The Contribution of Soil Tillage and Nitrogen Rate to the Quality of Maize Grain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Soil Properties
2.2. Experimental Details
2.3. Sampling and Analysis
2.4. Statistical Analysis
2.5. Meteorological Conditions
3. Results
3.1. Response of Maize Parameters to the Year, the Soil Tillage System and the Fertiliser Rate
3.2. The Effect of the Year
3.3. The Importance of the Soil Tillage System
3.4. Contribution of the N Rate
3.5. The Effectiveness of the Interactions between the Year, Soil Tillage System and the N Rate
3.6. Interdependencies between GY and Quality Components in Grain
4. Discussion
4.1. The Effects of Meteorological Conditions on the Maize Yield and its Qualitative Parameters
4.2. Soil Tillage Effects on Maize Yield and Nutritive Components of the Grain
4.3. Effects of N Levels on the Maize Yield and the Grain Composition
4.4. Interaction of Factors Affecting Maize Yield and Qualitative Parameters and the Correlation among Studied Parameters
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Eurostat. 2019. Available online: https://ec.europa.eu/eurostat/documents/3217494/10317767/KS-FK-19-001-EN-N.pdf/742d3fd2-961e-68c1-47d0-11cf30b11489 (accessed on 8 May 2020).
- Simić, M.; Kresović, B.; Dragičević, V.; Tolimir, M.; Brankov, M. Improving cropping technology of maize to reduce the impact of climate changes. In Proceedings of the 9th International Scientific Agriculture Symposium “Agrosym 2018”, Jahorina, Bosnia and Herzegovina, 3–7 October 2018; Kovačević, D., Ed.; University of East Sarajevo, Faculty of Agriculture: East Srajevo, Republic of Srpska, 2018; pp. 631–639. Available online: http://agrosym.ues.rs.ba/agrosym/agrosym_2018/Book_of_proceedings_2018_Final.pdf (accessed on 12 May 2020).
- Fischer, R.A.; Byerlee, D.; Edmeades, G.O. World Maize and its Mega-environments. In Crop Yields and Global Food Security: Will Yield Increase Continue to Feed the World? ACIAR Monograph No. 158; McGillion, T., Hawkins, K., Eds.; Australian Centre for International Agricultural Research: Canberra, Australia, 2014; pp. 183–189. Available online: https://aciar.gov.au/node/12101 (accessed on 12 May 2020).
- Dei, K.H. Assesment of Maize (Zea mays) as a Fed Resource for Poultry; Book Chapter; Open access book publisher IntechOpen Limited: London, UK, 2017; pp. 1–32. [Google Scholar] [CrossRef] [Green Version]
- Bodner, G.; Nakhforoosh, A.; Kaul, H.-P. Management of crop water under drought: A review. Agron. Sust. Develop. 2015, 35, 401–442. [Google Scholar] [CrossRef]
- Fulton, M. Foreword. In Landscapes Transformed: The History of Conservation Tillage and Direct Seeding; Lindwall, C., Sonntag, B., Eds.; Knowledge Impact in Society: Saskatoon, SK, Canada, 2010; pp. 9–14. Available online: http://www.kis.usask.ca/ZeroTill/LandscapesTransformedHistoryofCTBook.pdf (accessed on 12 May 2020).
