Evaluation of Recycled Materials as Hydroponic Growing Media
Abstract
:1. Introduction
1.1. Hydroponics
1.2. Soilless Growing Media
1.3. Novel, Sustainable Growing Media Alternatives
2. Materials and Methods
2.1. Growing Media Preparation
2.2. Physical Properties of Growing Media
2.3. Chemical Properties of Growing Media
2.4. Lettuce Germination Trial
2.5. Lettuce Growth Trial
2.5.1. Experimental Design and Overview
2.5.2. Irrigation and Nutrient Solution
2.5.3. Measurements
2.6. Statistical Analysis
3. Results and Discussion
3.1. Physical and Chemical Properties of Growing Media
3.2. Drought Stress
3.3. Germination
3.4. Yields
3.4.1. Effect of Growing Media on Yields
3.4.2. Effect of Drought on Yields
3.5. Nutritional Quality
3.5.1. Effect of Growing Media on Nutritional Quality
3.5.2. Effect of Drought on Nutritional Quality
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Parameter * | Irrigation Water |
---|---|
pH | 5.60–6.00 |
EC (mS cm−1) | 1.50–1.60 |
N | 126 |
P | 31.0 |
K | 312 |
Ca | 140 |
Mg | 24.4 |
S | 64.4 |
Fe | 2.38 |
Mn | 0.25 |
Zn | 0.06 |
Mo | 0.05 |
Cu | 0.25 |
B | 0.05 |
Appendix B
Characteristic | Perlite | Almond Shells |
---|---|---|
Total C (%wt/wt) | 0.14 | 52.1 |
Total N (%wt/wt) | 0.44 | 1.09 |
Total Soluble N (g kg−1) | 0.11 | 0.18 |
NH4+ (g kg−1) | 0.09 | 0.18 |
NO3- (g kg−1) | <0.028 | <0.004 |
P (g kg−1) | <0.047 | 0.19 |
K (g kg−1) | 0.07 | 6.43 |
Ca (g kg−1) | 0.03 | 0.35 |
Mg (g kg−1) | <0.009 | 0.13 |
S (g kg−1) | 0.17 | 0.09 |
Na (g kg−1) | 0.13 | 0.15 |
Cl (g kg−1) | 0.09 | 0.37 |
Fe (mg kg−1) | 3.0 | 8.0 |
Mn (mg kg−1) | <0.4 | 3.0 |
Cu (mg kg−1) | <0.4 | 1.0 |
Zn (mg kg−1) | <0.9 | 2.0 |
B (mg kg−1) | 2.3 | 9.0 |
Appendix C
Appendix D
References
- Wang, W.; Vinocur, B.; Altman, A. Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta 2003, 218, 1–14. [Google Scholar] [CrossRef]
- Vermeulen, S.J.; Campbell, B.; Ingram, J.S. Climate Change and Food Systems. Annu. Rev. Environ. Resour. 2012, 37, 195–222. [Google Scholar] [CrossRef] [Green Version]
- Bernard, B.; Lux, A. How to feed the world sustainably: An overview of the discourse on agroecology and sustainable intensification. Reg. Environ. Chang. 2017, 17, 1279–1290. [Google Scholar] [CrossRef]
- Hayes, T.B.; Hansen, M. From silent spring to silent night: Agrochemicals and the anthropocene. Elem. Sci. Anth. 2017, 5, 57. [Google Scholar] [CrossRef] [Green Version]
- Savvas, D. Hydroponics: A modern technology supporting the application of integrated crop management in greenhouse. J. Food Agric. Environ. 2003, 1, 80–86. [Google Scholar]
- Molden, D. Water for Food, Water for Life: A Comprehensive Assessment of Water Management in Agriculture; International Water Management Institute: London, UK, 2007. [Google Scholar]
- Muller, A.; Ferré, M.; Engel, S.; Gattinger, A.; Holzkämper, A.; Huber, R.; Muller, M.; Six, J. Can soil-less crop production be a sustainable option for soil conservation and future agriculture? Land Use Policy 2017, 69, 102–105. [Google Scholar] [CrossRef]
- Bradley, P.; Marulanda, C. Simplified hydroponics to reduce global hunger. Acta Hortic. 2001, 554, 288–296. [Google Scholar] [CrossRef]
- Orsini, F.; Kahane, R.; Nono-Womdim, R.; Gianquinto, G. Urban agriculture in the developing world: A review. Agron. Sustain. Dev. 2013, 33, 695–720. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Lee, J. Beneficial bacteria and fungi in hydroponic systems: Types and characteristics of hydroponic food production methods. Sci. Hortic. (Amst.) 2015, 195, 206–215. [Google Scholar] [CrossRef]
- Sheikh, B.A. Hydroponics: Key to sustain agriculture in water stressed and urban environment. Pak. J. Agric. Agric. Eng. Vet. Sci. 2006, 22, 53–57. [Google Scholar]
- FAO. Food for the Cities. Available online: www.fao.org/fcit (accessed on 9 September 2018).
