The Variability of Puroindoline-Encoding Alleles and Their Influence on Grain Hardness in Modern Wheat Cultivars Cultivated in Poland, Breeding Lines and Polish Old Landraces (Triticum aestivum L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. DNA Extraction
2.3. Pina and Pinb PCR Amplification and Sanger Sequencing
2.4. CAPS Analysis
2.5. Grain Hardness Measurement
2.6. Percentage of Protein, Starch, and Wet Gluten
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO, S. Food and Agriculture Organization of the United Nations. Retrieved 2010, 3, 2012. [Google Scholar]
- Igrejas, G.; Gaborit, T.; Oury, F.X.; Chiron, H.; Marion, D.; Branlard, G. Genetic and environmental effects on puroindoline-a and puroindoline-b content and their relationship to technological properties in French bread wheats. J. Cereal Sci. 2001, 34, 37–47. [Google Scholar] [CrossRef]
- Ribeiro, M.; Rodriguez-Quijano, M.; Giraldo, P.; Pinto, L.; Vazquez, J.F.; Carrillo, J.M.; Igrejas, G. Effect of allelic variation at glutenin and puroindoline loci on bread-making quality: Favorable combinations occur in less toxic varieties of wheat for celiac patients. Eur. Food Res. Technol. 2017, 243, 743–752. [Google Scholar] [CrossRef]
- Morris, C.F. Puroindolines: The molecular genetic basis of wheat grain hardness. Plant Mol. Biol. 2002, 48, 633–647. [Google Scholar] [CrossRef] [PubMed]
- Gautier, M.F.; Aleman, M.E.; Guirao, A.; Marion, D.; Joudrier, P. Triticum-aestivum puroindolines, 2 basic cystine-rich seed rroteins-cDNA sequence-analysis and developmental gene-expression. Plant Mol. Biol 1994, 25, 43–57. [Google Scholar] [CrossRef] [PubMed]
- Chantret, N.; Salse, J.; Sabot, F.; Rahman, S.; Bellec, A.; Laubin, B.; Dubois, I.; Dossat, C.; Sourdille, P.; Joudrier, P.; et al. Molecular basis of evolutionary events that shaped the hardness locus in diploid and polyploid wheat species (Triticum and aegilops). Plant Cell 2005, 17, 1033–1045. [Google Scholar] [CrossRef] [Green Version]
- Blochet, J.E.; Chevalier, C.; Forest, E.; Pebaypeyroula, E.; Gautier, M.F.; Joudrier, P.; Pezolet, M.; Marion, D. Complete amino-acid-sequence of puroindoline, a new basic and cystine-rich protein with a unique tryptophan-rich domain, isolated from wheat endosperm by triton X-114 phase partitioning. FEBS Lett. 1993, 329, 336–340. [Google Scholar] [CrossRef] [Green Version]
- Day, L.; Bhandari, D.G.; Greenwell, P.; Leonard, S.A.; Schofield, J.D. Characterization of wheat puroindoline proteins. FEBS J. 2006, 273, 5358–5373. [Google Scholar] [CrossRef]
- Giroux, M.J.; Morris, C.F. Wheat grain hardness results from highly conserved mutations in the friabilin components puroindoline a and b. Proc. Natl. Acad. Sci. USA 1998, 95, 6262–6266. [Google Scholar] [CrossRef] [Green Version]
- Iftikhar, A.; Ali, I. Kernel softness in wheat is determined by starch granule bound Puroindoline proteins. J. Plant Biochem. Biotechnol. 2017, 26, 247–262. [Google Scholar] [CrossRef]
- Bhave, M.; Morris, C.F. Molecular genetics of puroindolines and related genes: Regulation of expression, membrane binding properties and applications. Plant Mol. Biol. 2008, 66, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Nadolska-Orczyk, A.; Gasparis, S.; Orczyk, W. The determinants of grain texture in cereals. J. Appl. Genet. 2009, 50, 185–197. [Google Scholar] [CrossRef]
- Morris, C.F.; Bhave, M. Reconciliation of D-genome puroindoline allele designations with current DNA sequence data. J. Cereal Sci. 2008, 48, 277–287. [Google Scholar] [CrossRef]
