Influence of New Citrus Rootstocks on Lemon Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, Experimental Conditions
- ‘FA 5’ is a ‘Cleopatra’ mandarin and Poncirus trifoliate (L.) Raf. hybrid, characteristics are the size of the medium tree, branch presence of profuse thorns, short branches, trifoliate leaves, flat, small fruits, weight 35–36 g, diameter 40–45 mm, height 35 mm, thick rind. It presents CTV, Phytophthora spp. (disease) and Tylenchulus semipenetrans (nematode) resistance, limestone and flooding tolerant [12,13].
- ‘FA 13’, comes from same parents as ‘FA5’, but with some different characteristics: it induces smaller size to the grafted plants, resistant to salinity and susceptible to T. semipenetreans.
- ‘FA 517’ is a ‘King’ mandarin and P. trifoliate (L.) Raf. hybrid, with dwarfing characteristic, tolerant of limestone, salinity, CTV-resistant and nematodes [14].
2.2. Morphology and Physico-Chemical Parameters
2.3. Sugar and Organic Acid Content
2.4. Antioxidant Activity (AA) and Total Polyphenol Content (TPC)
2.5. Statistical Design and Analysis
3. Results
3.1. Morphology and Physico-Chemical Parameters
3.2. Sugars and Organic Acids Content
3.3. Antioxidant Activity (AA) and Total Polyphenol Content (TPC)
3.4. Principal Component Analysis (PCA)
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. Crop data base. Available online: http://www.fao.org/faostat/en/#data/QC/visualize (accessed on 4 November 2019).
- MAGRAMA. Ministry of Agriculture, Food and Environment. Available online: http:/www.magrama.gob.es/es (accessed on 2 November 2019).
- Instituto Valenciano de Investigaciones Agrarias (IVIA). Available online: http://gipcitricos.ivia.es/citricultura-valenciana (accessed on 2 November 2019).
- Castle, W. A career perspective on citrus rootstocks, their development, and commercialization. HortScience. 2010, 45, 11–15. [Google Scholar] [CrossRef] [Green Version]
- Barry, G.; Castle, W.; Davies, F. Rootstocks and Plant Water Relations Affect Sugar Accumulation of Citrus Fruit Via Osmotic Adjustment. J. Amer. Soc. Hort. Sci. 2004, 129, 881–889. [Google Scholar] [CrossRef]
- Legua, P.; Martínez-Cuenca, M.; Belver, R.; Forner-Giner, M. Rootstock’s and scion’s impact on lemon quality in southeast Spain. Int. Agrophys. 2018, 32, 325–333. [Google Scholar] [CrossRef]
- Bitters, W. Citrus Rootstock: Their Characters and Reactions, Editor, digital version: Marty Nemeth, Reference Librarian, UC Riverside Science Library, USA; 2012; p. 236. Available online: https://citrusvariety.ucr.edu/links/documents/Bitters.pdf (accessed on 18 November 2019).