- Specht, K.; Siebert, R.; Hartmann, I.; Freisinger, U.B.; Henckel, D.; Walk, H.; Dierich, A. Urban agriculture of the future: An overview of sustainability aspects of food production in and on buildings. Agric. Hum. Values 2014, 31, 33–51. [Google Scholar] [CrossRef]
- Despommier, D. The vertical farm: Controlled environment agriculture carried out in tall buildings would create greater food safety and security for large urban populations. J. Consum. Prot. Food Saf. 2011, 6, 233–236. [Google Scholar] [CrossRef]
- De Zeeuw, H.; van Veenhuizen, R.; Dubbeling, M. The role of urban agriculture in building resilient cities in developing countries. J. Agric. Sci. 2011, 149, 153–163. [Google Scholar] [CrossRef]
- Eigenbrod, C.; Gruda, N. Urban vegetable for food security in cities. A review. Agron. Sustain. Dev. 2015, 35, 483–498. [Google Scholar] [CrossRef] [Green Version]
- Tyson, R.V.; Treadwell, D.D.; Simonne, E.H. Opportunities and Challenges to Sustainability in Aquaponic Systems. Horttechnology 2011, 21, 6–13. [Google Scholar] [CrossRef]
- Barbosa, G.L.; Gadelha, F.D.A.; Kublik, N.; Proctor, A.; Reichelm, L.; Weissinger, E.; Wohlleb, G.; Halden, R. Comparison of Land, Water, and Energy Requirements of Lettuce Grown Using Hydroponic vs. Conventional Agricultural Methods. Int. J. Environ. Res. Public Health 2015, 12, 6879–6891. [Google Scholar] [CrossRef] [Green Version]
- Resh, H.M. Hydroponic Food Production: A Definitive Guidebook for the Advanced Home Gardener and the Commercial Hydroponic Grower; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Caron, J.; Nkongolo, N.V. Assessing Gas Diffusion Coefficients in Growing Media from in situ Water Flow and Storage Measurements. Vadose Zone. J. 2004, 3, 300–311. [Google Scholar] [CrossRef]
- Assouline, S.; Möller, M.; Furman, A.; Narkis, K.; Silber, A. Impact of Water Regime and Growing Conditions on Soil-Plant Interactions: From Single Plant to Field Scale. Vadose Zone. J. 2012, 11, vzj2012.0006. [Google Scholar] [CrossRef]
- Blok, C.; Jackson, B.E.; Guo, X.; de Visser, P.H.B.; Marcelis, L.F.M. Maximum Plant Uptakes for Water, Nutrients, and Oxygen Are Not Always Met by Irrigation Rate and Distribution in Water-based Cultivation Systems. Front. Plant Sci. 2017, 8, 562. [Google Scholar] [CrossRef] [Green Version]
- Papadopoulos, A.P.; Bar-Tal, A.; Silber, A.; Saha, U.K.; Raviv, M. Inorganic and Synthetic Organic Components of Soilless Culture and Potting Mixes. In Soilless Culture Theory and Practice; Raviv, M., Lieth, J.H., Eds.; Elsevier: London, UK, 2008; pp. 505–543. [Google Scholar]
- Maher, M.; Prasad, M.; Raviv, M. Organic Soilless Media Components. In Soilless Culture Theory and Practice; Raviv, M., Lieth, J.H., Eds.; Elsevier: London, UK, 2008; pp. 459–504. [Google Scholar]
- Raviv, M.; Wallach, R.; Silber, A.; Bar-Tal, A. Substrates and their analysis. In Hydroponic Production of Vegetables and Ornamentals; Savvas, D., Passam, H., Eds.; Embryo Publications: Athens, Greece, 2002; pp. 25–102. [Google Scholar]
- Olle, M.; Ngouajio, M.; Siomos, A. Vegetable quality and productivity as influenced by growing medium: A review. Agriculture 2012, 99, 399–408. [Google Scholar]
- Bilderback, T.E.; Warren, S.L.; Owen, J.S.; Albano, J.P. Healthy Substrates Need Physicals Too! Horttechnology 2005, 15, 747–751. [Google Scholar] [CrossRef] [Green Version]
- Mazuela, P.; Urrestarazu, M.; Bastias, E. Vegetable Waste Compost Used as Substrate in Soilless Culture. In Crop Production Technologies; Sharma, P., Ed.; InTech: Rijeka, Croatia, 2012; pp. 179–198. ISBN 978-953-307-787-1. [Google Scholar]
- Pignata, G.; Casale, M.; Nicola, S. Advances in Research on Fertilization Management of Vegetable Crops; Springer: Cham, Switzerland, 2017; ISBN 978-3-319-53624-8. [Google Scholar]
- Grillas, S.; Lucas, M.; Bardopoulou, E.; Sarafopoulos, S.; Voulgari, M. Perlite based soilless culture systems: Current commercial applications and prospects. Acta Hortic. 2001, 548, 105–114. [Google Scholar] [CrossRef]
- Gruda, N.; Qaeyouti, M.M.; Leonardi, C. Growing media. In Good Agricultural Practices for Greenhouse Vegetable Crops: Principles for Mediterranean Climate Areas; Baudoin, W., Nono-Womdim, R., Lutaladio, N., Hodder, A., Castilla, N., Leonardi, C., de Pascale, S., Qaryouti, M., Eds.; FAO: Rome, Italy, 2013; pp. 271–301. [Google Scholar]
- Asaduzzaman, M.; Saifullah, M.; Mollick, S.R.; Hossain, M.; Halim, G.; Asao, T. Influence of Soilless Culture Substrate on Improvement of Yield and Produce Quality of Horticultural Crops. In Soilless Culture-Use of Substrates for the Production of Quality; Asaduzzaman, M., Ed.; InTech: London, UK, 2015; pp. 1–32. [Google Scholar]
- Scott, M.; Bragg, N.; Gunn, S. Digging into composts. In Proceedings of the International Plant Propagators’ Society, Carlisle, PA, USA, 1993; Volume 43, pp. 150–156. [Google Scholar]
- Dunn, C.; Freeman, C. Peatlands: Our greatest source of carbon credits? Carbon Manag. 2011, 2, 289–301. [Google Scholar] [CrossRef]
- Smith, D.L. Rockwool in Horticulture; Grower Books: London, UK, 1987. [Google Scholar]
- Hanna, H.Y. Properly Recycled Perlite Saves Money, Does Not Reduce Greenhouse Tomato Yield, and Can Be Reused for Many Years. Horttechnology 2005, 15, 342–345. [Google Scholar] [CrossRef] [Green Version]
- Urrestarazu, M.; Guillén, C.; Mazuela, P.C.; Carrasco, G. Wetting agent effect on physical properties of new and reused rockwool and coconut coir waste. Sci. Hortic. (Amst.) 2008, 116, 104–108. [Google Scholar] [CrossRef]
- Torrellas, M.; Antón, A.; López, J.C.; Baeza, E.J.; Parra, J.P.; Muñoz, P.; Montero, J.I. LCA of a tomato crop in a multi-Tunnel greenhouse in Almeria. Int. J. Life Cycle Assess. 2012, 17, 863–875. [Google Scholar] [CrossRef]
- Acuña, R.A.; Bonachela, S.; Magán, J.J.; Marfà, O.; Hernández, J.H.; Cáceres, R. Reuse of rockwool slabs and perlite grow-bags in a low-cost greenhouse: Substrates’ physical properties and crop production. Sci. Hortic. (Amst.) 2013, 160, 139–147. [Google Scholar] [CrossRef]
- Abad, M.; Noguera, P.; Burés, S. National inventory of organic wastes for use as growing media for ornamental potted plant production: Case study in Spain. Bioresour. Technol. 2001, 77, 197–200. [Google Scholar] [CrossRef]
- Barrett, G.E.; Alexander, P.D.; Robinson, J.S.; Bragg, N.C. Achieving environmentally sustainable growing media for soilless plant cultivation systems–A review. Sci. Hortic. (Amst.) 2016, 212, 220–234. [Google Scholar] [CrossRef] [Green Version]
