Excessive Calcium Accumulation in the Roots Is a Key Factor in Tipburn Incidence under High Ca Supply in Lisianthus (Eustoma grandiflorum) Cultivars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Treatments
2.3. Sampling
2.4. Tipburn Severity and Incidence
2.5. Determination of Ca and K Concentrations
2.6. Statistical Analysis
3. Results
3.1. Tipburn Severity and Incidence
3.2. Plant Growth and Total Ca Concentrations
3.3. Ca Distribution
3.3.1. Ca Concentration in Each Plant Organ before the Onset of Tipburn (at 0 and 4 Weeks)
3.3.2. Ca Concentration in Each Plant Organ after the Onset of Tipburn (at 8 weeks)
3.4. K Concentration
4. Discussion
4.1. Severity and Incidence of Tipburn under Different Concentrations of Ca Supply
4.2. Relevance of Ca Acquisition and Tipburn Incidence
4.3. Relevance of Ca Distribution and Tipburn Incidence
4.4. Effects of K Concentration on Ca Acquisition and Tipburn Incidence
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- White, P.J.; Broadley, M.R. Calcium in plants. Ann. Bot. 2003, 92, 487–511. [Google Scholar] [CrossRef] [PubMed]
- Aloni, B.; Pashkar, T.; Libel, R. The possible involvement of gibberellins and calcium in tipburn of Chinese cabbage: Study of intact plants and detached leaves. Plant Growth Regul. 1986, 4, 3–11. [Google Scholar] [CrossRef]
- Chang, Y.C.; Miller, W.B. The development of upper leaf necrosis in Lilium ‘Star Gazer’. J. Am. Soc. Hortic. Sci. 2005, 130, 759–766. [Google Scholar] [CrossRef]
- Guttridge, C.G.; Bradfield, E.G.; Holder, R. Dependence of calcium transport into strawberry leaves on positive pressure in the xylem. Ann. Bot. 1981, 48, 473–480. [Google Scholar] [CrossRef]
- San Bautista, A.; Gromaz, A.; Ferrarezi, R.S.; López-Galarza, S.; Pascual, B.; Maroto, J.V. Effect of cropping system and humidity level on nitrate content and tipburn incidence in Endive. Agronomy 2020, 10, 749. [Google Scholar] [CrossRef]
- Uno, Y.; Okubo, H.; Itoh, H.; Koyama, R. Reduction of leaf lettuce tipburn using an indicator cultivar. Sci. Hortic. 2016, 210, 14–18. [Google Scholar] [CrossRef]
- Sago, Y. Effects of light intensity and growth rate on tipburn development and leaf calcium concentration in butterhead lettuce. HortScience 2016, 51, 1087–1091. [Google Scholar] [CrossRef]
- Mason, G.F.; Guttridge, C.G. The influence of relative humidity and nutrition on leaf tipburn of strawberry. Sci. Hortic. 1975, 3, 339–349. [Google Scholar] [CrossRef]
- Shibata, T.; Iwao, K.; Takano, T. Effect of vertical air flowing on lettuce growing in a plant factory. Greenh. Environ. Control Autom. 1994, 399, 175–182. [Google Scholar] [CrossRef]
- Kuronuma, T.; Watanabe, Y.; Ando, M.; Watanabe, H. Relevance of tipburn incidence to the competence for Ca acquirement and Ca distributivity in lisianthus [Eustoma grandiflorum (Raf.) Shinn.] cultivars. Sci. Hortic. 2019, 246, 805–811. [Google Scholar] [CrossRef]