- Forner-Giner, M.A.; Alcaide, A.; Primo-Millo, E.; Forner, J.B. Performance of ‘Navelina’ orange on 14 rootstocks in Norhern Valencia (Spain). Sci. Hortic. 2003, 98, 223–232. [Google Scholar] [CrossRef]
- Sicari, V.; Pellicano, T.; Giuffre, A.; Zappia, C.; Capocasale, M. Bioactive compounds and antioxidant activity of citrus juices produced from varieties cultivated in Calabria. Food Measure. 2016, 10, 773–780. [Google Scholar] [CrossRef]
- Kaur, J.; Kaur, G. An insight into the role of citrus bioactives in modulation of colon cancer. J. Func. Foods. 2017, 13, 239–261. [Google Scholar] [CrossRef]
- Cano, A.; Bermejo, A. Influence of rootstock and cultivar on bioactive compounds in citrus peels. J. Sci. Food Agric. 2011, 91, 1702–1711. [Google Scholar] [CrossRef]
- Verdejo-Lucas, S.; Sorribas, F.J.; Forner-Giner, J.B.; Alcaide, A. Screening of hybrid citrus rootstocks for resistance to Tylenchulus semipenetrans Cobb. HortScience 1997, 32, 1116–1119. [Google Scholar] [CrossRef] [Green Version]
- Verdejo-Lucas, S.; Sorribas, F.; Forner-Giner, J.B.; Alcaide, A. Resistance of hybrid citrus rootstocks to a Mediterranean biotype of Tylenchulus semipenetrans Cobb. HortScience 2000, 35, 269–273. [Google Scholar] [CrossRef] [Green Version]
- Forner, J.B.; Forner, M.A.; Alcaide, A.; Verdejo-Lucas, S.; Sorribas, F.J. New hybrid citrus rootstocks released in Spain. Proc. Int. Soc. Citricult. 2000, 1, 58–61. [Google Scholar]
- Llosá, M.J.; Bermejo, A.; Cano, A.; Quiñones, A.; Forner-Alcaide, M.A. The citrus rootstocks Cleopatra mandarin, Poncirus trifoliata, Forner-Alcaide 5 and Forner-Alcaide 13 vary in susceptibility to iron deficiency chlorosis. J. Am. Pomol. Soc. 2009, 63, 160–167. [Google Scholar]
- Instituto de Investigaciones en Fruticultura Tropical, La Habana, Cuba. Available online: http://riacnet.net/wp-content/uploads/2014/11/Conf-1-Cultivares.pdf (accessed on 2 November 2019).
- Jiménez-Cuesta, M.J.; Cuquerella, J.; Martínez-Jávega, J.M. Determination of a color index for citrus fruit degreening. Proc. Int. Soc. Citriculture 1981, 2, 750–753. [Google Scholar]
- Legua, P.; Bellver, R.; Forner, J.; Forner-Giner, M.A. Plant growth yield and fruit quality of Lane Late navel orange on four citrus rootstocks. Span. J. Agric. Res. 2011, 9, 271–279. [Google Scholar] [CrossRef] [Green Version]
- Wojdyło, A.; Oszmiański, J.; Bielicki, P. Polyphenolic composition, antioxidant activity, and polyphenol oxidase (PPO) activity of quince (Cydonia oblonga Miller) varieties. J. Agric. Food Chem. 2013, 61, 2762–2772. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic BiolMed. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Meth. Enzymol. 1999, 299, 152–178. [Google Scholar]
- Gao, X.; Ohlander, M.; Jeppsson, N.; Bjork, L.; Trajkovski, V. Changes in antioxidant effects and their relationship to phytonutrients in fruits of sea buckthorn (Hippophae rhamnoides L.) during maturation. J. Agric. Food Chem. 2000, 48, 1485–1490. [Google Scholar] [CrossRef]