- Llewellyn, R.S.; DʹEmden, F.H.; Kuehne, G. Extensive use of no-Tillage systems in growing regions of Australia. Field Crops Res. 2012, 132, 204–2012. [Google Scholar] [CrossRef]
- Morris, N.L.; Miller, P.C.H.; Orson, J.H.; Froud-Williams, R.J. The adoption of non-inversion tillage systems in the United Kingdom and the agronomic impact on soil, crops and the environment-A review. Soil Till. Res. 2010, 108, 1–15. [Google Scholar] [CrossRef]
- Malhi, S.S.; Grant, G.A.; Johnston, A.M.; Gill, K.S. Nitrogen fertilization management for no-till cereal production in Canadian Great Plain: A review. Soil Till. Res. 2001, 60, 101–122. [Google Scholar] [CrossRef]
- Videnović, Ž.; Simić, M.; Srdić, J.; Dumanović, Z. Long term effects of different soil tillage systems on maize (Zea mays L.) yields. Plant Soil Environ. 2011, 57, 186–192. [Google Scholar] [CrossRef] [Green Version]
- Simić, M.; Dragičević, V.; Kresović, B.; Kovačević, D.; Dolijanović, Ž.; Brankov, M. The effectiveness of soil tillage systems in maize cultivation under variable meteorological conditions of central Serbia. In Proceedings of the 10th International Scientific Agriculture Symposium “Agrosym 2019”, Jahorina, Bosnia and Herzegovina, 3–6 October 2019; Kovačević, D., Ed.; University of East Sarajevo, Faculty of Agriculture: East Sarajevo, Republic of Srpska, 2019; pp. 574–579. Available online: http://agrosym.ues.rs.ba/agrosym/agrosym_2019/Book_of_proceedings_2019_Final.pdf (accessed on 12 May 2020).
- Wang, X.; Zhou, B.; Sun, X.; Yue, Y.; Ma, W.; Zhao, M. Soil Tillage Management Affects Maize Grain Yield by Regulating Spatial Distribution Coordination of Roots, Soil Moisture and Nitrogen Status. PLoS ONE 2015, 10, e0129231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wasaya, A.; Tahir, M.; Ali, H.; Hussaina, M.; Yasir, T.A.; Sher, A.; Ijaz, M.; Sattar, A. Influence of varying tillage systems and nitrogen application on crop allometry, chlorophyll contents, biomass production and net returns of maize (Zea mays L.). Soil Till. Res. 2017, 170, 18–26. [Google Scholar] [CrossRef]
- Ciampitti, I.A.; Vyn, T.J. Grain nitrogen source changes over time in maize: A review. Crop Sci. 2013, 53, 366–377. [Google Scholar] [CrossRef] [Green Version]
- IPNI (International Plant Nutrition Institute). The Global ‘4R’ Nutrient Stewardship: Developing Fertilizer Best Management Practices for dElivering Economic, Social and Environmental Benefits; International Plant Nutrition Institute: Norcross, GA, USA, 2009. Available online: www.ipni.net/4r (accessed on 12 May 2020).
- Li, J.; Hoang, K.T.K.; Hassan, N.; Marchner, P. Vermicompost Influences Soil P Pools and Available N—Effect of Placement and Combination with Inorganic Fertiliser. J. Soil Sci. Plant Nutr. 2019, 19, 900–905. [Google Scholar] [CrossRef]
- FAOSTAT. FAOSTAT Crop Production Statistics; Food and Agriculture Organization: Rome, Italy, 2013; Available online: www.faostat.fao.org (accessed on 12 May 2020).