- Kuronuma, T.; Watanabe, Y.; Ando, M.; Watanabe, H. Tipburn severity and calcium distribution in lisianthus (Eustoma Grandiflorum (Raf.) Shinn.) cultivars under different relative air humidity conditions. Agronomy 2018, 8, 218. [Google Scholar] [CrossRef] [Green Version]
- Kuronuma, T.; Kinoshita, N.; Ando, M.; Watanabe, H. Difference of Ca distribution before and after the onset of tipburn in lisianthus [Eustoma grandiflorum (Raf.) Shinn.] cultivars. Sci. Hortic. 2020, 261. [Google Scholar] [CrossRef]
- Kuronuma, T.; Ando, M.; Watanabe, H. Tipburn Incidence and Ca acquisition and distribution in lisianthus (Eustoma grandiflorum (Raf.) Shinn.) cultivars under different Ca concentrations in nutrient solution. Agronomy 2020, 10, 216. [Google Scholar] [CrossRef] [Green Version]
- Bautista, A.S.; López-Galarza, S.; Martínez, A.; Pascual, B.; Maroto, J.V. Influence of cation proportions of the nutrient solution on tipburn incidence in strawberry plants. J. Plant Nutr. 2009, 32, 1527–1539. [Google Scholar] [CrossRef]
- Palencia, P.; Martinez, F.; Ribeiro, E.; Pestana, M.; Gama, F.; Saavedra, T.; de Varennes, A.; Correia, P.J. Relationship between tipburn and leaf mineral composition in strawberry. Sci. Hortic. 2010, 126, 242–246. [Google Scholar] [CrossRef]
- Fageria, V.D. Nutrient interactions in crop plants. J. Plant Nutr. 2001, 24, 1269–1290. [Google Scholar] [CrossRef]
- Johansen, C.; Edwards, D.G.; Loneragan, J.F. Interactions between potassium and calcium in their absorption by intact barley plants. I. Effects of potassium on calcium absorption. Plant Physiol. 1968, 43, 1717–1721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conn, S.J.; Gilliham, M.; Athman, A.; Schreiber, A.W.; Baumann, U.; Moller, I.; Chen, N.H.; Stancombe, M.A.; Hirschi, K.D.; Webb, A.A.R.; et al. Cell-specific vacuolar calcium storage mediated by CAX1 regulates apoplastic calcium concentration, gas exchange, and plant productivity in Arabidopsis. Plant Cell 2011, 23, 240–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Freitas, S.T.; Padda, M.; Wu, Q.; Park, S.; Mitcham, E.J. Dynamic alternations in cellular and molecular components during blossom-end rot development in tomatoes expressing sCAX1, a constitutively active Ca2+/H+ antiporter from Arabidopsis. Plant Physiol. 2011, 156, 844–855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Nutrients (ppm) | NO3-N | NH4-N | PO4-P | K | SO4-S | Ca | Mg | Fe | B | Mn | Zn | Cu | Mo | Cl | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ca treatments | 40 ppm | 113 | 4.6 | 10.2 | 107 | 16 | 40 | 12 | 3.1 | 1.8 | 0.9 | 0.09 | 0.04 | 0.04 | - |
80 ppm | 113 | 4.6 | 10.2 | 107 | 16 | 80 | 12 | 3.1 | 1.8 | 0.9 | 0.09 | 0.04 | 0.04 | 71 | |
120 ppm | 113 | 4.6 | 10.2 | 107 | 16 | 120 | 12 | 3.1 | 1.8 | 0.9 | 0.09 | 0.04 | 0.04 | 142 |
Cultivar | Ca Treatment | Total Dry Weight (g) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 Week | 4 Weeks | 8 Weeks | ||||||||||
UH | 40 ppm | 0.055 | ± | 0.003 | 0.44 | ± | 0.02 | n.s. | 3.44 | ± | 0.15 | n.s. |
80 ppm | 0.43 | ± | 0.02 | 3.75 | ± | 0.16 | ||||||
