Does Credit Influence Fertilizer Intensification in Rice Farming? Empirical Evidence from Côte D’Ivoire
Abstract
:1. Introduction
2. Linkages Between Agricultural Technologies’ Adoption and Credit
3. Theoretical Framework, Methodology, and Data
3.1. Theoretical Framework
3.2. Study Area and Sampling Design
3.3. Econometric Model Specification and Statistical Tests
3.4. Variables and Empirical Hypotheses
3.5. Descriptive Statistics
4. Results and Discussion
4.1. Determinants of FI
4.2. Determinants of AC
5. Conclusions and Policy Implication
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Doumbia, S.; Depieu, M. Analyse des caractéristiques structurelles et des performances technico-économiques de la riziculture irriguée en Côte d’Ivoire. J. Appl. Biosci. 2014, 74, 6112. [Google Scholar] [CrossRef]
- Kotchi, J.K.; Ouattara-Coulibaly, Y.R.; N’Guessan, G.K. Impact socio-économique de l’aménagement hydro-rizicole de Guiguidou dans la sous-préfecture de Divo (Côte d’Ivoire). EchoGeo 2018, 0–17. [Google Scholar] [CrossRef]
- Saito, K.; Touré, A.; Arouna, A.; Fiamohe, R.; Silué, D.; Manful, J.; Bèye, A.; Efisue, A.A. Multidisciplinary assessment of agricultural innovation and its impact: A case study of lowland rice variety WITA 9 in Côte d’Ivoire. Plant Prod. Sci. 2019, 22, 428–442. [Google Scholar] [CrossRef] [Green Version]
- Bahan, F.; Kéli, J.; Yao-Kouamé, A.; Gbakatchétché, H.; Mahyao, A.; Bouet, A.; Camara, M. Caractérisation Des Associations Culturales à Base de Riz (Oryza sp): Cas Du Centre-Ouest Forestier de La Côte d ’ Ivoire. J. Appl. Biosci. 2012, 56, 4118–4132. [Google Scholar]
- Tanaka, A.; Johnson, J.-M.; Senthilkumar, K.; Akakpo, C.; Segda, Z.; Yameogo, L.P.; Bassoro, I.; Lamare, D.M.; Allarangaye, M.D.; Gbakatchetche, H.; et al. On-farm rice yield and its association with biophysical factors in sub-Saharan Africa. Eur. J. Agron. 2017, 85, 1–11. [Google Scholar] [CrossRef]
- Mariko, K.; Macalou, M.; Xiangmei, L.; Matafwali, E.; Alavo, J.-P.E.; Eltom, E.A.; Omondi, O.M. Stochastic Meta Frontier Analysis of Smallholder Rice Farmers’ Technical Efficiency. J. Agric. Sci. 2019, 11, 31. [Google Scholar] [CrossRef]
- Bizimana, J.-C.; Richardson, J.W. Agricultural technology assessment for smallholder farms: An analysis using a farm simulation model (FARMSIM). Comput. Electron. Agric. 2019, 156, 406–425. [Google Scholar] [CrossRef]
- Gala Bi, T.J.; Camara, M.; Yao-Kouame, A.; Keli, Z.J. Rentabilité Des Engrais Minéraux En Riziculture Pluviale de Plateau: Cas de La Zone de Gagnoa Dans Le Centre Ouest de La Côte d ’Ivoire. J. Appl. Biosci. 2011, 46, 3153–3162. [Google Scholar]
- Rashid, S.; Sharma, M.P.; Zeller, M. Micro-Lending for Small Farmers in Bangladesh: Does It Affect Farm Households’ Land Allocation Decision? J. Dev. Areas 2004, 37, 13–29. [Google Scholar] [CrossRef] [Green Version]
- Depieu, M.E.; Arouna, A.; Doumbia, S. Analyse Diagnostique Des Systèmes de Culture En Riziculture de Bas-Fonds à Gagnoa, Au Centre-Ouest de La Côte d’Ivoire. Agron. Afr. 2017, 29, 79–92. [Google Scholar]
- Porgo, M.; Kuwornu, J.K.; Zahonogo, P.; Jatoe, J.B.D.; Egyir, I.S. Credit constraints and cropland allocation decisions in rural Burkina Faso. Land Use Policy 2018, 70, 666–674. [Google Scholar] [CrossRef]
- JICA. Etude de Collecte d’Information Dans Le Secteur Agricole En Côte d’Ivoire: Rapport Final. 2013. Available online: https://openjicareport.jica.go.jp/pdf/12121513.pdf (accessed on 15 January 2020).