- Singh, M.; Paulsen, M.R.; Tian, L.; Yao, H. Site−specific study of corn protein, oil, and extractable starch variability using nit spectroscopy. Appl. Eng. Agric. 2005, 21, 239–251. [Google Scholar] [CrossRef]
- Dobermann, A.; Wortmann, C.S.; Ferguson, R.B.; Hergert, G.W.; Shapiro, C.A.; Tharkalson, D.D.; Walters, D.T. Nitrogen response and economics for irrigated corn in Nebraska. Agron. J. 2011, 103, 67–75. [Google Scholar] [CrossRef]
- Rehman, A.; Saleem, M.F.; Safdar, E.M.; Hussain, S.; Akhtar, N. Grain quality, nutrient use efficiency, and bioeconomics of maize under different sowing methods and NPK levels. Chil. J. Agric. Res. 2011, 71, 586–593. Available online: http://www.chileanjar.cl/files/V71_I4_2011_ENG_AbdulRehman.pdf (accessed on 12 May 2020). [CrossRef] [Green Version]
- Fox, G.P.; O’ Hare, T.J. Analysing maize grain quality. In Achieving Sustainable Cultivation of Maize; Watson, D., Ed.; Burleigh Dodds Science Publishing Limited: Cambridge, UK, 2017; Volume 1, pp. 237–260. [Google Scholar] [CrossRef]
- Tsai, C.Y.; Warren, H.L.; Huber, D.M.; Bressan, R.A. Interaction between the kernel N sink, grain yield and protein nutritional quality of maize. J. Sci. Food Agric. 1983, 34, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.; Mulla, J.D.; Pierre, C.R.; Hernandez, A.J. Within-Field Variation in Corn Yield and Grain Quality Responses to Nitrogen Fertilization and Hybrid Selection. Agron. J. 2006, 98, 129–140. [Google Scholar] [CrossRef]
- Saini, R.; Keum, Y. Tocopherols and tocotrienols in plants and their products: A review on methods of extraction, chromatographic separation, and detection. Food Res. Internat. 2016, 82, 59–70. [Google Scholar] [CrossRef]
- Krinsky, N.; Johnson, E. Carotenoid actions and their relation to health and disease. Mol. Aspects Med. 2005, 26, 459–516. [Google Scholar] [CrossRef]
- Mesarović, J.; Srdić, J.; Mladenović Drinić, S.; Dragičević, V.; Simić, M.; Brankov, M.; Milojković-Opsenica, D. Antioxidant status of the different sweet maize hybrids under herbicide and foliar fertilizer application. Genetika 2018, 50, 1023–1033. [Google Scholar] [CrossRef]
- IUSS Working Group Wrb. World Reference Base for Soil Resources International soil classification system for naming soils and creating legends for soil maps. In World Soil Resources Reports; 106; FAO: Rome, Italy, 2014. [Google Scholar]
- Mesarović, J.; Srdić, J.; Mladenović Drinić, S.; Dragičević, V.; Simić, M.; Brankov, M.; Milojković-Opsenica, D. Evaluation of the nutritional profile of sweet maize after herbicide and foliar fertilizer application. J. Cereal Sci. 2019, 87, 132–137. [Google Scholar] [CrossRef] [Green Version]
- Dragičević, V.; Sredojević, S.; Perić, V.; Nišavić, A.; Srebrić, M. Validation study of a rapid colorimetric method for the determination of phytic acid and organic phosphorus from grains. Acta Periodica Technol. 2011, 42, 11–21. [Google Scholar] [CrossRef]
- Sari-Gorla, M.; Ferrario, S.; Rossini, L.; Frova, C.; Villa, M. Developmental expression of glutathione-S-transferase in maize and its possible connection with herbicide tolerance. Euphytica 1993, 67, 221–230. [Google Scholar] [CrossRef]
- Simić, A.; Sredojević, S.; Todorović, M.; Đukanović, L.; Radenović, Č. Studies on the relationship between content of total phenolics in exudates and germination ability of maize seed during accelerated aging. Seed Sci. Technol. 2004, 32, 213–218. Available online: https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.15258%2Fsst.2004.32.1.22 (accessed on 12 May 2020).
- Walter, H.; Lieth, H. Klimadiagram-Weltatlas; VEB Gustav Fischer Verlag: Jena, Germany, 1967. [Google Scholar]
- Singh, N.; Vasudev, S.; Yadava, D.K.; Chaudhary, D.P.; Prabhu, K.V. Oil Improvement in Maize: Potential and Prospects. In Maize: Nutrition Dynamics and Novel Uses; Chaudhary, D., Kumar, S., Langyan, S., Eds.; Springer: New Delhi, India, 2014. [Google Scholar] [CrossRef]
- Sharma, S.; Carena, M.J. Grain quality in Maize (Zea mays L.): Breeding implications for short-season drought environments. Euphytica 2016, 212, 247–260. [Google Scholar] [CrossRef]
- Zarzecka, K.; Gugała, M.; Sikorska, A.; Mystkowska, I.; Baranowska, A.; Niewęgłowski, M.; Dołęga, H. The effect of herbicides and biostimulants on polyphenol content of potato (Solanum tuberosum L.) tubers and leaves. J. Saudi Soc. Agric. Sci. 2019, 18, 102–106. [Google Scholar] [CrossRef]
- Legzdiņa, L.; Ivdre, E.; Piliksere, D.; Vaivode, A.; Mieriņa, I.; Jure, M. Effect of genotype and crop management systems on the content of antioxidants in hulless and covered spring barley. Zemdirbyste 2018, 105, 315–322. Available online: https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.13080%2Fz-a.2018.105.040 (accessed on 12 May 2020).