- Kelepesi, S.; Tzortzakis, N.G. Olive Mill Wastes-A Growing Medium Component for Seedling and Crop Production of Lettuce and Chicory. Int. J. Veg. Sci. 2009, 15, 325–339. [Google Scholar] [CrossRef]
- Suvo, T.; Biswas, H.; Jewel, M.; Islam, M.; Khan, M. Impact of substrate on soilless tomato cultivation. Int. J. Agric. Res. Innov. Technol. 2016, 6, 82–86. [Google Scholar] [CrossRef] [Green Version]
- Rosegrant, M.W.; Ringler, C.; Zhu, T. Water for Agriculture: Maintaining Food Security under Growing Scarcity. Annu. Rev. Environ. Resour. 2009, 34, 205–222. [Google Scholar] [CrossRef]
- Gasper, R.; Blohm, A.; Ruth, M. Social and economic impacts of climate change on the urban environment. Curr. Opin. Environ. Sustain. 2011, 3, 150–157. [Google Scholar] [CrossRef]
- Zulfiqar, F.; Allaire, S.E.; Akram, N.A.; Méndez, A.; Younis, A.; Peerzada, A.M.; Shaukat, N.; Wright, S.R. Challenges in organic component selection and biochar as an opportunity in potting substrates: A review. J. Plant Nutr. 2019, 42, 1386–1401. [Google Scholar] [CrossRef]
- Jurgilevich, A.; Birge, T.; Kentala-Lehtonen, J.; Korhonen-Kurki, K.; Pietikäinen, J.; Saikku, L.; Schösler, H. Transition towards Circular Economy in the Food System. Sustainability 2016, 8, 69. [Google Scholar] [CrossRef] [Green Version]
- Lao, M.T.; Jiménez, S. Evaluation of almond shell as a culture substrate for ornamental plants. II. Ficus benjamina. Øyt. Int. J. Exp. Bot. 2004, 53, 79–84. [Google Scholar]
- Urrestarazu, M.; Martínez, G.A.; Salas, M.D.C. Almond shell waste: Possible local rockwool substitute in soilless crop culture. Sci. Hortic. (Amst.) 2005, 103, 453–460. [Google Scholar] [CrossRef]
- Chimonidou, D.; Kerkides, P.; Psyhoyiou, M.; Vassiliou, L. Rose cultivation in Cyprus under two irrigation regimes using local substrates. In Water Saving in Mediterranean Agriculture and Future Research Needs; Lamaddalena, N., Bogliotti, C., Todorovic, M., Scardigno, A., Eds.; CIHEAM: Bari, Italy, 2007; pp. 333–336. [Google Scholar]
- Valverde, M.; Madrid, R.; García, A.L.; del Amor, F.M.; Rincón, L. Use of almond shell and almond hull as substrates for sweet pepper cultivation. Effects on fruit yield and mineral content. Span. J. Agric. Res. 2013, 11, 164–172. [Google Scholar] [CrossRef] [Green Version]
- Özenç, D.B. Effects of Composted Hazelnut Husk On Growth of Tomato Plants. Compost. Sci. Util. 2006, 14, 271–275. [Google Scholar] [CrossRef]
- Özenç, D.B. Growth and Transpiration of Tomato Seedlings Grown in Hazelnut Husk Compost Under Water-Deficit Stress. Compost. Sci. Util. 2008, 16, 125–131. [Google Scholar] [CrossRef]
- Dede, O.H.; Dede, G.; Ozdemir, S.; Abad, M. Physicochemical characterization of hazelnut husk residues with different decomposition degrees for soilless growing media preparation. J. Plant Nutr. 2011, 34, 1973–1984. [Google Scholar] [CrossRef]
- Dede, O.H.; Dede, G.; Ozdemir, S. The use of hazelnut husk and biosolid in substrate preparation for ornamental plants. Afr. J. Agric. Res. 2012, 7, 5837–5841. [Google Scholar] [CrossRef] [Green Version]
- Dede, O.H.; Ozdemir, S. Development of nutrient-rich growing media with hazelnut husk and municipal sewage sludge. Environ. Technol. 2017, 39, 2223–2230. [Google Scholar] [CrossRef] [PubMed]
- Raviv, M.; Medina, S.; Krassnovsky, A.; Laor, Y.; Aviani, I. Composting olive mill waste and assessment of its horticultural value. Acta Hortic. 2009, 819, 353–360. [Google Scholar] [CrossRef]
- Sofiadou, E.; Tzortzakis, N.G. Olive Mill Waste as a Substitute Growing Medium Component in Tomato Seedling and Crop Production. Int. J. Veg. Sci. 2012, 18, 272–283. [Google Scholar] [CrossRef]
- Bustamante, M.A.; Moral, R.; Paredes, C.; Pe, A.; Pe, M.D. Agrochemical characterisation of the solid by-products and residues from the winery and distillery industry. Waste Manag. 2008, 28, 372–380. [Google Scholar] [CrossRef]
- Shinohara, Y.; Hata, T.; Maruo, T.; Hohjo, M.; Ito, T. Chemical and physical properties of the Coconut-Fibre substrate and the growth and productivity of Tomato (Lycopersicon esculentum Mill.) plants. Acta Hortic. 1999, 481, 145–150. [Google Scholar] [CrossRef]
- Evans, M.R.; Gachukia, M. Fresh Parboiled Rice Hulls Serve as an Alternative to Perlite in Greenhouse Crop Substrates. HortScience 2004, 39, 232–235. [Google Scholar] [CrossRef]
- Gómez, C.; Robbins, J. Pine Bark Substrates Amended with Parboiled Rice Hulls: Physical Properties and Growth of Container-grown Spirea during Long-term Nursery Production. HortScience 2011, 46, 784–790. [Google Scholar] [CrossRef] [Green Version]
- Bilderback, T.E.; Fonteno, W.C.; Johnson, D.R. Physical properties of media composed of peanut hulls, pine bark, and peat moss and their effects on azalea growth. J. Am. Soc. Hortic. Sci. 1982, 107, 522–525. [Google Scholar]
- Altland, J. Use of processed biofuel crops for nursery substrates. J. Environ. Hortic. 2010, 28, 129–134. [Google Scholar]
- Tzortzakis, N.G.; Economakis, C.D. Shredded Maize Stems as an Alternative Substrate Medium: Effect on Growth, Flowering and Yield of Tomato in Soilless Culture. J. Veg. Sci. 2005, 11, 57–70. [Google Scholar] [CrossRef]
- Tzortzakis, N.G.; Economakis, C.D. Impacts of the substrate medium on tomato yield and fruit quality in soilless cultivation. Hortic. Sci. 2008, 35, 83–89. [Google Scholar] [CrossRef] [Green Version]
- López-Baltazar, J.; Méndez-Matías, A.; Pliego-Marín, L.; Aragón-Robles, E.; Robles-Martínez, M.L. Agronomic evaluation of substrates in pepper seedlings “onza” (Capsicum annuum) in greenhouse. Rev. Mex. Cienc. Agrícolas 2013, 6, 1139–1150. [Google Scholar]
- Jayasinghe, G.Y.; Tokashiki, Y.; Kitou, M.; Kinjo, K. Oil palm waste and synthetic zeolite: An alternative soil-less growth substrate for lettuce production as a waste management practice. Waste Manag. Res. 2008, 26, 559–565. [Google Scholar] [CrossRef]
- Górecki, R.S.; Górecki, M.T. Utilization of waste wool as substrate amendment in pot cultivation of tomato, sweet pepper, and eggplant. Pol. J. Environ. Stud. 2010, 19, 1083–1087. [Google Scholar]
- Dannehl, D.; Suhl, J.; Ulrichs, C.; Schmidt, U. Evaluation of substitutes for rock wool as growing substrate for hydroponic tomato production. J. Appl. Bot. Food Qual. 2015, 88, 68–77. [Google Scholar] [CrossRef]
- Karakaş, C.; Özçimen, D.; İnan, B. Potential use of olive stone biochar as a hydroponic growing medium. J. Anal. Appl. Pyrolysis 2017, 125, 17–23. [Google Scholar] [CrossRef]
- FAO. FAOSTAT. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 9 September 2018).