- Ouattara, N.; Xueping, X.; Bi, T.B.A.Y.; Traoré, L.; Ahiakpa, J.; Olounlade, O.A. Determinants of smallholder farmers’ access to microfinance credits: A case study in Sassandra-Marahoué District, Côte d’Ivoire. Agric. Financ. Rev. 2020, 80, 401–419. [Google Scholar] [CrossRef]
- Guirkinger, C.; Boucher, S.R. Credit constraints and productivity in Peruvian agriculture. Agric. Econ. 2008, 39, 295–308. [Google Scholar] [CrossRef]
- Boucher, S.R.; Guirkinger, C.; Trivelli, C. Direct Elicitation of Credit Constraints: Conceptual and Practical Issues with an Application to Peruvian Agriculture. Econ. Dev. Cult. Chang. 2009, 57, 609–640. [Google Scholar] [CrossRef] [Green Version]
- Beke, T.E. Institutional Constraints and Adoption of Improved Rice Varieties: Econometric Evidence from Ivory Coast. Rev. Agric. Environ. Stud. 2011, 92, 117–141. [Google Scholar]
- Sakurai, T. Intensification of rainfed lowland rice production in west africa: Present status and potential green revolution. Dev. Econ. 2006, 44, 232–251. [Google Scholar] [CrossRef]
- Tsujimoto, Y.; Rakotoson, T.; Tanaka, A.; Saito, K. Challenges and opportunities for improving N use efficiency for rice production in sub-Saharan Africa. Plant Prod. Sci. 2019, 22, 413–427. [Google Scholar] [CrossRef] [Green Version]
- Carrer, M.J.; Maia, A.G.; Vinholis, M.D.M.B.; Filho, H.M.D.S. Assessing the effectiveness of rural credit policy on the adoption of integrated crop-livestock systems in Brazil. Land Use Policy 2020, 92, 104468. [Google Scholar] [CrossRef]
- Houssou, N.; Johnson, M.; Kolavalli, S.; Asante-Addo, C. Changes in Ghanaian farming systems: Stagnation or a quiet transformation? Agric. Hum. Values 2017, 35, 41–66. [Google Scholar] [CrossRef] [Green Version]
- Haider, H.; Smale, M.; Theriault, V. Intensification and intrahousehold decisions: Fertilizer adoption in Burkina Faso. World Dev. 2018, 105, 310–320. [Google Scholar] [CrossRef]
- Saito, K.; Vandamme, E.; Johnson, J.-M.; Tanaka, A.; Senthilkumar, K.; Dieng, I.; Akakpo, C.; Gbaguidi, F.; Segda, Z.; Bassoro, I.; et al. Yield-limiting macronutrients for rice in sub-Saharan Africa. Geoderma 2019, 338, 546–554. [Google Scholar] [CrossRef]
- Zeller, M.; Diagne, A.; Mataya, C. Market Access by Smallholder Farmers in Malawi: Implications for Technology Adoption, Agricultural Productivity and Crop Income. Agric. Econ. 1998, 19, 219–229. [Google Scholar] [CrossRef]
- Tadesse, M. Fertilizer adoption, credit access, and safety nets in rural Ethiopia. Agric. Financ. Rev. 2014, 74, 290–310. [Google Scholar] [CrossRef]
- Abate, G.T.; Rashid, S.; Borzaga, C.; Getnet, K. Rural Finance and Agricultural Technology Adoption in Ethiopia: Does the Institutional Design of Lending Organizations Matter? World Dev. 2016, 84, 235–253. [Google Scholar] [CrossRef] [Green Version]
- Narayanan, S. The productivity of agricultural credit in India. Agric. Econ. 2016, 47, 399–409. [Google Scholar] [CrossRef]
- Croppenstedt, A.; Demeke, M.; Meschi, M.M. Technology Adoption in the Presence of Constraints: The Case of Fertilizer Demand in Ethiopia. Rev. Dev. Econ. 2003, 7, 58–70. [Google Scholar] [CrossRef]
- Simtowe, F.; Zeller, M.; Diagne, A. The Impact Ofcredit Constraints on the Adoption Ofhybridmaize in Malawi. Rev. Agric. Environ. Stud. 2008, 90, 5–22. [Google Scholar]