- Dragičević, V.; Simić, M.; Brankov, M.; Stoiljković, M.; Kresović, B.; Tolimir, M. Nutrients status in maize grain from sustainable agriculture. In Proceedings of the Xth International Scientific Agriculture Symposium “Agrosym 2019”, Jahorina, Bosnia and Herzegovina, 3–7 October 2019; Kovačević, D., Ed.; University of East Sarajevo, Faculty of Agriculture: East Sarajevo, Republic of Srpska, 2019; pp. 35–40. Available online: http://agrosym.ues.rs.ba/agrosym/agrosym_2019/Book_of_proceedings_2019_Final.pdf (accessed on 12 May 2020).
- May, M.; Vernoux, T.; Leaver, C.; van Montagu, M.; Inze, D. Glutathione homeostasis in plants: Implications for environmental sensing and plant development. J. Exp. Bot. 1998, 49, 649–667. Available online: https://www.jstor.org/stable/23695984 (accessed on 12 May 2020). [CrossRef] [Green Version]
- Dinnes, D.L.; Karlen, D.L.; Jaynes, D.B.; Kaspar, T.C.; Hatfield, J.L.; Colvin, T.S.; Cambardella, C.A. Nitrogen management strategies to reduce nitrate leaching in tile-Drained Midwestern soils. Agron. J. 2002, 94, 153–171. [Google Scholar] [CrossRef]
- Merhij, I.E.; Al-Timmen, W.M.; Jasim, A.H. the effect of silicon, tillage and the interaction between them on some antioxidants and phytohormones during drought stress of maize (Zea mays L.) plants. Plant Arch. 2019, 19, 67–74. Available online: https://www.researchgate.net/publication/331533823 (accessed on 12 May 2020).
- Houx, H.J.; Wiebold, J.W.; Fritschi, B.F. Long term tillage treatment effects on corn grain nutrient composition and yield. Field Crops Res. 2016, 191, 33–40. [Google Scholar] [CrossRef]
- Spoljar, A.; Kisic, I.; Birkas, M.; Kvaternjaka, I.; Marencica, D.; Orehovacki, V. Influence of tillage on soil properties, yield and protein content in maize and soybean grain. J. Environ. Prot. Ecol. 2009, 10, 1013–1031. Available online: https://www.researchgate.net/publication/286110660 (accessed on 12 May 2020).