- Tüzel, Y.; Gül, A.; Tüzel, I.H.; Öztekin, G.B. Different Soilless Culture Systems and Their Management. J. Agric. Food Environ. Sci. 2019, 73, 7–12. [Google Scholar]
- García-García, M.C.; Céspedes, A.J.; Lorenzo, P.; Pérez-Parra, J.J.; Escudero, M.C.; Sánchez-Guerrero, M.C.; Medrano, E.; Baeza, E.; López, J.C.; Magán, J.J.; et al. El sistema de Producción Hortícola Protegido de la Provincia de Almería; García-García, M.C., Céspedes López, A.J., Pérez Parra, J.J., Lorenzo Mínguez, P., Eds.; IFAPA: Almería, Spain, 2016. [Google Scholar]
- Urrestarazu, M.; Mazuela, P.C.; Martínez, G.A. Effect of Substrate Reutilization on Yield and Properties of Melon and Tomato Crops. J. Plant Nutr. 2008, 31, 2031–2043. [Google Scholar] [CrossRef]
- Benoit, F.; Ceustermans, N. The use of recycled polyurethane (PUR) as an ecological growing medium. Plasticulture 1990, 4, 41–48. [Google Scholar]
- Hardgrave, M. An evaluation of polyurethane foam as a reusable substrate for hydroponic cucumber production. Acta Hortic. 1995, 401, 201–208. [Google Scholar] [CrossRef]
- Otorres, A.; Soto Zarazua, G.M. Potassium Acrylate: A novelty in hydroponic substrates. In Proceedings of the 2017 XIII International Engineering Congress (CONIIN), Santiago de Queretaro, Mexico, 15–19 May 2017; pp. 1–8. [Google Scholar]
- Mickovski, S.B.; Buss, K.; McKenzie, B.M.; Sökmener, B. Laboratory study on the potential use of recycled inert construction waste material in the substrate mix for extensive green roofs. Ecol. Eng. 2013, 61, 706–714. [Google Scholar] [CrossRef]
- Korol, E.; Shushunova, N. Benefits of a Modular Green Roof Technology. Procedia Eng. 2016, 161, 1820–1826. [Google Scholar] [CrossRef] [Green Version]
- Boneta, A.; Rufí-Salís, M.; Ercilla-Montserrat, M.; Gabarrell, X.; Rieradevall, J. Agronomic and environmental assessment of a polyculture rooftop soilless urban home garden in a mediterranean city. Front. Plant Sci. 2019, 10, 1–11. [Google Scholar] [CrossRef]
- BSI. Soil Improvers and Growing Media. Sample Preparation for Chemical and Physical Tests, Determination of Dry Matter Content, Moisture Content and Laboratory Compacted Bulk Density; British Standards Institution: London, UK, 2007; BS EN 13040:2007; ISBN 978-0-580-54504-7. [Google Scholar]
- BSI. Soil Improvers and Growing Media. Determination of Physical Properties. Dry Bulk Density, Air Volume, Water Volume, Shrinkage Value and Total Pore Space; British Standards Institution: London, UK, 2011; BS EN 13041:2011; ISBN 978-0-580-68728-0. [Google Scholar]
- Bunt, A.C. Media and Mixes for Container-Grown Plants, 2nd ed.; Unwin Hyman Ltd: London, UK, 1988. [Google Scholar]
- Nimmo, J.R. Porosity and Pore Size Distribution. In Encyclopedia of Soils in the Environment; Hillel, D., Ed.; Elsevier: London, UK, 2004; pp. 295–303. [Google Scholar]
- Wallach, R. Physical Characteristics of Soilless Media. In Soilless Culture Theory and Practice; Raviv, M., Lieth, J.H., Eds.; Elsevier: London, UK, 2008; pp. 41–116. [Google Scholar]
- BSI. Methods of Test for Soils for Civil Engineering Purposes —Part 2: Classification Tests; British Standards Institution: London, UK, 1990; BS 13772:1990; ISBN 0-580-17867-6. [Google Scholar]
- Richards, D.; Lane, M.; Beardsell, D.V. The influence of particle-size distribution in pinebark:sand:brown coal potting mixes on water supply, aeration and plant growth. Sci. Hortic. (Amst.) 1986, 29, 1–14. [Google Scholar] [CrossRef]
- ADAS. The Analysis of Agricultural Materials: A Manual of the Analytical Methods Used by the Agricultural Development and Advisory Service / Ministry of Agriculture, Fisheries and Food; Her Majesty’s Office: London, UK, 1981. [Google Scholar]
- Schindler, U.; Müller, L. Simplifying the evaporation method for quantifying soil hydraulic properties. J. Plant Nutr. Soil Sci. 2006, 169, 623–629. [Google Scholar] [CrossRef]
- De Boodt, M.; Verdonck, O. The Physical Properties of the Substrates in Horticulture. Acta Hortic. 1972, 26, 37–44. [Google Scholar] [CrossRef]
- McKenzie, N.J.; Green, T.W.; Jacquier, D.W. Laboratory measurement of hydraulic conductivity. In Soil Physical Measurement and Interpretation for Land Evaluation; McKenzie, N.J., Coughlan, K.L., Cresswell, H.P., Eds.; CSIRO Publishing: Melbourne, Australia, 2002; pp. 150–162. [Google Scholar]
- AOAC. Method 949.12. In Official Methods of Analysis of the AOAC, 15th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1990; ISBN 0-935584-42-0. [Google Scholar]
