer, D.; Loibl, B.; Märländer, B.; Koch, H.J. Soil erosion and surface runoff under strip tillage for sugar beet (Beta vulgaris L.) in Central Europe. Soil Tillage Res. 2016, 162, 1–7. [Google Scholar] [CrossRef]
- Idowu, O.J.; Sultana, S.; Darapuneni, M.; Beck, L.; Steiner, R. Short-term conservation tillage effects on corn silage yield and soil quality in an irrigated, arid agroecosystem. Agronomy 2019, 9, 455. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Shi, Y.; Zhao, J.; Yu, Z. Strip rotary tillage with a two-year subsoiling interval enhances root growth and yield in wheat. Sci. Rep. 2019, 9, 11678. [Google Scholar] [CrossRef] [Green Version]
- Jaskulska, I.; Gałązka, A.; Jaskulski, D. Strip-till as a means of decreasing spatial variability of winter barley within a field scale. Acta Agr. Scand. B-SP 2019, 69, 516–527. [Google Scholar] [CrossRef]
- Fallahi, S.; Raoufat, M.H. Row-crop planter attachments in a conservation tillage system: A comparative study. Soil Tillage Res. 2008, 98, 27–34. [Google Scholar] [CrossRef]
- Lekavičienė, K.; Šarauskis, E.; Naujokienė, V.; Kriauciuniene, Z. Effect of row cleaner operational settings on crop residue translocation in strip-tillage. Agronomy 2019, 9, 247. [Google Scholar] [CrossRef] [Green Version]
- Lekavičienė, K.; Šarauskis, E.; Naujokienė, S.; Buragienėa, S.; Kriaučiūnienėb, Z. The effect of the strip tillage machine parameters on the traction force, diesel consumption and CO2 emissions. Soil Tillage Res. 2019, 192, 95–102. [Google Scholar]
- Yang, L.; Yan, B.X.; Yu, Y.M.; He, X.T.; Liu, Q.W.; Liang, Z.J.; Yin, X.W.; Cui, T.; Zhang, D.X. Global overview of research progress and development of precision maize planters. Int. J. Agric. Biol. Eng. 2016, 9, 9–26. [Google Scholar]
- Benincasa, P.; Zorzi, A.; Panella, F.; Tosti, G.; Trevini, M. Strip tillage and sowing: Is precision planting indispensable in silage maize? Int. J. Plant Prod. 2017, 11, 577–588. [Google Scholar]
- Mzuri. The Complete Strip Tillage System. Available online: http://mzuri.eu/wp-content/uploads/Mzuri-Brochure-2017.pdf (accessed on 12 May 2020).
- Jaskulska, I.; Jaskulski, D. Change in soil properties after 5 years of using strip-till technology. Mech. Agric. Conserv. Resour. 2019, 65, 193–195. [Google Scholar]
- Mzuri-Agro. Available online: https://mzuri-agro.eu/en/ (accessed on 18 June 2020).
- Europe Outline Map. Available online: https://paintingvalley.com/europe-map-sketch#europe-map-sketch-4.gif (accessed on 19 April 2020).
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Jaskulska, I.; Gałęzewski, L.; Piekarczyk, M.; Jaskulski, D. Strip-till technology—a method for uniformity in the emergence and plant growth of winter rapeseed (Brassica napus L.) in different environmental conditions of Northern Poland. Ital. J. Agron. 2018, 13, 94–199. [Google Scholar] [CrossRef]
- Jaskulska, I.; Jaskulski, D.; Różniak, M.; Radziemska, M.; Gałęzewski, L. Zonal tillage as innovative element of the technology of growing winter wheat: A field experiment under low rainfall conditions. Agriculture 2020, 10, 105. [Google Scholar] [CrossRef] [Green Version]
- Thalmann, A. Zur methodic derestimung der Dehydrogenaseaktivität und Boden mittels Triphenyltetrazoliumchlorid (TTC). Landwirtsch. Forsch. 1968, 21, 249–258. [Google Scholar]
- Statistica, data analysis software system, version 12; TIBCO Software Inc.: Palo Alto, CA, USA; Available online: http://statistica.io.2017.TIBCOSoftwareINC (accessed on 15 January 2019).