- Wang, Y.; Huang, Y.; Fu, W.; Guo, W.; Ren, N.; Zhao, Y.; Ye, Y. Efficient Physiological and Nutrient Use Efficiency Responses of Maize Leaves to Drought Stress under Different Field Nitrogen Conditions. Agronomy 2020, 10, 523. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, M.; Karaman, K.; Kardes, Y.M.; Kale, H. Phytic acid content and starch properties of maize (Zea mays L.): Effects of irrigation process and nitrogen fertilizer. Food Chem. 2019, 283, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Simic, M.; Dragicevic, V.; Kresovic, B.; Videnovic, Ž.; Dumanovic, Z. Advanced cropping technology of maize (Zea mays L.) in Serbia. Agric. For. 2016, 62, 227–240. [Google Scholar] [CrossRef] [Green Version]
- Wasaya, A.; Tahir, M.; Yasir, T.A.; Akram, M.; Farooq, O.; Sarwar, N. Soil physical properties, nitrogen uptake and grain quality of maize (Zea mays L.) as affected by tillage systems and nitrogen application. Ital. J. Agron. 2018, 13, 324–331. [Google Scholar] [CrossRef]
- Langenkämper, G.; Zörb, C.; Seifert, M.; Mäder, P.; Fretzdorff, B.; Betsche, T. Nutritional quality of organic and conventional wheat. J. Appl. Bot. Food Qual. 2006, 80, 150–154. [Google Scholar]
- Ma, D.; Sun, D.; Li, Y.; Wang, C.; Xie, Y.; Guo, T. Effect of nitrogen fertilization and irrigation on phenolic content, phenolic acid composition, and antioxidant activity of winter wheat grain. J. Sci. Food Agric. 2015, 95, 1039–1046. [Google Scholar] [CrossRef]
- Jones, C.G.; Hartley, S.E. A protein competition model of phenolic allocation. Oikos 1999, 86, 27–44. [Google Scholar] [CrossRef]
- Haukioja, E.; Ossipov, V.; Koricheva, J.; Honkanen, T.; Larsson, S.; Lempa, K. Biosynthetic origin of carbon-Based secondary compounds: Cause of variable responses of woody plants to fertilization? Chemoecology 1998, 8, 133–139. [Google Scholar] [CrossRef]
- Kang, Y.Y.; Zhang, C.L.; Zhang, L.; Liu, L.W.; Chen, Z.; Gong, Y.Q. Effect of different fertilizer treatment on head yield and quality in exporting Broccoli. Acta Agric. Bor.-Sin. 2005, 6, 63–67. Available online: http://caod.oriprobe.com/articles/9446669/Effect_of_Different_Fertilizer_Treatments_on_Head_Yield_andQuality_in.htm (accessed on 12 May 2020).
- Tekaya, M.; Mechri, B.; Cheheb, H.; Attia, F.; Chraief, I.; Ayachi, M.; Boujneh, D.; Hammami, M. Changes in the profiles of mineral elements, phenols, tocopherols and soluble carbohydrates of olive fruit following foliar nutrient fertilization. LWT-Food Sci. Technol. 2014, 59, 1047–1053. [Google Scholar] [CrossRef]
- Trono, D. Carotenoids in Cereal Food Crops: Composition and Retention throughout Grain Storage and Food Processing. Agronomy 2019, 8, 551. [Google Scholar] [CrossRef] [Green Version]