- Abbate, L.; Panno, S.; Mercati, F.; Davino, S.; Fatta Del Bosco, S. Citrus rootstock breeding: Response of four allotetraploid somatic hybrids to Citrus tristeza virus induced infections. Eur. J. Plant Pathol. 2019, 153, 837–847. [Google Scholar] [CrossRef]
- Pérez-Pérez, J.G.; Porras, I.; Garcia-Lidón, A.; Botia, P.; Garcia-Sanchez, F. Fino 49 lemon clones compared with the lemon varieties Eureka and Lisbon on two rootstocks in Murcia (Spain). Sci. Hort. 2005, 106, 530–538. [Google Scholar] [CrossRef]
- Pérez-Pérez, J.G.; Robles, J.M.; García-Sánchez, F.; Botía, P. Comparison of deficit and saline irrigation strategies to confront water restriction in lemon trees grown in semi-arid regions. Agric. Water Manag. 2016, 164, 46–57. [Google Scholar] [CrossRef]
- Liu, X.; Li, J.; Huang, M.; Chen, J. Mechanisms for the influence of citrus rootstocks on fruit size. J. Agric. Food Chem. 2015, 63, 2618–2627. [Google Scholar] [CrossRef] [PubMed]
- Pathare, P.B.; Opara, U.L.; Al-Said, F.J. Colour measurement and analysis in fresh and processed foods: A review. Food Bioprocess Technol. 2013, 6, 36–60. [Google Scholar] [CrossRef]
- Gueli, A.M.; Stella, G.; Timpanaro, G. Colorimetric and raman characterization as marketing value index of Sicilian citrus. Qual.-Access Success 2019, 20, 287–294. [Google Scholar]
- Conesa, A.; Manera, J.; Brotons, J.M.; Porras, I. Relation between temperature and the color coordinate “a” during the development of the external color of lemon fruits (Conference Paper). Acta Hort. 2015, 1065, 305–312. [Google Scholar]
- Conesa, A.; Manera, F.J.; Brotons, J.M.; Fernandez-Zapata, J.C.; Simón, I.; Simón-Grao, S.; Alfosea-Simón, M.; Martinez-Nicolás, J.J.; Valverde, J.M.; García-Sánchez, F. Changes in the content of chlorophylls and carotenoids in the rind of Fino 49 lemons during maturation and their relationship with parameters from the CIELAB color space. Sci. Hort. 2019, 243, 252–260. [Google Scholar] [CrossRef]
- Conesa, A.; Manera, J.; Brotons, J.M.; Castañar, R.; Porras, I. El cambio de color de la corteza del limonero ‘Verna’ y ‘Fino’. In Proceedings of the XIV Congreso de la SECH, Orihuela, Spain, 3–5 June 2015; pp. 290–293. [Google Scholar]
- Sun, Y.; Singh, Z.; Tokala, V.Y.; Heather, B. Harvest maturity stage and cold storage period influence lemon fruit quality. Sci Hort. 2019, 249, 322–328. [Google Scholar] [CrossRef]
- Fallahi, E.; Rodney, D.R.; Mousavi, Z. Growth, Yield, and Fruit Quality of Eight Lemon Cultivars in Arizona. J. Amer. Soc. Hort Sci. 1990, 115, 6–8. [Google Scholar] [CrossRef] [Green Version]
- Continella, A.; Pannitteri, C.; La Malfa, S. Influence of different rootstocks on yield precocity and fruit quality of ‘Tarocco Scirè’ pigmented sweet orange. Sci. Hort. 2018, 230, 62–67. [Google Scholar] [CrossRef]