- Stajnko, D.; Lakota, M.; Vučajnk, F.; Bernik, R. The effect of different tillage systems on fuel saving and reduction of CO2 emmission in production of silage corn in Eastern Slovenia. Pol. J. Environ. Stud. 2009, 18, 709–714. [Google Scholar]
- Madarász, B.; Juhos, K.; Ruszkiczay-Rüdiger, Z.; Benke, S.; Jakab, G.; Szalai, Z. Conservation tillage vs. conventional tillage: Long-term effects on yields in continental, sub-humid Central Europe, Hungary. Int. J. Agric. Sustain. 2016, 14, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Procházková, E.; Kincl, D.; Kabelka, D.; Vopravil, J.; Nerušil, P.; Menšík, L.; Barták, V. The impact of the conservation tillage “maize into grass cover” on reducing the soil loss due to erosion. Soil Water Res. 2020. [Google Scholar] [CrossRef]
- Reicosky, D.C. Conservation tillage is not conservation agriculture. J. Soil Water Conserv. 2015, 70, 103A–108A. [Google Scholar] [CrossRef] [Green Version]
- Potratz, D.J.; Mourtzinis, S.; Gaska, J.; Lauer, J.; Arriaga, F.J.; Conley, S.P. Effect of strip-till timing, fertilizer placement, and row spacing on soybean seed yield. Crop. Forage Turfgrass Manag. 2019, 5, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Schneider, O.; Roger-Estrade, J.; Aubertot, J.; Dore, T. Effect of seeders and tillage equipment on vertical distribution of oilseed rape stubble. Soil Tillage Res. 2006, 85, 115–122. [Google Scholar] [CrossRef]
- Tabatabaeekoloor, R. Soil characteristics at the in-row and inter-row zones after strip-tillage. Afr. J. Agric. Res. 2011, 6, 6598–6603. [Google Scholar] [CrossRef]
- Wuest, S.B.; Schillinger, W.F. Evaporation from high residue no-till versus tilled fallow in a dry summer climate. Soil Sci. Soc. Am. J. 2011, 75, 1513–1519. [Google Scholar] [CrossRef] [Green Version]
- Matula, S. The influence of tillage treatments on water infiltration into soil profile. Plant Soil Env. 2003, 49, 298–306. [Google Scholar] [CrossRef] [Green Version]
- Lipiec, J.; Kuś, J.; Słowińska-Jurkiewicz, A.; Nosalewicz, A. Soil porosity and water infiltration as influenced by tillage methods. Soil Tillage Res. 2006, 89, 210–220. [Google Scholar] [CrossRef]
- Wang, S.; Wang, H.; Zhang, Y.; Wang, R.; Zhang, Y.; Xu, Z.; Jia, G.; Wang, X.; Li, J. The influence of rotational tillage on soil water storage, water use efficiency and maize yield in semi-arid areas under varied rainfall conditions. Agr. Water Manage. 2018, 203, 376–384. [Google Scholar] [CrossRef]
- Zamir, M.S.I.; Javeed, H.M.R.; Ahmed, W.; Ahmed, A.U.H.; Sarwar, N.; Shehzad, M.; Sarwar, M.A.; Iqbal, S. Effect of tillage and organic mulches on growth, yield and quality of autumn planted maize (Zea mays L.) and soil physical properties. Cerc. Agron. Mol. 2013, 2, 17–26. [Google Scholar] [CrossRef] [Green Version]
- Awale, R.; Chatterjee, A.; Franzen, D. Tillage and N-fertilizer influences on selected organic carbon fractions in a North Dakota silty clay soil. Soil Tillage Res. 2013, 134, 213–222. [Google Scholar] [CrossRef]
- Williams, A.; Kane, D.A.; Ewing, P.M.; Atwood, L.W.; Jilling, A.; Li, M.; Lou, Y.; Davis, A.S.; Grandy, A.S.; Huerd, S.C.; et al. Soil functional zone management: A vehicle for enhancing production and soil eco-system services in row-crop agroecosystems. Front. Plant Sci. 2016, 7, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Karami, A.; Homaee, M.; Afzalinia, S.; Ruhipour, H.; Basirat, S. Organic resource management: Impacts on soil aggregate stability and other soil physico-chemical properties. Agric. Ecosyst. Environ. 2012, 148, 22–28. [Google Scholar] [CrossRef]
- Al-Kaisi, M.M.; Douelle, A.; Kwaw-Mensah, D. Soil microaggregate and macroaggregate decay over time and soil carbon change as influenced by different tillage systems. J. Soil Water Conserv. 2014, 69, 574–580. [Google Scholar] [CrossRef] [Green Version]