- Mohamed, K.S.; Temu, A.E. Access to Credit and Its Effect on the Adoption of Agricultural Technologies: The Case of Zanzibar. Afr. Rev. Money Financ. Bank. 2008, 1, 45–89. [Google Scholar]
- Ali, D.A.; Deininger, K.W.; Duponchel, M. Credit Constraints and Agricultural Productivity: Evidence from rural Rwanda. J. Dev. Stud. 2014, 50, 649–665. [Google Scholar] [CrossRef]
- Abdallah, A.-H. Does credit market inefficiency affect technology adoption? Evidence from Sub-Saharan Africa. Agric. Financ. Rev. 2016, 76, 494–511. [Google Scholar] [CrossRef]
- Schumpter, J.A. The Theory of Economic Development; Oxford University Press: Oxford, UK, 1912. [Google Scholar]
- McKinnon, R. Money and Capital in Economic Development; Brookings Institution Press: Washington, DC, USA, 1973. [Google Scholar]
- Shaw, E.S. Financial Deepening in Economic Development; Oxford University Press: Oxford, UK, 1973. [Google Scholar]
- Rajan, R.G.; Zingales, L. Financial Dependence and Growth. Am. Econ. Rev. 1998, 88, 559–586. [Google Scholar]
- Beck, T.; Levine, R.; Loayza, N. Finance and the sources of growth. J. Finance Econ. 2000, 58, 261–300. [Google Scholar] [CrossRef] [Green Version]
- FAO. Ministère de L’agriculture et du Développement Rural. Recensement Des Exploitants et Exploitations Agricoles (REEA) 2015–2016; FAO: Abidjan, Côte d’Ivoire, 2019; Volume 2, 72p. [Google Scholar]
- Yamane, T. Statistics, An Introductory Analysis; Harper International Corporation: Buffalo, NY, USA, 1967; Volume 2. [Google Scholar]
- Sargan, J.D. The Estimation of Economic Relationships using Instrumental Variables. Econometrica 1958, 26, 393. [Google Scholar] [CrossRef]
- Newey, W.K. Efficient estimation of limited dependent variable models with endogenous explanatory variables. J. Econ. 1987, 36, 231–250. [Google Scholar] [CrossRef]
- Anderson, T.W. Estimating Linear Restrictions on Regression Coefficients for Multivariate Normal Distributions. Ann. Math. Stat. 1951, 22, 327–351. [Google Scholar] [CrossRef]
- Stock, J.H.; Yogo, M. Testing for Weak Instruments in Linear IV Regression; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Nahayo, A.; Omondi, M.O.; Pan, G.-X.; Li, L.; Pan, G.-X.; Joseph, S.D. Factors influencing farmers’ participation in crop intensification program in Rwanda. J. Integr. Agric. 2017, 16, 1406–1416. [Google Scholar] [CrossRef] [Green Version]
- Kebede, D.; Ketema, M.; Dechassa, N. Disparity in adoption of wheat production technology packages in eastern ethiopia. Rev. Agric. Appl. Econ. 2017, 20, 22–29. [Google Scholar] [CrossRef] [Green Version]
- Mansaray, B.; Jin, S.; Horlu, G.S.A. Do Land Ownership and Agro-Ecological Location of Farmland Influence Adoption of Improved Rice Varieties? Evidence from Sierra Leone. Agriculture 2019, 9, 256. [Google Scholar] [CrossRef] [Green Version]
- Yusuf, N.; Salau, E.; Girei, A.A. Determinants of Adoption Rate of Rice Production Technologies Introduced by Agricultural Research Outreach Centres (AROCs) by Farmers in Niger State, Nigeria. Asian J. Agric. Ext. Econ. Sociol. 2019, 35, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Onyeneke, R. Determinants of Adoption of Improved Technologies in Rice Production in Imo State, Nigeria. Afr. J. Agric. Res. 2017, 12, 888–896. [Google Scholar] [CrossRef] [Green Version]