- U.S. EPA. EPA-600/4-79-020, Method 350.1. Colorimetric Automated Phenate. In Methods for Chemical Analysis of Water and Wastes; United States Environmental Protection Agency Office of Research and Development: Washington, DC, USA, 1984. [Google Scholar]
- BSI. Soil Improvers and Growing Media. Determination of Organic Matter Content and Ash; British Standards Institution: London, UK, 2011; BS EN 13039:2011; ISBN 978-0-580-68881-2. [Google Scholar]
- The Standing Committee of Analysts. Determination of the pH value of sludge, soil, mud and sediment; and lime requirement of soil. In Methods for the Examination of Waters and Associated Materials; The Standing Committee of Analysts: London, UK, 1977; ISBN 0-11-751252-4. [Google Scholar]
- Peters, J. Recommended Methods of Manure Analysis A3769; Cooperative Extension Publishing: Madison, WI, USA, 2003. [Google Scholar]
- The Standing Committee of Analysts. The Measurement of Electrical Conductivity and the Laboratory Determination of the pH Value of Natural, Treated and Waste Waters. In Methods for the Examination of Waters and Associated Materials; The Standing Committee of Analysts: London, UK, 1978; ISBN 0-11-751428-4. [Google Scholar]
- Brechner, M.; Both, A.J. Cornell Controlled Environment Agriculture Hydroponic Lettuce Handbook; Cornell University CEA Program: Ithaca, NY, USA, 2014. [Google Scholar]
- Goto, R. A cultura da alface. In Produção de Hortaliças em Ambiente Protegido: Condições Subtropicais; Goto, R., Tivelli, S.W., Eds.; FUNESP: São Paulo, Brazil, 1998; pp. 137–159. [Google Scholar]
- BBC UK Heatwave: Lettuce Growers Warn of Imminent Shortage. Available online: https://www.bbc.co.uk/news/business-44664834 (accessed on 10 September 2018).
- Mattson, N.S.; Peters, C. A Recipe for Hydroponic Success. In insideGROWER; Ball Publishing: Chicago, IL, USA, 2014; pp. 16–19. [Google Scholar]
- Prashar, A.; Jones, H. Infra-Red Thermography as a High-Throughput Tool for Field Phenotyping. Agronomy 2014, 4, 397–417. [Google Scholar] [CrossRef]
- Fox, J. The R Commander: A Basic Statistics Graphical User Interface to R. J. Stat. Softw. 2005, 14, 1–42. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D. nlme: Linear and Nonlinear Mixed Effects Models. R Package Version 3.1-131.1.; R Core Team: Vienna, Austria, 2018. [Google Scholar]
- Abad, M.; Martinez-Herrero, M.D.; Martinez Garcia, J.; Martinez, C. Evaluacion agronomica de los sustratos de cultivo (Agricultural evaluation of crop media). Actas Hortic. 1993, 11, 141–154. [Google Scholar]
- Bik, R.A. Substrates in Floriculture. In Proceedings of the XXI International Horticultural Congress, Hamburg, Germany, 29 Augus–4 September 1982; Instituut voor Bodemvruchtbaarheid: Hambourg, Germany, 1983; pp. 811–883. [Google Scholar]
- Boertje, G.A. Physical laboratory analyses of potting composts. Acta Hortic. 1984, 150, 47–50. [Google Scholar] [CrossRef]
- Raviv, M.; Chen, Y.; Inbar, Y. Peat and peat substitutes as growth media for container grown plants. In The Role of Organic Matter in Modern Agriculture; Chen, Y., Avnimelech, Y., Eds.; Martinus Nijhoff Publishers: Dordrecht, Netherlands, 1986; pp. 257–287. [Google Scholar]
- Drzal, M.S.; Fonteno, W.C.; Cassel, D.K. Pore fraction analysis: A new tool for substrate testing. Acta Hortic. 1999, 481, 43–53. [Google Scholar] [CrossRef]
- Gruda, N.; Schnitzler, W.H. Suitability of wood fiber substrate for production of vegetable transplants. Sci. Hortic. (Amst.) 2004, 100, 309–322. [Google Scholar] [CrossRef]
- Handreck, K.A. Particle size and the physical properties of growing media for containers. Commun. Soil Sci. Plant Anal. 1983, 14, 209–222. [Google Scholar] [CrossRef]
- Noguera, P.; Abad, M.; Puchades, R.; Maquieira, A.; Noguera, V. Influence of Particle Size on Physical and Chemical Properties of Coconut Coir Dust as Container Medium. Commun. Soil Sci. Plant Anal. 2003, 34, 593–605. [Google Scholar] [CrossRef]
- Samadi, A. Effect of Particle Size Distribution of Perlite and its Mixture with Organic Substrates on Cucumber in Hydroponics System. J. Agric. Sci. Technol. 2011, 13, 121–129. [Google Scholar]
- Obidiegwu, J.E.; Bryan, G.J.; Jones, H.G.; Prashar, A. Coping with drought: Stress and adaptive responses in potato and perspectives for improvement. Front. Plant Sci. 2015, 6, 542. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, M. Infrared measurement of canopy temperature and detection of plant water stress. Theor. Appl. Climatol. 1990, 42, 253–261. [Google Scholar] [CrossRef]