- Giroux, M.J.; Morris, C.F. A glycine to serine change in puroindoline b is associated with wheat grain hardness and low levels of starch-surface friabilin. Theor. Appl. Genet. 1997, 95, 857–864. [Google Scholar] [CrossRef]
- Lillemo, M.; Morris, C.F. A leucine to proline mutation in puroindoline b is frequently present in hard wheats from Northern Europe. Theor. Appl. Genet. 2000, 100, 1100–1107. [Google Scholar] [CrossRef]
- Morris, C.F.; Lillemo, M.; Simeone, M.C.; Giroux, M.J.; Babb, S.L.; Kidwell, K.K. Prevalence of puroindoline grain hardness genotypes among historically significant North American spring and winter wheats. Crop Sci. 2001, 41, 218–228. [Google Scholar] [CrossRef]
- Kumar, R.; Arora, S.; Singh, K.; Garg, M. Puroindoline allelic diversity in Indian wheat germplasm and identification of new allelic variants. Breed. Sci 2015, 65, 319–326. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.; Zhang, H.P.; Xu, J.; Li, W.H.; Liu, G.T.; You, M.S.; Li, B.Y. Identification of allelic variations of puroindoline genes controlling grain hardness in wheat using a modified denaturing PAGE. Euphytica 2006, 152, 225–234. [Google Scholar] [CrossRef]
- Ram, S.; Jain, N.; Shoran, J.; Singh, R. New frame shift mutation in puroindoline b in Indian wheat cultivars Hyb65 and NI5439. J. Plant. Biochem. Biotechnol. 2005, 14, 45–48. [Google Scholar] [CrossRef]
- Ikeda, T.M.; Ohnishi, N.; Nagamine, T.; Oda, S.; Hisatomi, T.; Yano, H. Identification of new puroindoline genotypes and their relationship to flour texture among wheat cultivars. J. Cereal Sci. 2005, 41, 1–6. [Google Scholar] [CrossRef]
- Tranquilli, G.; Heaton, J.; Chicaiza, O.; Dubcovsky, J. Substitutions and deletions of genes related to grain hardness in wheat and their effect on grain texture. Crop Sci. 2002, 42, 1812–1817. [Google Scholar] [CrossRef] [Green Version]
- Pickering, P.A.; Bhave, M. Comprehensive analysis of Australian hard wheat cultivars shows limited puroindoline allele diversity. Plant Sci. 2007, 172, 371–379. [Google Scholar] [CrossRef]
- Qamar, Z.U.; Bansal, U.K.; Dong, C.M.; Alfred, R.L.; Bhave, M.; Bariana, H.S. Detection of puroindoline (Pina-D1 and Pinb-D1) allelic variation in wheat landraces. J. Cereal Sci. 2014, 60, 610–616. [Google Scholar] [CrossRef]
- Ayala, M.; Guzman, C.; Pena, R.J.; Alvarez, J.B. Genetic diversity and molecular characterization of puroindoline genes (Pina-D1 and Pinb-D1) in bread wheat landraces from Andalusia (Southern Spain). J. Cereal Sci. 2016, 71, 61–65. [Google Scholar] [CrossRef]
- Gasparis, S.; Orczyk, W.; Zalewski, W.; Nadolska-Orczyk, A. The RNA-mediated silencing of one of the Pin genes in allohexaploid wheat simultaneously decreases the expression of the other, and increases grain hardness. J. Exp. Bot. 2011, 62, 4025–4036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gasparis, S.; Kała, M.; Przyborowski, M.; Orczyk, W.; Nadolska-Orczyk, A. Artificial MicroRNA-based specific gene silencing of grain hardness genes in polyploid cereals appeared to be not stable over transgenic plant generations. Front. Plant Sci. 2017, 7, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Mao, X.; Wang, Q.; Zhang, J.; Li, X.; Ma, F.; Sun, F.; Chang, J.; Chen, M.; Wang, Y. Overexpression of Puroindoline a gene in transgenic durum wheat (Triticum turgidum ssp. durum) leads to a medium–hard kernel texture. Mol. Breed. 2014, 33, 545–554. [Google Scholar] [CrossRef]
- Alfred, R.L.; Palombo, E.A.; Panozzo, J.F.; Bhave, M. The co-operative interaction of puroindolines in wheat grain texture may involve the hydrophobic domain. J. Cereal Sci. 2014, 60, 323–330. [Google Scholar] [CrossRef]