- Arrieta, A.; Baquero, U.; Barrera, J. Caracterización fisicoquímica del proceso de maduración del plátano "Papocho" (Musa ABB Simmonds). Agro. Colomb. 2006, 24, 48–53. [Google Scholar]
- Davies, F.S.; Albrigo, L.G. Cítricos; Acribia, S.A., Ed.; CAB international: Wallingford, UK, 1999; p. 283. [Google Scholar]
- Hardy, S.; Sanderson, G. Citrus maturity testing. Prime Fact. 2010, 980, 1–6. [Google Scholar]
- Liu, C.H.; Liu, Y. Influences of organic manure addition on the maturity and quality of pineapple fruits ripened in winter. J. Soil Sci. Plant. Nut. 2012, 12, 211–220. [Google Scholar] [CrossRef] [Green Version]
- Soler, G.; Iglesias, D.J.; Cercós, M.; Tadeo, F.R.; Primo-Millo, E.; Talón, M. Acumulación de ácidos orgánicos durante la maduración del fruto de los cítricos. Levante agrícola. 2003, 42, 372–378. [Google Scholar]
- Georgiou, A. Evaluation of rootstocks for the Cyprus local lemon variety ‘Lapithkiotiki’. Sci. Hort. 2009, 123, 184–187. [Google Scholar] [CrossRef]
- Armadans, A.J.; Villalba, N.; Rodríguez, H. Influencia del porta-injertos y la época de cosecha sobre la calidad de pomelo (Citrus paradisis Macf) variedad Rio Red. Acta Agronómica. 2014, 63, 1–8. [Google Scholar]
- Robles, J.; Botía, P.; Pérez-Pérez, J. Sour orange rootstock increases water productivity in deficit irrigated ‘Verna’ lemon tres compared with Citrus macrophylla. Agric. Water Manag. 2017, 186, 98–107. [Google Scholar] [CrossRef]
- Zhang, P.; Zhou, Z. Postharvest ethephon degreening improves fruit color, flavor quality and increases antioxidant capacit in ‘Eureka’ lemon (Citrus limon (L.) Burm.f. Sci. Hort. 2019, 248, 70–80. [Google Scholar] [CrossRef]
- Echeverria, E.; Valich, J. Carbohydrate and enzyme distribution in protoplasts from Valencia orange juice sacs. Phytochemistry 1988, 27, 73–76. [Google Scholar] [CrossRef]
- Lizada, C. Mango. In Biochemistry of Fruit Ripening; Seymour, G.B., Taylor, J.E., Tucker, G.A., Eds.; Chapman and Hall: London, UK, 1993; pp. 255–271. [Google Scholar]
- Gargouri, B.; Ammar, S.; Verardo, V.; Besbes, S.; Segura-Carretero, A.; Bouaziz, M. RP-HPLC–DAD-ESI-TOF–MS based strategy for new insights into the qualitative and quantitative phenolic profile in Tunisian industrial Citrus Limon by-product and their antioxidant activity. Eur. Food Res. Technol. 2017, 243, 2011–2024. [Google Scholar] [CrossRef]
- Nile, S.H.; Baskar, V.; Keum, Y.S. Characterization of organic acids, sugars, antioxidant and anti-inflammatory activities of Citrus reticulate Blanco cv. Nagpur. Indian J. Exp. Biol. 2017, 55, 604–610. [Google Scholar]
- Asencio, A.; Serano, M.; García-Martínez, S.; Pretel, M. Organic acids, sugars, antioxidant activity, sensorial and other fruit characteristics of nine traditional Spanish Citrus fruits. Eur. Food Res. Technol. 2018, 244, 1497–1508. [Google Scholar] [CrossRef]