- Silva, E.O.; Bracarense, A.P.F. Phytic Acid: From Antinutritional to Multiple Protection Factors of Organic Systems. J. Food Sci. 2016, 81, 1357–1362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Source of Variation | d.f. | GY (t ha−1) | Proteins (%) | Starch (%) | Oil (%) | Carot (µg g−1) | Tocopher. (µg g−1) | Pi (mg g−1) | GSH (nmol g−1) | Phenol (µg g−1) | Phy (mg g−1) |
---|---|---|---|---|---|---|---|---|---|---|---|
Y | 2 | 103.73 ** | 1.53 | 17.77 ** | 104.87 ** | 135.50 ** | 0.95 | 0.90 | 174.31 ** | 56.89 ** | 24.69 ** |
T | 2 | 9.37 ** | 13.49 ** | 8.38 ** | 3.57 * | 4.06 * | 1.40 | 8.08 ** | 0.19 | 6.10 ** | 0.49 |
Y × T | 8 | 56.63 ** | 5.28 ** | 8.98 ** | 58.79 ** | 76.83 ** | 3.79 ** | 4.16 ** | 50.87 ** | 18.11 ** | 13.42 ** |
N | 2 | 5.06 ** | 27.46 ** | 15.58 ** | 2.60 | 2.79 | 13.41 ** | 3.92 * | 1.53 | 0.56 | 1.55 |
Y × N | 8 | 37.85 ** | 8.87 ** | 12.88 ** | 31.45 ** | 46.32 ** | 5.90 ** | 5.84 ** | 60.83 ** | 14.79 ** | 9.93 ** |
T × N | 8 | 4.36 ** | 20.67 ** | 9.16 ** | 1.86 | 2.12 * | 4.81 ** | 3.78 ** | 0.52 | 0.72 | 2.91 ** |
Y × T × N | 26 | 45.60 ** | 16.81 ** | 12.98 ** | 36.50 ** | 665.82 ** | 310.97 ** | 16.57 ** | 38.27 ** | 8.44 ** | 28.56 ** |
Investigated Factors | GY (t ha−1) | Proteins (%) | Starch (%) | Oil (%) | Carot (µg g−1) | Tocopher. (µg g−1) | Pi (mg g−1) | GSH (nmol g−1) | Phenols (µg g−1) | Phy (mg g−1) |
---|---|---|---|---|---|---|---|---|---|---|
2016 | 9.92 a | 9.23 | 72.06 a | 4.47 a | 34.77 b | 43.54 | 0.35 | 2992.70 a | 342.29 a | 3.16 b |
2017 | 3.47 b | 9.11 | 70.90 b | 3.73 b | 28.78 c | 42.33 | 0.34 | 1896.20 c | 148.84 c | 3.57 a |
2018 | 8.60 a | 8.96 | 72.48 a | 3.92 b | 38.19 a | 44.24 | 0.34 | 2732.70 b | 278.31 b | 3.23 b |
LSD 0.05 | 2.005 | 0.6482 | 1.165 | 0.225 | 2.455 | 5.935 | 0.033 | 260.4 | 78.40 | 0.262 |
T1 | 6.18 | 9.15 ab | 71.94 | 4.13 | 33.23 | 43.68 | 0.34 ab | 2569.50 | 271.00 | 3.18 |
T2 | 6.62 | 8.72 b | 72.34 | 4.09 | 32.87 | 44.35 | 0.36 a | 2495.70 | 245.40 | 3.37 |
T3 | 9.19 | 9.43 a | 71.15 | 3.90 | 35.64 | 42.08 | 0.33 b | 2556.40 | 253.00 | 3.41 |
LSD 0.05 | 3.186 | 0.586 | 1.252 | 0.377 | 4.475 | 5.909 | 0.031 | 540.2 | 112.6 | 0.301 |
N1 | 6.00 | 8.61 b | 72.64 a | 4.14 | 32.60 | 46.68 a | 0.36 a | 2416.50 | 266.40 | 3.28 |
N2 | 7.54 | 9.15 a | 71.69 ab | 4.04 | 34.02 | 43.28 ab | 0.34 ab | 2579.50 | 262.60 | 3.28 |
N3 | 8.45 | 9.53 a | 71.10 b | 3.94 | 35.12 | 40.15 b | 0.33 b | 2625.50 | 240.40 | 3.39 |
LSD 0.05 | 3.304 | 0.533 | 1.184 | 0.380 | 4.526 | 5.344 | 0.032 | 533.5 | 112.6 | 0.313 |
Soil Tillage/ N Level | GY (t ha−1) | Proteins (%) | Starch (%) | Oil (%) | Carot. (µg g−1) | Tocopher. (µg g−1) | Pi (mg g−1) | GSH (nmol g−1) | Phenols (µg g−1) | Phy (mg g−1) | |
---|---|---|---|---|---|---|---|---|---|---|---|
T1 | N1 | 4.76 a | 8.53 a | 72.98 b | 4.25 b | 31.89 a | 47.87 b | 0.36 b | 2459.20 | 258.80 | 3.19 |