- Prashar, A.; Jones, H.G. Assessing Drought Responses Using Thermal Infrared Imaging. In Environmental Responses in Plants; Duque, P., Ed.; Springer: New York, NY, USA, 2016; pp. 209–219. [Google Scholar]
- Anderson, D.R. Thermal Conductivity of Polymers. Chem. Rev. 1966, 66, 677–690. [Google Scholar] [CrossRef]
- Oriol, F.; De Boodt, M.; Verdonck, O.; Cappaert, I. Thermal properties of two organic (peat, pine bark) and two inorganic (perlite, clay) horticultural substrates. Catena 1978, 5, 389–394. [Google Scholar] [CrossRef]
- Andriolo, J.L.; Luz, G.L.D.; Witter, M.H.; Godoi, R.D.S.; Barros, G.T.; Bortolotto, O.C. Growth and yield of lettuce plants under salinity. Hortic. Bras. 2005, 23, 931–934. [Google Scholar] [CrossRef] [Green Version]
- Blat, S.; Sanchez, S.; Araújo, J.; Bolonhezi, D. Desempenho de cultivares de alface crespa em dois ambientes de cultivo em sistema hidropônico (Performance of lettuce cultivars grown in two environments, in the NFT hydroponic system). Hortic. Bras. 2011, 29, 135–138. [Google Scholar] [CrossRef] [Green Version]
- Domingues, D.S.; Takahashi, H.W.; Camara, C.A.P.; Nixdorf, S.L. Automated system developed to control pH and concentration of nutrient solution evaluated in hydroponic lettuce production. Comput. Electron. Agric. 2012, 84, 53–61. [Google Scholar] [CrossRef]
- Da Silva, J.S.; da Silva Paz, V.P.; Soares, T.M.; de Almeida, W.F.; Fernandes, J.P. Production of lettuce with brackish water in NFT hydroponic system. Semin. Ciências Agrárias 2018, 39, 947. [Google Scholar] [CrossRef]
- Chong, C. Experiences with wastes and composts in nursery substrates. Horttechnology 2005, 15, 739–747. [Google Scholar] [CrossRef]
- Shannon, M.C.; Grieve, C.M. Tolerance of vegetable crops to salinity. Sci. Hortic. (Amst.) 1999, 78, 5–38. [Google Scholar] [CrossRef]
- Munns, R. Comparative physiology of salt and water stress. Plant Cell Environ. 2002, 25, 239–250. [Google Scholar] [CrossRef]
- Eraslan, F.; Inal, A.; Savasturk, O.; Gunes, A. Changes in antioxidative system and membrane damage of lettuce in response to salinity and boron toxicity. Sci. Hortic. (Amst.) 2007, 114, 5–10. [Google Scholar] [CrossRef]
- Albornoz, F.; Heinrich, L.J. Over fertilization limits lettuce productivity because of osmotic stress. Chil. J. Agric. Res. 2015, 75, 284–290. [Google Scholar] [CrossRef] [Green Version]
- Raviv, M.; Leith, J.H. Significance of Soilless Culture in Agriculture. In Soilless Culture Theory and Practice; Raviv, M., Lieth, J.H., Eds.; Elsevier: London, UK, 2008; pp. 1–12. [Google Scholar]
- Bardhan, S.; Chen, Y.; Dick, W.A. Recycling for Sustainability: Plant Growth Media from Coal Combustion Products, Biosolids and Compost. Int. J. Civ. Environ. Eng. 2009, 1, 177–183. [Google Scholar] [CrossRef]
- Aghdak, P.; Mobli, M.; Khoshgoftarmanesh, A.H. Effects of different growing media on vegetative and reproductive growth of bell pepper. J. Plant Nutr. 2016, 39, 967–973. [Google Scholar] [CrossRef]
- Linker, R.; Johnson-Rutzke, C. Modeling the effect of abrupt changes in nitrogen availability on lettuce growth, Root-shoot partitioning and nitrate concentration. Agric. Syst. 2005, 86, 166–189. [Google Scholar] [CrossRef]
- Broadley, M.R.; Escobar-Gutierrez, A.J.; Burns, A.; Burns, I.G. What are the effects of nitrogen deficiency on growth components of lettuce? New Phytol. 2000, 147, 519–526. [Google Scholar] [CrossRef]
- Gerard, C.J.; Sexton, P.; Shaw, G. Physical Factors Influencing Soil Strength and Root Growth. Agron. J. 1982, 74, 875–879. [Google Scholar] [CrossRef]
- Bengough, A.G.; Mullins, C.E. Mechanical impedance to root growth: A review of experimental techniques and root growth responses. J. Soil Sci. 1990, 41, 341–358. [Google Scholar] [CrossRef]
- Kämpf, A.N.; Allen Hammer, P.; Kirk, T. Effect of the packing density on the mechanical impedance of root media. Acta Hortic. 1999, 481, 689–694. [Google Scholar] [CrossRef]
- Kerbiriou, P.J.; Stomph, T.J.; Van Der Putten, P.E.L.; Lammerts Van Bueren, E.T.; Struik, P.C. Shoot growth, root growth and resource capture under limiting water and N supply for two cultivars of lettuce (Lactuca sativa L.). Plant Soil 2013, 371, 281–297. [Google Scholar] [CrossRef]
- Montesano, F.F.; van Iersel, M.W.; Parente, A. Timer versus moisture sensor-based irrigation control of soilless lettuce: Effects on yield, quality and water use efficiency. Hortic. Sci. 2016, 43, 67–75. [Google Scholar] [CrossRef] [Green Version]
- Darnton-Hill, I.; Webb, P.; Harvey, P.W.; Hunt, J.M.; Dalmiya, N.; Chopra, M.; Ball, M.J.; Bloem, M.W.; de Benoist, B. Micronutrient deficiencies and gender: Social and economic costs. Am. J. Clin. Nutr. 2005, 81, 1198S–1205S. [Google Scholar] [CrossRef]