- Theophilus, K.A.; Robert, A.; Paul, S. Determinants of the Extent of Adoption of Maize Production Technologies in Northern Ghana. Afr. J. Agric. Res. 2019, 14, 819–827. [Google Scholar] [CrossRef]
- Sekyi, S. Rural Households’ Credit Access and Loan Amount in Wa Municipality, Ghana. Int. J. Econ. Finance Issues 2017, 7, 506–514. [Google Scholar]
- Ali, E.B.; Awuni, J.A.; Danso-Abbeam, G.; Baba, E.A. Determinants of fertilizer adoption among smallholder cocoa farmers in the Western Region of Ghana. Cogent Food Agric. 2018, 4, 1–10. [Google Scholar] [CrossRef]
- Twumasi, M.A.; Jiang, Y.; Danquah, F.O.; Chandio, A.A.; Agbenyo, W. The role of savings mobilization on access to credit: A case study of smallholder farmers in Ghana. Agric. Finance Rev. 2019, 80, 275–290. [Google Scholar] [CrossRef]
- Takahashi, K.; Mano, Y.; Otsuka, K. Learning from experts and peer farmers about rice production: Experimental evidence from Cote d’Ivoire. World Dev. 2019, 122, 157–169. [Google Scholar] [CrossRef]
- Zenna, N.; Senthilkumar, K.; Sie, M. Rice Production in Africa; Khawar, J., Mahajan, G., Jabran, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 117–136. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, Y.; Zhang, K.; Jeong, J.; Zeng, Z.; Zang, H. Does crop rotation yield more in China? A meta-analysis. Field Crop. Res. 2020, 245, 107659. [Google Scholar] [CrossRef]
- Kinuthia, K.J.; Inoti, S.K.; Nakhone, L. Factors Influencing Farmer’s Choice of Crop Production Response Strategies to Climate Change and Variability in Narok East Sub-Country, Kenya. J. Nat. Resour. Dev. 2018, 08, 69–77. [Google Scholar]
- Newby, J.; Manivong, V.; Cramb, R. Economic Constraints to the Intensification of Rainfed Lowland Rice in Laos. In White Gold: The Commercialisation of Rice Farming in the Lower Mekong Basin; Palgrave Macmillan: Singapore, 2020; pp. 201–223. [Google Scholar]
- Turvey, C.G.; He, G.; Ma, J.; Kong, R.; Meagher, P. Farm credit and credit demand elasticities in Shaanxi and Gansu. China Econ. Rev. 2012, 23, 1020–1035. [Google Scholar] [CrossRef]
- Fecke, W.; Feil, J.-H.; Musshoff, O. Determinants of loan demand in agriculture: Empirical evidence from Germany. Agric. Financ. Rev. 2016, 76, 462–476. [Google Scholar] [CrossRef]
- Riquet, C.; Musiime, D.; Marita, C. National Survey and Segmentation of Smallholder Households in Côte d’Ivoire; CGAP: Washington, DC, USA, 2017. [Google Scholar]
Variables | Description | Mean | SD |
---|---|---|---|
Endogenous variables | |||
Fertilizer intensification (FI) | Proportion of fertilizer | 0.45 | 0.38 |
Access to credit (AC) | 1 if access to credit; 0 otherwise | 0.60 | 0.49 |
Common exogenous variables | |||
Gender | 1 for male and 0 for female | 0.86 | 0.34 |
Education | 1 for primary and secondary school; 0 otherwise | 0.55 | 0.50 |
Off-farm income | 1 if practice of off-farm income-generating activities; 0 otherwise | 0.24 | 0.43 |
Household size | Number of people | 7.33 | 3.88 |
Experience | Number of years | 15.08 | 8.16 |
Extension services | 1 if access to extension services; 0 otherwise | 0.51 | 0.50 |
Instruments for FI | |||
Farmer-based organization (FBO) | 1 if belonging to FBO; 0 otherwise | 0.63 | 0.48 |
Farm size | Rice farm size in hectares | 1.14 | 0.94 |