- Niewiadomska, A.; Gaj, R.; Przybył, J.; Budka, A.; Mioduszewska, N.; Wolna-Maruwka, A. Analysis of microbial parameters of soil in different tillage systems under sugar beets (Beta vulgaris L.). Pol. J. Environ. Stud. 2016, 25, 1803–1812. [Google Scholar] [CrossRef]
- Leroux, C.; Tisseyre, B. How to measure and report within-field variability: A review of common indicators and their sensitivity. Precis. Agric. 2019, 20, 562–590. [Google Scholar] [CrossRef]
- Smith, J.L.; Halvorson, J.J. Field scale studies on the spatial variability of soil quality indicators in Washington State, USA. Appl. Environ. Soil Sci. 2011, 2011. [Google Scholar] [CrossRef] [Green Version]
- Maestrini, B.; Basso, B. Predicting spatial patterns of within-field crop yield variability. Field Crops Res. 2018, 219, 106–112. [Google Scholar] [CrossRef]
- Hausherr Lüder, R.-M.; Qin, R.; Richner, W.; Stamp, P.; Streit, B.; Noulas, C. Effect of tillage systems on spatial variation in soil chemical properties and winter wheat (Triticum aestivum L.) performance in small fields. Agronomy 2019, 9, 182. [Google Scholar] [CrossRef] [Green Version]
- Walsh, O.S.; Liang, X.; Thornton, M.; Rogers, C.W. Uniform Plant Stand is Key to Crop Yield and Quality; BUL 951; University of Idaho Cooperative Extension Bulletin: Moscow, ID, USA, 2019. [Google Scholar]
- Choudhary, V.P.; Singh, B. Effect of zero, strip and conventional till system on performance of wheat. J. Agr. Eng. 2002, 39, 27–31. [Google Scholar]
- Hoque, M.; Miah, M.S. Evaluation of different tillage methods to assess BARI inclined plate planter. Agric. Eng. Int. 2015, 17, 128–137. [Google Scholar]
- Hossain, M.; Hossain, M.; Bodruzzaman, M.; Siddquie, M.; Amin, M.; Haque, M. Effect of fertilizer placement for different tillage options on the growth and yield of wheat. Int. J. Agron. Agri. Res. 2018, 12, 15–23. [Google Scholar]
- Yang, Y.S.; Fielke, J.; Ding, Q.S.; He, R.Y. Field experimental study on optimal design of the rotary strip-till tools applied in rice-wheat rotation cropping system. Int. J. Agric. Biol. Eng. 2018, 11, 88–94. [Google Scholar] [CrossRef] [Green Version]
- Shweta, S.; Malik, M. Improving wheat productivity in rice-wheat cropping system through crop establishment methods. Int. J. Pure App. Biosci. 2017, 5, 575–578. [Google Scholar]
- Weyers, S.L.; Archer, D.W.; Forcella, F.; Gesch, R.; Johnson, J.M.F. Can reducing tillage and increasing crop diversity benefit grain and forage production? Renew. Agr. Food Syst. 2017, 33, 406–417. [Google Scholar] [CrossRef]
- Lv, X.; Zhang, Y.; Li, H.; Fan, S.; Feng, B.; Kong, L. Wheat belt-planting in China: An innovative strategy to improve production. Plant Prod. Sci. 2020, 23, 12–18. [Google Scholar] [CrossRef] [Green Version]
- Šarauskis, E.; Buragiene, S.; Romaneckas, K.; Sakalauskas, A.; Jasinskas, A.; Vaiciukevicius, E.; Karayel, D. Working time, fuel consumption and economic analysis of different tillage and sowing systems in Lithuania. Eng. Rural Dev. 2012, 11, 52–59. [Google Scholar]
- Hossain, M.I.; Haque, M.E.; Meisner, C.A.; Sufian, M.A.; Rahman, M.M. Strip tillage planting method for better wheat establishment. J. Sci. Technol. 2005, 3, 91–95. [Google Scholar]
- Gozubuyuk, Z.; Sahin, U.; Celik, A. Tillage and irrigation impacts on the efficiency of fossil Fuel utilization for Hungarian vetch production and fuel-related CO2 emissions. Environ. Eng. Sci. 2020, 37, 201–213. [Google Scholar] [CrossRef]
- American Petroleum Institute 2009. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Natural Gas Industry. Available online: https://www.api.org/~/media/files/ehs/climate-change/2009_ghg_compendium.ashx (accessed on 17 April 2020).