- Smith, E.R. Global Nutrient Availability: A call for accountability and action. Lancet Planet. Health 2018, 2, e380–e381. [Google Scholar] [CrossRef]
- Smith, M.R.; Myers, S.S. Impact of anthropogenic CO2 emissions on global human nutrition. Nat. Clim. Chang. 2018, 8, 834–839. [Google Scholar] [CrossRef]
- Weyant, C.; Brandeau, M.L.; Burke, M.; Lobell, D.B.; Bendavid, E.; Basu, S. Anticipated burden and mitigation of carbon-dioxide-induced nutritional deficiencies and related diseases: A simulation modeling study. PLoS Med. 2018, 15, e1002586. [Google Scholar] [CrossRef] [PubMed]
- Gruda, N. Do soilless culture systems have an influence on product quality of vegetables? J. Appl. Bot. Food Qual. 2009, 82, 141–147. [Google Scholar] [CrossRef]
- Putra, P.A.; Yuliando, H. Soilless Culture System to Support Water Use Efficiency and Product Quality: A Review. Agric. Agric. Sci. Procedia 2015, 3, 283–288. [Google Scholar] [CrossRef] [Green Version]
- Meagy, M.J.; Eaton, T.E.; Barker, A. V Assessment of mineral nutrient concentrations of lettuce in response to cultivar selection and fertilization in greenhouse production. J. Plant Nutr. 2016, 39, 1796–1808. [Google Scholar] [CrossRef]
- Winsor, G.; Adams, P. Diagnosis of Mineral Disorders in Plants, Vol. 3. Glass House Crops; Her Majesty’s Stationery Office: London, UK, 1987. [Google Scholar]
- Hakerlerler, H.; Anac, D.; Gul, A.; Saatci, N. The effects of soilless nutrients and nutrient quantities on the greenhouse conditions of soilless mediums. J. Ege Univ. Fac. Agric. 1992, 29, 87–94. [Google Scholar]
- Trani, P.E.; Raij, B. Vegetables. In Fertilization and Liming Recommendations for the State of São Paulo; Raij, B., Cantarella, H., Quaggio, J.A., Furlani, A.M.C., Eds.; Instituto Agronômico de Campinas: Campinas, Brazil, 1996; pp. 155–203. [Google Scholar]
- Hartz, T.K.; Johnstone, P.R.; Williams, E.; Smith, R.F. Establishing Lettuce Leaf Nutrient Optimum Ranges Through DRIS Analysis. HortScience 2007, 42, 143–146. [Google Scholar] [CrossRef]
- Lucas, R.E.; Davis, J.F. Relationships between pH values of organic soils and availabilities of 12 plant nutrients. Soil Sci. 1961, 92, 177–182. [Google Scholar] [CrossRef]
- Neocleous, D.; Koukounaras, A.; Siomos, A.S.; Vasilakakis, M. Assessing the Salinity Effects on Mineral Composition and Nutritional Quality of Green and Red “Baby” Lettuce. J. Food Qual. 2014, 37, 1–8. [Google Scholar] [CrossRef]
- Montemurro, F.; Diacono, M.; Vitti, C.; Debiase, G. Biodegradation of olive husk mixed with other agricultural wastes. Bioresour. Technol. 2009, 100, 2969–2974. [Google Scholar] [CrossRef] [PubMed]
- Viets, F.G.J. Water deficits and nutrient availability. In Water Deficits and Plant Growth. Vol. III: Plant Responses and Control of Water Balance; Kozlowski, T.T., Ed.; Academic Press: New York, NY, USA, 1972; pp. 217–240. [Google Scholar]
- Pinkerton, A.; Simpson, J. Interactions of surface drying and subsurface nutrients affecting plant growth on acidic soil profiles from an old pasture. Aust. J. Exp. Agric. 1986, 26, 681–689. [Google Scholar] [CrossRef]
- Tanguilig, V.C.; Yambao, E.B.; O’toole, J.C.; De Datta, S.K. Water stress effects on leaf elongation, leaf water potential, transpiration, and nutrient uptake of rice, maize, and soybean. Plant Soil 1987, 103, 155–168. [Google Scholar] [CrossRef]
- Alam, S.M. Nutrient uptake by plants under stress conditions. In Handbook of Plant and Crop Stress; Pessarakli, M., Ed.; Marcel Dekker: New York, NY, USA, 1999; pp. 285–314. [Google Scholar]
- Hu, Y.; Schmidhalter, U. Drought and salinity: A comparison of their effects on mineral nutrition of plants. J. Plant Nutr. Soil Sci. 2005, 168, 541–549. [Google Scholar] [CrossRef]
Characteristic | Perlite | Almond Shells | Plastic Drainage Plank | Ideal Substrate |
---|---|---|---|---|
Physical Properties | ||||
Compacted bulk density (g cm−3) | 0.106 | 0.78 | 0.47 | |
Dry bulk density (g cm−3) | 0.105 | 0.67 | 0.47 | <0.40 a,b |
Oven dry matter (%) | 99.3 | 87.5 | 99.9 | |
Moisture (%) | 0.75 | 12.5 | 0.1 | |
Effective pore space (vol%) | 56.8 | 60.4 | 30.5 | ≥85 c,d |
Air-filled porosity (vol%) | 9.52 | 8.74 | 26.2 | 10–30 a,b,e |
Total water-holding capacity (mL L−1) | 473 | 516 | 43.1 | 60–1000 b,e |
Easily available water (%) | 11.4 | 21.7 | n/a | 2–30 b,e |
Water buffering capacity (%) | 3.70 | 3.45 | n/a | 4–10 b,e |
Saturated hydraulic conductivity (m s−1) | 0.073 | 0.00015 | n/a | |
Coarseness Index (wt%) | 78.9 | 59.1 | n/a | |