- Clifton, L.A.; Green, R.J.; Frazier, R.A. Puroindoline-b mutations control the lipid binding interactions in mixed puroindoline-a: Puroindoline-b systems. Biochemistry 2007, 46, 13929–13937. [Google Scholar] [CrossRef]
- Chen, F.; Beecher, B.S.; Morris, C.F. Physical mapping and a new variant of Puroindoline b-2 genes in wheat. Theor. Appl. Genet. 2010, 120, 745–751. [Google Scholar] [CrossRef]
- Giroux, M.J.; Kim, K.H.; Hogg, A.C.; Martin, J.M.; Beecher, B. The puroindoline b-2 variants are expressed at low levels relative to the puroindoline D1 genes in wheat seeds. Crop Sci. 2013, 53, 833–841. [Google Scholar] [CrossRef]
- Ramalingam, A.; Palombo, E.A.; Bhave, M. The Pinb-2 genes in wheat comprise a multigene family with great sequence diversity and important variants. J. Cereal Sci. 2012, 56, 171–180. [Google Scholar] [CrossRef]
- Wilkinson, M.; Wan, Y.F.; Tosi, P.; Leverington, M.; Snape, J.; Mitchell, R.A.C.; Shewry, P.R. Identification and genetic mapping of variant forms of puroindoline b expressed in developing wheat grain. J. Cereal Sci. 2008, 48, 722–728. [Google Scholar] [CrossRef]
- Nirmal, R.C.; Furtado, A.; Wrigley, C.; Henry, R.J. Influence of gene expression on hardness in wheat. PLoS ONE 2016, 11, e0164746. [Google Scholar] [CrossRef] [Green Version]
- Murray, M.G.; Thompson, W.F. Rapid isolation of high molecular-weight plant DNA. Nucleic Acids Res. 1980, 8, 4321–4325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lillemo, M.; Chen, F.; Xia, X.C.; William, M.; Pena, R.J.; Trethowan, R.; He, Z.H. Puroindoline grain hardness alleles in CIMMYT bread wheat germplasm. J. Cereal Sci. 2006, 44, 86–92. [Google Scholar] [CrossRef]
- Thiel, T.; Kota, R.; Grosse, I.; Stein, N.; Graner, A. SNP2CAPS: A SNP and INDEL analysis tool for CAPS marker development. Nucleic Acids Res. 2004, 32, e5. [Google Scholar] [CrossRef]
- AACC Approved Methods of Analysis, 11th ed.; Method 55-31.01. Single-kernel characterization system for wheat kernel texture; Cereals & Grains Association: St. Paul, MN, USA, 1999. [CrossRef]
- Ogle, D.H. FSA: Fisheries stock analysis. R Package Vers. 0.8 2017, 17, 636. [Google Scholar]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Corona, V.; Gazza, L.; Boggini, G.; Pogna, N.E. Variation in friabilin composition as determined by A-PAGE fractionation and PCR amplification, and its relationship to grain hardness in bread wheat. J. Cereal Sci. 2001, 34, 243–250. [Google Scholar] [CrossRef]
- Mohler, V.; Schmolke, M.; Paladey, E.; Seling, S.; Hartl, L. Association analysis of Puroindoline-D1 and Puroindoline b-2 loci with 13 quality traits in European winter wheat (Triticum aestivum L.). J. Cereal Sci. 2012, 56, 623–628. [Google Scholar] [CrossRef]
- Huang, X.-Q.; Röder, M.S. Development of SNP assays for genotyping the puroindoline b gene for grain hardness in wheat using pyrosequencing. J. Agric. Food Chem. 2005, 53, 2070–2075. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, Y.; Zhang, M.; Yu, X.; Hu, R.; Chang, J.; Yang, G.; Wang, Y.; He, G. Diversity of Puroindoline genes and their association with kernel hardness in Chinese wheat cultivars and landraces. Mol. Breed. 2019, 39, 61. [Google Scholar] [CrossRef]
- Sharma, R.; Rawat, A.; Misra, B.; Nagarajan, S. Distribution of grain hardness in Indian wheat varieties and landraces. Wheat Inf. Serv. 2012, 114, 1–8. [Google Scholar]