Specification | PRO-TIL 3 | PRO-TIL 4 TSELECT | PRO-TIL 6 TSELECT | PRO-TIL 4 TXzact |
---|---|---|---|---|
Working width (m) | 3 | 4 | 6 | 4 |
Hopper capacity (dm3) | 1500 | 2800 | 4300 | 3400 |
Dual Hopper (fertilizer/seeds) | no/yes | yes/yes | yes/yes | yes/yes |
Row spacing (cm) | 33.3 | 36.4 or 72.8 | 35.0 or 70.0 | 36.4 or 72.8 |
Number of rows | 9 | 11 or 6 | 17 or 9 | 11 or 6 |
Precision sowing units | no | no | no | 6 |
Tractor requirement (hp) | 150 | 220 | 300 | 200 |
Working speed (km h−1) | 6–15 | 6–15 | 6–15 | 6–15 |
Aggregating with a tractor | linkage | trailed | trailed | trailed |
Property | Strip-Till One-Pass | Conventional | ||
---|---|---|---|---|
Row | Inter-Row | Row | Inter-Row | |
Moisture (% m/m) | 8.4 b | 10.5 a | 7.1 b | 8.0 b |
Penetration resistance (MPa) | 2.26 b | 3.43 a | 2.14 b | 2.08 b |
Bulk density (g cm−3) | 1.41 b | 1.62 a | 1.32 b | 1.36 b |
Water-resistant soil aggregates (%) | 40.8 a | 42.1 a | 32.5 b | 30.4 b |
Organic Carbon | Strip-Till One-Pass | Conventional |
---|---|---|
Total (g kg−1) | 11.03 a | 9.85 b |
Extractable (mg kg−1) | 121.5 a | 103.1 b |
After decalcification (mg kg−1) | 366 a | 247 b |
In humic acids (mg kg−1) | 3073 a | 2588 b |
In fluvic acids (mg kg−1) | 3054 a | 2511 b |
Property | Strip-Till One-Pass | Conventional |
---|---|---|
Total count of bacteria (106 cfu g−1 d.m. of soil) | 28.6 a | 20.4 b |
Count of cellulolytic microorganisms (106 cfu g−1 d.m. of soil) | 19.8 a | 15.8 b |
Count of Actinobacteria (105 cfu g−1 d.m. of soil) | 35.0 a | 31.7 b |
Count of filamentous fungi (104 cfu g−1 d.m. of soil) | 55.1 a | 34.3 b |
Count of earthworms (no m−2) | 36.5 a | 19.1 b |
Activity of dehydrogenase (mg TPF kg−1 d.m. of soil 24 h−1) | 0.906 a | 0.711 b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaskulska, I.; Jaskulski, D. Strip-Till One-Pass Technology in Central and Eastern Europe: A MZURI Pro-Til Hybrid Machine Case Study. Agronomy 2020, 10, 925. https://doi.org/10.3390/agronomy10070925
Jaskulska I, Jaskulski D. Strip-Till One-Pass Technology in Central and Eastern Europe: A MZURI Pro-Til Hybrid Machine Case Study. Agronomy. 2020; 10(7):925. https://doi.org/10.3390/agronomy10070925
Chicago/Turabian StyleJaskulska, Iwona, and Dariusz Jaskulski. 2020. "Strip-Till One-Pass Technology in Central and Eastern Europe: A MZURI Pro-Til Hybrid Machine Case Study" Agronomy 10, no. 7: 925. https://doi.org/10.3390/agronomy10070925
APA StyleJaskulska, I., & Jaskulski, D. (2020). Strip-Till One-Pass Technology in Central and Eastern Europe: A MZURI Pro-Til Hybrid Machine Case Study. Agronomy, 10(7), 925. https://doi.org/10.3390/agronomy10070925