- Velioglu, Y. Food acids: Organic acids, volatile organic acids and phenolic acids. In Advances in Food Biochemistry; Yildiz, F., Ed.; CRC Press: Boca Ratón, FL, USA, 2009; pp. 313–339. [Google Scholar]
- Sancho, V.J.; Bota-Prieto, E.; De Castro, J.J. Introducción al Análisis Sensorial de los Alimentos; Ediciones de la Universitat de Barcelona: Barcelona, Spain, 1999; p. 319. [Google Scholar]
- Shaikh, H.; Salman-Faisal, M.; Mewawalla, P. Vitamin C deficiency: Rare cause of severe anemia with hemolysis. Int. J. Hematol. 2019, 109, 618–621. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, J.M.; García-Lidón, A.; Tadeo, J.L.; Fernández de Córdova, J. Rootstock effect on fruit and juice characteristics of lemons. Proc. Int. Soc. Citriculture, I. 1984, 1, 50–53. [Google Scholar]
- Bermejo, A.; Cano, A. Analysis of nutritional constituents in twenty citrus cultivars from the Mediterranean area at different stages of ripening. Food Nutr. Sci. 2012, 3, 639–650. [Google Scholar] [CrossRef]
- Ekawati, E.R.; Darmanto, W. Lemon (Citrus limon) juice has antibacterial potential against diarrhea-causing pathogen. Earth and Env. Sci. 2019, 217. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, Q.; Wang, F.Q.; Li, C.H.; Hu, Y.J.; Xia, Z.N. In vitro anti-platelet aggregation effects of fourteen fruits and vegetables. Pak J. Pharm. Sci. 2019, 32, 185–195. [Google Scholar]
- Cao, X.; He, Y.; Kong, Y.; Mei, X.; Huo, Y.; He, Y.; Liu, J. Elucidating the interaction mechanism of eriocitrin with β-casein by multispectroscopic and molecular simulation methods. Food Hydrocoll. 2019, 94, 63–70. [Google Scholar] [CrossRef]
- Kamran, M.; Huma, Z.E.; Dangles, O. A comprehensive review on flavanones, the major citrus polyphenols. J. Food Comp. Anal. 2014, 33, 85–104. [Google Scholar]
- Gonzales-Molina, E.; Dominguez-Perles, R.; Moreno, D.A.; García-Viguera, C. Natural bioactive compounds of Citrus limon for food and health. J. Pharm. Biomed. Anal. 2010, 51, 327–345. [Google Scholar] [CrossRef]
- Manach, C.; Scalbert, A.; Morand, C.; Remesy, C.; Jimenez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [Green Version]
- Dwyer, J.; Peterson, J.J. Measuring flavonoid intake: Need for advanced tools. Public. Health Nutr. 2002, 5, 925–930. [Google Scholar] [CrossRef] [PubMed]
- Aherne, S.; O’Brien, N. Dietary flavonols; chemistry, food content, and metabolism. Nutrition 2002, 18, 75–81. [Google Scholar] [CrossRef]
- Dong, X.; Hu, Y.; Li, Y.; Zhou, Z. The maturity degree, phenolic compounds and antioxidant activity of Eureka lemon (Citrus limon (L.) Burm.f.: A negative correlation between total phenolic content, antioxidant capacity and soluble solid content. Sci. Hort. 2019, 243, 281–289. [Google Scholar] [CrossRef]
Cultivar | Rootstock | FW | ED | PD | ED/PD | PT | NSD | NSG | PJ |
---|---|---|---|---|---|---|---|---|---|
‘Bétera’ | ‘FA 13’ | ‡ 116.7 bc | 58.0 bc | 77.2 bc | 0.7 cd | 4.92 ab | 8.7 bc | 9.6 | 39.3 cd |