Chemical Properties | ||||
pH | 6.9 | 5.2 | 9.3 | 5.2–6.3 b |
EC (mS cm−1) | 0.007 | 0.574 | 0.401 | ≤0.5 a,e–g |
Organic matter (%) * | 1 | 97.3 | n/a | >80 b |
C:N Ratio * | 0.32 | 48 | n/a | 20–40 e,g |
Stomatal Conductance (mmol m−2 s−1) a | Normalised Leaf Surface Temperature (°C) b | |
---|---|---|
Main effect means | ||
Irrigation | ||
Reg | 734 ± 76.4 a | −1.91 ± 0.48 a |
Dr | 239 ± 37.1 b | 1.15 ± 0.83 b |
Growing Media | ||
P | 663 ± 98 a | −2.67 ± 0.49 a |
AS PDP | 492 ± 80.3 a,b 304 ± 67.5 b | −1.63 ± 0.51 a 3.14 ± 1.04 b |
Interaction means | ||
P Reg | 872 ± 165 a | −3.13 ± 0.58 a |
P Dr | 455 ± 78.2 b,c | −2.20 ± 0.78 a |
AS Reg | 791 ± 114 a,b | −2.19 ± 0.39 a |
AS Dr | 193 ± 32.4 c,d | −1.06 ± 0.93 a |
PDP Reg | 538 ± 104 a,b | −0.42 ± 1.15 a |
PDP Dr | 69.5 ± 16.8 d | 6.70 ± 0.94 b |
ANOVA p-values | ||
Substrate | <0.0001 | <0.0001 |
Irrigation | <0.0001 | 0.0009 |
Time | <0.0001 | <0.0001 |
Substrate × Irrigation | 0.0029 | 0.0073 |
Substrate × Time | 0.0011 | 0.0654 |
Irrigation × Time | <0.0001 | 0.2234 |
Substrate × Irrigation × Time | 0.0034 | 0.5960 |
Growing Media | Final% Germination | Average Emergence Time (Days) | Final Seedling Height (cm) | Final Number of Real Leaves |
---|---|---|---|---|
P | 96.7 ± 3.33 a | 2.24 ± 0.04 a | 7.77 ± 0.11 a | 2.93 ± 0.13 a |
AS | 96.7 ± 3.33 a | 2.52 ± 0.13 a,b | 1.71 ± 0.12 c | 0.76 ± 0.09 c |
PDP | 76.7 ± 8.82 a | 2.69 ± 0.08 b | 5.91 ± 0.40 b | 2.00 ± 0.23 b |
Substrate | Shoot Fresh Weight (g plant−1) | Shoot Dry Weight (g plant−1) | Root Fresh Weight (g plant−1) | Root Dry Weight (g plant−1) | Number of Leaves per Plant |
---|---|---|---|---|---|
P Reg | 280 ± 56.1 a | 15.8 ± 2.30 a | 9.98 ± 18.7 b | 0.76 ± 0.77 c | 28.0 ± 0.67 a |
AS Reg | 134 ± 43.3 c,d | 9.42 ± 8.31 b,c | 29.1 ± 14.4 a | 4.74 ± 2.77 b | 29.0 ± 1.26 a |
PDP Reg | 78.4 ± 28.4 d,e | 6.21 ± 3.23 c,d | 8.27 ± 9.48 b | 1.33 ± 0.82 c | 24.3 ± 1.39 a |
P Dr | 166 ± 26.1 b,c | 12.2 ± 3.82 a,b | 11.1 ± 8.69 b | 1.11 ± 1.27 c | 28.9 ± 0.48 a |
AS Dr | 63.5 ± 52.5 e,f | 7.92 ± 7.47 b,c | 31.8 ± 17.5 a | 6.84 ± 2.49 a | 23.9 ± 2.56 a |
PDP Dr | 14.2 ± 7.46 f | 1.24 ± 2.25 d | 3.37 ± 5.37 b | 0.33 ± 0.89 c | 11.6 ± 3.20 b |
Element | P Reg | AS Reg | PDP Reg | P Dr | AS Dr | PDP Dr | Optimum Levels |
---|---|---|---|---|---|---|---|
N (g kg−1) | 36.2 ± 1.0 a | 26.6 ± 1.88 c | 30.8 ± 1.05 b,c | 29.5 ± 0.95 c | 17.8 ± 0.19 d | 35.7 ± 0.35 a,b | 30–55 a–d |
P (g kg−1) | 7.36 ± 0.07 a | 5.93 ± 0.39 b | 6.24 ± 0.19 a,b | 6.07 ± 0.39 b | 3.90 ± 0.12 c | 6.35 ± 0.15 a,b | 3.5–7.7 c,d |
K (g kg−1) | 71.7 ± 3.36 a | 65.9 ± 1.98 a | 70.9 ± 2.73 a | 63.9 ± 3.92 a | 49.2 ± 2.10 b | 72.7 ± 1.49 a | 42–100 a–c |
Ca (g kg−1) | 11.4 ± 0.54 b | 14.7 ± 0.66 a | 14.8 ± 1.01 a | 13.5 ± 0.33 a,b | 13.3 ± 0.26 a,b | 13.1 ± 0.31 a,b | 9–25 a–c |
Mg (g kg−1) | 1.97 ± 0.07 b | 1.97 ± 0.14 b | 2.68 ± 0.15 a | 2.42 ± 0.12 a,b | 2.33 ± 0.12 a,b | 2.67 ± 0.02 a | 2.5–6 b,c,d |
S (g kg−1) | 2.72 ± 0.02 b | 1.98 ± 0.10 d | 2.67 ± 0.07 b | 2.33 ± 0.10 c | 1.66 ± 0.05 d | 3.36 ± 0.05 a | 1.5–3.5 b,c,d |
Fe (mg kg−1) | 95.2 ± 1.84 b,c | 75.5 ± 6.54 c | 156 ± 12.5 a | 110 ± 12.4 a,b | 105 ± 5.51 b,c | 130 ± 7.17 a,b | 115–257 d |
Mn (mg kg−1) | 56.4 ± 2.84 b,c | 76.3 ± 1.36 a | 69.6 ± 6.64 a,b | 49.5 ± 0.98 c | 65.7 ± 3.82 a,b,c | 73.2 ± 0.78 a | 30–100 c,d |
Cu (mg kg−1) | 7.84 ± 0.25 a | 6.14 ± 0.71 a | 7.29 ± 0.40 a | 6.22 ± 0.36 a | 3.34 ± 0.26 b | 6.58 ± 0.21 a | 5–20 c,d |
Zn (mg kg−1) | 115 ± 4.98 b,c | 194 ± 21.9 a | 162 ± 16.1 a,b | 97.4 ± 10.3 c | 114 ± 8.19 b,c | 152 ± 1.20 a,b,c | 25–100 c,d |
B (mg kg−1) | 19.8 ± 0.42 c | 29.1 ± 0.92 a | 24.8 ± 1.03 b | 18.5 ± 0.40 c | 29.1 ± 0.38 a | 26.9 ± 0.50 a,b | 24–36 d |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kennard, N.; Stirling, R.; Prashar, A.; Lopez-Capel, E. Evaluation of Recycled Materials as Hydroponic Growing Media. Agronomy 2020, 10, 1092. https://doi.org/10.3390/agronomy10081092
Kennard N, Stirling R, Prashar A, Lopez-Capel E. Evaluation of Recycled Materials as Hydroponic Growing Media. Agronomy. 2020; 10(8):1092. https://doi.org/10.3390/agronomy10081092
Chicago/Turabian StyleKennard, Nicole, Ross Stirling, Ankush Prashar, and Elisa Lopez-Capel. 2020. "Evaluation of Recycled Materials as Hydroponic Growing Media" Agronomy 10, no. 8: 1092. https://doi.org/10.3390/agronomy10081092
APA StyleKennard, N., Stirling, R., Prashar, A., & Lopez-Capel, E. (2020). Evaluation of Recycled Materials as Hydroponic Growing Media. Agronomy, 10(8), 1092. https://doi.org/10.3390/agronomy10081092