- Dobraszczyk, B.; Whitworth, M.; Vincent, J.; Khan, A. Single kernel wheat hardness and fracture properties in relation to density and the modelling of fracture in wheat endosperm. J. Cereal Sci. 2002, 35, 245–263. [Google Scholar] [CrossRef]
- Salmanowicz, B.P.; Adamski, T.; Surma, M.; Kaczmarek, Z.; Karolina, K.; Kuczyńska, A.; Banaszak, Z.; Ługowska, B.; Majcher, M.; Obuchowski, W. The relationship between grain hardness, dough mixing parameters and bread-making quality in winter wheat. Int. J. Mol. Sci. 2012, 13, 4186–4201. [Google Scholar] [CrossRef] [Green Version]
- Morris, C.F.; Massa, A.N. Puroindoline genotype of the US national institute of standards & technology reference material 8441, wheat hardness. Cereal Chem. 2003, 80, 674–678. [Google Scholar]
- Oury, F.-X.; Lasme, P.; Michelet, C.; Rousset, M.; Abecassis, J.; Lullien-Pellerin, V. Relationships between wheat grain physical characteristics studied through near-isogenic lines with distinct puroindoline-b allele. Theor. Appl. Genet. 2015, 128, 913–929. [Google Scholar] [CrossRef]
- Huebner, F.R.; Gaines, C.S. Relation between Wheat Kernel Hardness, Environment, and Gliadin Composition. Cereal Chem. 1992, 69, 148–151. [Google Scholar]
- Turnbull, K.M.; Rahman, S. Endosperm texture in wheat. J. Cereal Sci. 2002, 36, 327–337. [Google Scholar] [CrossRef]
- Lillemo, M.; Ringlund, K. Impact of puroindoline b alleles on the genetic variation for hardness in soft x hard wheat crosses. Plant Breed. 2002, 121, 210–217. [Google Scholar] [CrossRef]
- Quayson, E.T.; Marti, A.; Morris, C.F.; Marengo, M.; Bonomi, F.; Seetharaman, K.; Iametti, S. Structural consequences of the interaction of puroindolines with gluten proteins. Food Chem. 2018, 253, 255–261. [Google Scholar] [CrossRef] [PubMed]
- See, D.; Giroux, M.; Gill, B. Effect of multiple copies of puroindoline genes on grain softness. Crop Sci. 2004, 44, 1248–1253. [Google Scholar] [CrossRef] [Green Version]
- Krishnamurthy, K.; Giroux, M.J. Expression of wheat puroindoline genes in transgenic rice enhances grain softness. Nat. Biotechnol. 2001, 19, 162–166. [Google Scholar] [CrossRef] [PubMed]
- Ravel, C.; Martre, P.; Romeuf, I.; Dardevet, M.; El-Malki, R.; Bordes, J.; Duchateau, N.; Brunel, D.; Balfourier, F.; Charmet, G. Nucleotide polymorphism in the wheat transcriptional activator SPA influences its pattern of expression and has pleiotropic effects on grain protein composition, dough viscoelasticity, and grain hardness. Plant Physiol. 2009, 151, 2133–2144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boehm, J.D.; Ibba, M.I.; Kiszonas, A.M.; See, D.R.; Skinner, D.Z.; Morris, C.F. Genetic analysis of kernel texture (grain hardness) in a hard red spring wheat (Triticum aestivum L.) bi-parental population. J. Cereal Sci. 2018, 79, 57–65. [Google Scholar] [CrossRef]
- Breseghello, F.; Finney, P.L.; Gaines, C.; Andrews, L.; Tanaka, J.; Penner, G.; Sorrells, M.E. Genetic loci related to kernel quality differences between a soft and a hard wheat cultivar. Crop Sci. 2005, 45, 1685–1695. [Google Scholar] [CrossRef]
- Campbell, K.G.; Bergman, C.J.; Gualberto, D.G.; Anderson, J.A.; Giroux, M.J.; Hareland, G.; Fulcher, R.G.; Sorrells, M.E.; Finney, P.L. Quantitative trait loci associated with kernel traits in a soft x hard wheat cross. Crop Sci. 1999, 39, 1184–1195. [Google Scholar] [CrossRef]
- Carter, A.H.; Garland-Campbell, K.; Morris, C.F.; Kidwell, K.K. Chromosomes 3B and 4D are associated with several milling and baking quality traits in a soft white spring wheat (Triticum aestivum L.) population. Theor. Appl. Genet. 2012, 124, 1079–1096. [Google Scholar] [CrossRef]