‘FA 5’ | 119.2 bc | 66.6 a | 62.3 f | 1.0 a | 3.70 c | 8.0 bc | 9.3 | 48.9 a | |
‘FA 517’ | 126.0 ab | 58.5 bc | 70.6 cdef | 0.8 bc | 4.31 bc | 7.5 bc | 9.4 | 44.9 ab | |
‘Verna’ | ‘FA 13’ | 138.7 ab | 64.2 ab | 75.3 bcd | 0.8 bc | 4.67 ab | 9.4 ab | 9.8 | 45.9 ab |
‘FA 5’ | 137.9 ab | 59.3 bc | 90.6 a | 0.6 d | 4.82 ab | 5.8 c | 9.0 | 43.0 bc | |
‘FA 517’ | 114.5 bc | 56.3 c | 82.5 ab | 0.6 d | 5.26 a | 7.0 bc | 9.4 | 38.4 d | |
’Eureka’ | ‘FA 13’ | 150.9 a | 63.2 ab | 73.1 bcde | 0.8 bc | 4.42 abc | 7.3 bc | 9.1 | 45.0 ab |
‘FA 517’ | 117.7 bc | 60.6 abc | 67.3 def | 0.9 b | 4.34 bc | 7.7 bc | 9.5 | 44.6 ab | |
’Fino 49’ | ‘FA 5’ | 126.7 ab | 60.6 abc | 71.6 cdef | 0.8 bc | 4.41 abc | 8.4 bc | 9.1 | 45.3 ab |
‘FA 517’ | 95.5 c | 54.6 c | 63.7 ef | 0.8 bc | 3.5 c | 12.3 a | 9.7 | 45.5 ab | |
† ANOVA | *** | *** | *** | *** | *** | *** | NS | *** |
Cultivar | Rootstock | L* | A* | B* | C* | H° | CCI |
---|---|---|---|---|---|---|---|
Juice Color | |||||||
‘Bétera’ | ‘FA 13’ | ‡ 40.36 ab | −1.20 bc | 3.13 bc | 3.36 bcd | 111.32 a | −9.73 b |
‘FA 5’ | 40.10 e | −1.14 a | 3.16 bc | 3.37 bcd | 110.13 b | −9.19 a | |
‘FA 517’ | 40.28 bcd | −1.20 bc | 3.29 a | 3.51 a | 110.37 b | −9.27 a | |
‘Verna’ | ‘FA 13’ | 40.20 cde | −1.15 a | 3.14 bc | 3.35 cd | 110.43 b | −9.32 a |
‘FA 5’ | 40.18 cde | −1.17 ab | 3.07 c | 3.30 d | 111.30 a | −9.79 b | |
‘FA 517’ | 40.41 a | −1.24 c | 3.21 ab | 3.46 ab | 111.33 a | −9.72 b | |
‘Eureka’ | ‘FA 13’ | 40.15 de | −1.16 ab | 3.17 bc | 3.39 bcd | 110.37 b | −9.30 a |
‘FA 517’ | 40.31 abc | −1.19 b | 3.29 a | 3.51 a | 110.30 b | −9.23 a | |
‘Fino 49’ | ‘FA 5’ | 40.28 abcd | −1.16 ab | 3.20 ab | 3.41 abc | 110.31 b | −9.24 a |
‘FA 517’ | 40.24 bcd | −1.18 ab | 3.29 a | 3.51 a | 110.08 b | −9.14 a | |
† ANOVA | *** | *** | *** | *** | *** | *** | |
Peel Color | |||||||
‘Bétera’ | ‘FA 13’ | ‡ 68.81 e | 5.48 b | 54.81 cd | 55.17 de | 84.42 c | 1.43 c |
‘FA 5’ | 72.18 cd | 6.07 b | 55.60 bc | 56.01 cd | 83.84 c | 1.52 c | |
‘FA 517’ | 71.85 cd | 5.35 b | 52.47 e | 52.81 f | 84.32 c | 1.40 c | |
‘Verna’ | ‘FA 13’ | 72.76 bc | 5.94 b | 57.30 b | 57.67 bc | 84.12 c | 1.43 c |
‘FA 5’ | 72.65 c | 2.15 c | 52.17 e | 52.30 f | 87.80 a | 0.53 e | |
‘FA 517’ | 70.24 de | 3.49 c | 53.19 de | 53.43 ef | 86.45 ab | 0.89 de | |
‘Eureka’ | ‘FA 13’ | 74.68 ab | 5.14 b | 56.85 b | 57.21 bc | 84.99 bc | 1.20 cd |
‘FA 517’ | 73.20 bc | 8.75 a | 57.28 b | 57.91 abc | 81.35 d | 2.09 b | |
‘Fino 49’ | ‘FA 5’ | 76.52 a | 5.87 b | 59.50 a | 59.85 a | 84.41 c | 1.29 cd |
‘FA 517’ | 69.00 e | 9.70 a | 57.31 b | 58.21 ab | 80.38 d | 2.50 a | |
† ANOVA | *** | *** | *** | *** | *** | *** |
Cultivar | Rootstock | pH | TSS | TA | MI |
---|---|---|---|---|---|
‘Bétera’ | ‘FA 13’ | ‡ 3.09 | 8.66 de | 85.89 bc | 1.00 b |
‘FA 5’ | 2.97 | 9.53 c | 97.41 ab | 0.98 b | |
‘FA 517’ | 2.88 | 10.73 a | 89.64 abc | 1.19 a | |