Rice farming system (RFS) | 1 if lowland rice farming; 0 otherwise | 0.58 | 0.49 |
Cost of other inputs | In West African CFA franc (XOF) | 67,563.5 | 60,668.6 |
Instruments for AC | |||
Distance | Distance between lender and borrower in Kilometer | 15.13 | 12.53 |
Interest rate | Value in percentage | 15.50 | 6.31 |
Land tenure | 1 if owner of land; 0 otherwise | 0.70 | 0.46 |
Variables | Coefficients | SE | p-Value |
---|---|---|---|
Access to credit | 0.027 | 0.004 | 0.000 *** |
Gender | −0.150 | 0.062 | 0.016 ** |
Household size | 0.008 | 0.005 | 0.145 |
Education | 0.090 | 0.042 | 0.032 ** |
Experience | −0.005 | 0.002 | 0.025 ** |
Off-farm income | −0.000 | 0.051 | 0.991 |
Extension services | 0.216 | 0.047 | 0.000 *** |
Farm size | −0.021 | 0.019 | 0.270 |
Rice farming system (RFS) | 0.383 | 0.105 | 0.000 *** |
Cost of other inputs | −0.350 | 0.106 | 0.001 *** |
Farmer-based group (FBO) | 0.182 | 0.048 | 0.000 *** |
Number of observation: 588 Prob > = 0.000 | |||
Wald test of endogeneity | 10.82 *** | ||
Under identification test (Anderson canonical correlation LM statistic) | 565.957*** | ||
Weak identification test (Cragg–Donald Wald F-statistic) | 4946.789 | ||
Stock-Yogo weak ID test critical values: 10% maximal IV size | 22.30 | ||
Sargan statistic (over-identification test of all instruments) | 2.904 *** |
Variables | Coefficients | SE | p-Value |
---|---|---|---|
Fertilizer intensification | 0.181 | 0.034 | 0.000 *** |
Gender | 1.268 | 0.722 | 0.079 * |
Household size | −0.186 | 0.073 | 0.011 ** |
Education | 0.107 | 0.045 | 0.018 ** |
Experience | −0.031 | 0.036 | 0.391 |
Off-farm income | 0.457 | 0.744 | 0.538 |
Extension services | −1.320 | 0.848 | 0.120 |
Distance | −0.286 | 0.071 | 0.000 *** |
Interest rate | −0.143 | 0.351 | 0.682 |
Land tenure | 0.231 | 0.555 | 0.677 |
Number of observation: 588 Prob > = 0.000 | |||
Wald test of endogeneity Under identification test (Anderson canonical correlation LM statistic) | 26.60 *** 192.724 *** | ||
Weak identification test (Cragg–Donald Wald F-statistic) | 70.331 | ||
Stock-Yogo weak ID test critical values: 10% maximal IV size | 24.580 | ||
Sargan statistic (over-identification test of all instruments) | 5.445 ** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouattara, N.; Xiong, X.; Traoré, L.; Turvey, C.G.; Sun, R.; Ali, A.; Ballo, Z. Does Credit Influence Fertilizer Intensification in Rice Farming? Empirical Evidence from Côte D’Ivoire. Agronomy 2020, 10, 1063. https://doi.org/10.3390/agronomy10081063
Ouattara N, Xiong X, Traoré L, Turvey CG, Sun R, Ali A, Ballo Z. Does Credit Influence Fertilizer Intensification in Rice Farming? Empirical Evidence from Côte D’Ivoire. Agronomy. 2020; 10(8):1063. https://doi.org/10.3390/agronomy10081063
Chicago/Turabian StyleOuattara, N’Banan, Xueping Xiong, Lacina Traoré, Calum G. Turvey, Ruiting Sun, Abdelrahman Ali, and Zié Ballo. 2020. "Does Credit Influence Fertilizer Intensification in Rice Farming? Empirical Evidence from Côte D’Ivoire" Agronomy 10, no. 8: 1063. https://doi.org/10.3390/agronomy10081063
APA StyleOuattara, N., Xiong, X., Traoré, L., Turvey, C. G., Sun, R., Ali, A., & Ballo, Z. (2020). Does Credit Influence Fertilizer Intensification in Rice Farming? Empirical Evidence from Côte D’Ivoire. Agronomy, 10(8), 1063. https://doi.org/10.3390/agronomy10081063