- Osborne, B.G.; Turnbull, K.M.; Anderssen, R.S.; Rahman, S.; Sharp, P.J.; Appels, R. The hardness locus in Australian wheat lines. Aust. J. Agric. Res. 2001, 52, 1275–1286. [Google Scholar] [CrossRef]
- Igrejas, G.; Leroy, P.; Charmet, G.; Gaborit, T.; Marion, D.; Branlard, G. Mapping QTLs for grain hardness and puroindoline content in wheat (Triticum aestivum L.). Theor. Appl. Genet. 2002, 106, 19–27. [Google Scholar] [CrossRef]
- Gazza, L.; Taddei, F.; Corbellini, M.; Cacciatori, P.; Pogna, N. Genetic and environmental factors affecting grain texture in common wheat. J. Cereal Sci. 2008, 47, 52–58. [Google Scholar] [CrossRef]
Pinb Allele | No. Cultivars (%) | Mean HI (SD) |
---|---|---|
Cultivars and Breeding Lines | ||
Pinb-D1a | 19 (16%) | 31.31 (±19.50) |
Pinb-D1b | 67 (57%) | 59.36 (±11.73) |
Pinb-D1c | 14 (12%) | 63.70 (±10.43) |
Pinb-D1d | 18 (15%) | 59.08 (±13.80) |
Landraces | ||
Pinb-D1a | 57 (71%) | 23.34 (±6.09) |
Pinb-D1b | 21 (26%) | 49.23 (±10.97) |
Pinb-D1c | 1 (1%) | 65.80 |
Pinb-D1g | 1 (1%) | 60.79 |
Tested Pairs | Z | P.unadj | P.adj | Difference |
---|---|---|---|---|
Pinb-D1a (L)–Pinb-D1b (L) | −4.931 | 0.000 | 0.000 | True |
Pinb-D1a (L)–Pinb-D1b (M) | −9.762 | 0.000 | 0.000 | True |
Pinb-D1a (L)–Pinb-D1c (M) | −6.448 | 0.000 | 0.000 | True |
Pinb-D1a (L)–Pinb-D1d (M) | −6.873 | 0.000 | 0.000 | True |
Pinb-D1a (M)–Pinb-D1a (L) | 0.158 | 0.875 | 1.000 | False |
Pinb-D1a (M)–Pinb-D1b (L) | −3.588 | 0.000 | 0.005 | True |
Pinb-D1a (M)–Pinb-D1b (M) | −6.025 | 0.000 | 0.000 | True |
Pinb-D1a (M)–Pinb-D1d (M) | −5.096 | 0.000 | 0.000 | True |
Pinb-D1a (M)–Pinb-D1c (M) | −5.053 | 0.000 | 0.000 | True |
Pinb-D1b (L)–Pinb-D1c (M) | −1.926 | 0.054 | 0.812 | False |
Pinb-D1b (L)–Pinb-D1d (M) | −1.688 | 0.091 | 1.000 | False |
Pinb-D1b (M)–Pinb-D1b (L) | 2.042 | 0.041 | 0.617 | False |
Pinb-D1b (M)–Pinb-D1c (M) | −0.516 | 0.606 | 1.000 | False |
Pinb-D1b (M)–Pinb-D1d (M) | −0.058 | 0.954 | 1.000 | False |
Pinb-D1c (M)–Pinb-D1d (M) | 0.394 | 0.694 | 1.000 | False |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Przyborowski, M.; Gasparis, S.; Kała, M.; Orczyk, W.; Nadolska-Orczyk, A. The Variability of Puroindoline-Encoding Alleles and Their Influence on Grain Hardness in Modern Wheat Cultivars Cultivated in Poland, Breeding Lines and Polish Old Landraces (Triticum aestivum L.). Agronomy 2020, 10, 1075. https://doi.org/10.3390/agronomy10081075
Przyborowski M, Gasparis S, Kała M, Orczyk W, Nadolska-Orczyk A. The Variability of Puroindoline-Encoding Alleles and Their Influence on Grain Hardness in Modern Wheat Cultivars Cultivated in Poland, Breeding Lines and Polish Old Landraces (Triticum aestivum L.). Agronomy. 2020; 10(8):1075. https://doi.org/10.3390/agronomy10081075
Chicago/Turabian StylePrzyborowski, Mateusz, Sebastian Gasparis, Maciej Kała, Wacław Orczyk, and Anna Nadolska-Orczyk. 2020. "The Variability of Puroindoline-Encoding Alleles and Their Influence on Grain Hardness in Modern Wheat Cultivars Cultivated in Poland, Breeding Lines and Polish Old Landraces (Triticum aestivum L.)" Agronomy 10, no. 8: 1075. https://doi.org/10.3390/agronomy10081075
APA StylePrzyborowski, M., Gasparis, S., Kała, M., Orczyk, W., & Nadolska-Orczyk, A. (2020). The Variability of Puroindoline-Encoding Alleles and Their Influence on Grain Hardness in Modern Wheat Cultivars Cultivated in Poland, Breeding Lines and Polish Old Landraces (Triticum aestivum L.). Agronomy, 10(8), 1075. https://doi.org/10.3390/agronomy10081075