N2 | 6.43 ab | 9.35 bc | 71.75 ab | 4.18 ab | 33.34 ab | 42.72 ab | 0.35 ab | 2670.00 | 269.70 | 3.18 | |
N3 | 7.36 ab | 9.57 c | 71.27 a | 3.96 ab | 34.47 ab | 40.44 a | 0.33a | 2579.20 | 284.50 | 3.15 | |
T2 | N1 | 4.58 a | 8.29 a | 73.18 b | 4.16 ab | 31.82 a | 47.86 b | 0.37 b | 2348.20 | 265.70 | 3.33 |
N2 | 6.85 ab | 8.46 a | 72.72 b | 4.13 ab | 31.83 a | 46.13 b | 0.35 ab | 2551.00 | 235.20 | 3.38 | |
N3 | 8.43 b | 9.41b c | 71.12 a | 3.99 ab | 34.98 ab | 39.08 a | 0.36 b | 2587.80 | 235.40 | 3.40 | |
T3 | N1 | 8.67 b | 9.01 b | 71.77 ab | 4.03 ab | 34.10 ab | 44.30 ab | 0.34 ab | 2442.10 | 274.70 | 3.33 |
N2 | 9.34 b | 9.65 c | 70.78 a | 3.81 a | 36.90 b | 41.00 ab | 0.32 a | 2517.50 | 282.80 | 3.27 | |
N3 | 9.57 b | 9.63 c | 70.91 a | 3.88 ab | 35.91 ab | 40.95 ab | 0.32 a | 2709.50 | 201.40 | 3.63 | |
LSD 0.05 | 3.064 | 0.4143 | 1.053 | 0.3741 | 4.421 | 5.233 | 0.0298 | 546.10 | 113.40 | 0.294 |
Maize Grain Parameters | Tillage System | Fertilisation Rate | ||||
---|---|---|---|---|---|---|
T1 | T2 | T3 | N1 | N2 | N3 | |
Proteins (%) | 0.12 | 0.54 * | 0.27 | 0.83 * | 0.21 | −0.19 |
Starch (%) | 0.29 | 0.12 | 0.46 * | −0.09 | 0.30 | 0.62 * |
Oil (%) | 0.71 * | 0.47 * | 0.69 * | 0.42 * | 0.47 * | 0.76 * |
Carotenoids (µg g−1) | 0.61 * | 0.90 * | 0.76 * | 0.72 * | 0.74 * | 0.82 * |
Tocopherols (µg g−1) | 0.33 | −0.30 | −0.10 | 0.28 | 0.01 | −0.40 * |
Pi (mg g−1) | −0.22 | 0.01 | 0.40 * | −0.30 | −0.57 * | 0.57 * |
GSH (nmol g−1) | 0.93 * | 0.90 * | 0.93 * | 0.80 * | 0.74 * | 0.94 * |
Phenols (µg g−1) | 0.88 * | 0.64 * | 0.72 * | 0.74 * | 0.80 * | 0.63 * |
Phy (mg g−1) | −0.74 * | −0.77 * | −0.24 | −0.71 * | −0.74 * | 0.04 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simić, M.; Dragičević, V.; Mladenović Drinić, S.; Vukadinović, J.; Kresović, B.; Tabaković, M.; Brankov, M. The Contribution of Soil Tillage and Nitrogen Rate to the Quality of Maize Grain. Agronomy 2020, 10, 976. https://doi.org/10.3390/agronomy10070976
Simić M, Dragičević V, Mladenović Drinić S, Vukadinović J, Kresović B, Tabaković M, Brankov M. The Contribution of Soil Tillage and Nitrogen Rate to the Quality of Maize Grain. Agronomy. 2020; 10(7):976. https://doi.org/10.3390/agronomy10070976
Chicago/Turabian StyleSimić, Milena, Vesna Dragičević, Snežana Mladenović Drinić, Jelena Vukadinović, Branka Kresović, Marijenka Tabaković, and Milan Brankov. 2020. "The Contribution of Soil Tillage and Nitrogen Rate to the Quality of Maize Grain" Agronomy 10, no. 7: 976. https://doi.org/10.3390/agronomy10070976
APA StyleSimić, M., Dragičević, V., Mladenović Drinić, S., Vukadinović, J., Kresović, B., Tabaković, M., & Brankov, M. (2020). The Contribution of Soil Tillage and Nitrogen Rate to the Quality of Maize Grain. Agronomy, 10(7), 976. https://doi.org/10.3390/agronomy10070976