‘Verna’ | ‘FA 13’ | 2.92 | 9.40 cd | 86.18 bc | 1.09 ab |
‘FA 5’ | 2.92 | 8.43 e | 81.50 c | 1.04 ab | |
‘FA 517’ | 3.00 | 9.30 cd | 86.34 bc | 1.08 ab | |
‘Eureka’ | ‘FA 13’ | 3.01 | 9.06 cde | 86.43 bc | 1.05 ab |
‘FA 517’ | 2.91 | 10.70 a | 104.28 a | 1.02 ab | |
‘Fino 49’ | ‘FA 5’ | 2.90 | 9.60 bc | 86.17 c | 1.11 ab |
‘FA 517’ | 2.98 | 10.43 ab | 87.45 bc | 1.19 a | |
† ANOVA | NS | *** | ** | ** |
Cultivar | Rootstock | CA | MA | AA | SA | Glu | Fru |
---|---|---|---|---|---|---|---|
‘Bétera’ | ‘FA 13’ | ‡ 3.61 | 0.36 | 0.04 abc | 0.60 abcd | 3.16 cd | 4.24 d |
‘FA 5’ | 3.83 | 0.46 | 0.04 abc | 0.59 bcd | 3.67 bc | 4.96 bc | |
‘FA 517’ | 3.88 | 0.57 | 0.04 abc | 0.82 a | 4.34 a | 5.59 a | |
‘Verna’ | ‘FA 13’ | 4.00 | 0.44 | 0.03 bc | 0.69 abc | 3.79 ab | 5.00 bc |
‘FA 5’ | 3.59 | 0.40 | 0.04 abc | 0.53 cd | 3.00 d | 4.09 d | |
‘FA 517’ | 3.79 | 0.52 | 0.06 a | 0.71 abc | 3.76 b | 4.94 bc | |
‘Eureka’ | ‘FA 13’ | 3.48 | 0.39 | 0.02 c | 0.47 d | 3.59 bc | 4.78 c |
‘FA 517’ | 3.88 | 0.54 | 0.04 abc | 0.77 ab | 3.91 ab | 5.34 ab | |
‘Fino 49’ | ‘FA 5’ | 3.62 | 2.14 | 0.05 ab | 0.72 abc | 4.04 ab | 5.04 bc |
‘FA 517’ | 4.11 | 0.51 | 0.05 ab | 0.76 ab | 3.98 ab | 5.32 ab | |
† ANOVA | NS | NS | ** | *** | *** | *** |
Cultivar | Rootstock | TPC | AA-FRAP | AA-ABTS+ | AA-DPPH• |
---|---|---|---|---|---|
‘Bétera’ | ‘FA 13’ | ‡ 320.5 ab | 1.12 bc | 4.20 | 1.21 |
‘FA 5’ | 284.6 b | 1.35 abc | 4.26 | 1.21 | |
‘FA 517’ | 327.3 ab | 1.51 abc | 4.47 | 1.02 | |
‘Verna’ | ‘FA 13’ | 396.1 a | 1.58 ab | 4.18 | 1.52 |
‘FA 5’ | 270.5 b | 1.32 abc | 4.73 | 1.37 | |
‘FA 517’ | 321.2 ab | 1.04 c | 4.07 | 1.91 | |
‘Eureka’ | ‘FA 13’ | 245.9 b | 1.25 abc | 3.89 | 2.02 |
‘FA 517’ | 340.9 ab | 1.25 abc | 4.82 | 1.52 | |
‘Fino 49’ | ‘FA 5’ | 351.3 ab | 1.67 a | 4.42 | 1.43 |
‘FA 517’ | 264.9 b | 1.35 abc | 4.57 | 1.60 | |
† ANOVA | ** | ** | NS | NS |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguilar-Hernández, M.G.; Sánchez-Rodríguez, L.; Hernández, F.; Forner-Giner, M.Á.; Pastor-Pérez, J.J.; Legua, P. Influence of New Citrus Rootstocks on Lemon Quality. Agronomy 2020, 10, 974. https://doi.org/10.3390/agronomy10070974
Aguilar-Hernández MG, Sánchez-Rodríguez L, Hernández F, Forner-Giner MÁ, Pastor-Pérez JJ, Legua P. Influence of New Citrus Rootstocks on Lemon Quality. Agronomy. 2020; 10(7):974. https://doi.org/10.3390/agronomy10070974
Chicago/Turabian StyleAguilar-Hernández, Marlene G., Lucía Sánchez-Rodríguez, Francisca Hernández, María Ángeles Forner-Giner, Joaquín J. Pastor-Pérez, and Pilar Legua. 2020. "Influence of New Citrus Rootstocks on Lemon Quality" Agronomy 10, no. 7: 974. https://doi.org/10.3390/agronomy10070974
APA StyleAguilar-Hernández, M. G., Sánchez-Rodríguez, L., Hernández, F., Forner-Giner, M. Á., Pastor-Pérez, J. J., & Legua, P. (2020). Influence of New Citrus Rootstocks on Lemon Quality. Agronomy, 10(7), 974. https://doi.org/10.3390/agronomy10070974