120 ppm | 0.49 | ± | 0.04 | 3.23 | ± | 0.22 | ||||||
RW | 40 ppm | 0.037 | ± | 0.002 | 0.43 | ± | 0.04 | n.s. | 3.51 | ± | 0.16 | n.s. |
80 ppm | 0.40 | ± | 0.05 | 3.57 | ± | 0.17 | ||||||
120 ppm | 0.40 | ± | 0.03 | 3.14 | ± | 0.18 | ||||||
VP | 40 ppm | 0.059 | ± | 0.004 | 0.44 | ± | 0.03 | n.s. | 3.59 | ± | 0.19 | n.s. |
80 ppm | 0.46 | ± | 0.03 | 3.58 | ± | 0.20 | ||||||
120 ppm | 0.48 | ± | 0.03 | 3.20 | ± | 0.20 |
Cultivar | Ca Treatment | Total Ca Concentration (mg-Ca/kg-DW) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 Week | 4 Weeks | 8 Weeks | ||||||||||
UH | 40 ppm | 1.9 | ± | 0.1 | 2.5 | ± | 0.1 | n.s. | 3.2 | ± | 0.0 | a |
80 ppm | 2.5 | ± | 0.1 | 4.1 | ± | 0.1 | b | |||||
120 ppm | 2.6 | ± | 0.1 | 4.4 | ± | 0.1 | b | |||||
RW | 40 ppm | 2.2 | ± | 0.1 | 2.2 | ± | 0.1 | n.s. | 3.9 | ± | 0.1 | a |
80 ppm | 2.4 | ± | 0.1 | 5.1 | ± | 0.5 | b | |||||
120 ppm | 2.3 | ± | 0.1 | 4.7 | ± | 0.1 | ab | |||||
VP | 40 ppm | 1.8 | ± | 0.1 | 3.8 | ± | 0.2 | n.s. | 4.3 | ± | 0.1 | a |
80 ppm | 4.0 | ± | 0.2 | 5.5 | ± | 0.4 | b | |||||
120 ppm | 4.1 | ± | 0.1 | 7.1 | ± | 0.2 | c |
Cultivar | Ca Concentration (mg-Ca/kg-DW) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Shoot | Root | Top (First) Leaves | ||||||||||
Tip | Base | |||||||||||
UH | 1.4 | ± | 0.1 | 4.9 | ± | 0.2 | 1.7 | ± | 0.1 | 0.7 | ± | 0.0 |
RW | 1.7 | ± | 0.1 | 6.0 | ± | 0.3 | 2.6 | ± | 0.1 | 1.2 | ± | 0.1 |
VP | 1.2 | ± | 0.1 | 5.5 | ± | 0.4 | 1.8 | ± | 0.1 | 0.9 | ± | 0.0 |
Cultivar | Ca Treatment | Ca Concentration (mg-Ca/kg-DW) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Top (First) Leaves | Lower (Fourth) Leaves | ||||||||||||||||
Tips | Bases | Tips | Bases | ||||||||||||||
UH | 40 ppm | 2.35 | ± | 0.14 | n.s. | 1.61 | ± | 0.08 | n.s. | 3.51 | ± | 0.16 | n.s. | 2.16 | ± | 0.09 | ab |
80 ppm | 2.88 | ± | 0.23 | 1.65 | ± | 0.07 | 3.69 | ± | 0.17 | 2.07 | ± | 0.15 | a | ||||
120 ppm | 2.56 | ± | 0.13 | 1.76 | ± | 0.12 | 3.44 | ± | 0.14 | 2.53 | ± | 0.12 | b | ||||
RW | 40 ppm | 1.32 | ± | 0.11 | n.s. | 1.05 | ± | 0.16 | n.s. | 4.51 | ± | 0.68 | n.s. | 2.65 | ± | 0.30 | n.s. |
80 ppm | 1.34 | ± | 0.22 | 0.82 | ± | 0.09 | 3.34 | ± | 0.60 | 2.59 | ± | 0.24 | |||||
120 ppm | 1.42 | ± | 0.14 | 0.91 | ± | 0.10 | 3.85 | ± | 0.55 | 2.80 | ± | 0.32 | |||||
VP | 40 ppm | 2.02 | ± | 0.16 | n.s. | 0.98 | ± | 0.07 | n.s. | 4.70 | ± | 0.39 | n.s. | 4.04 | ± | 0.23 | n.s. |
80 ppm | 2.01 | ± | 0.25 | 1.10 | ± | 0.11 | 4.46 | ± | 0.33 | 4.00 | ± | 0.29 | |||||
120 ppm | 2.12 | ± | 0.18 | 1.27 | ± | 0.11 | 4.68 | ± | 0.34 | 3.87 | ± | 0.45 |
Cultivar | Ca Treatment | Ca Concentration (mg-Ca/kg-DW) | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Top (First) Leaves | Middle (Fourth) Leaves | Lower (Seventh) Leaves | |||||||||||||||||||||||
Tips | Bases | Tips | Bases | Tips | Bases | ||||||||||||||||||||
UH | 40 ppm | 5.0 | ± | 0.2 | a | 1.9 | ± | 0.1 | A | 4.6 | ± | 0.1 | a’ | 3.0 | ± | 0.2 | A’ | 5.1 | ± | 0.1 | n.s. | 2.9 | ± | 0.1 | A’’ |
80 ppm | 5.5 | ± | 0.3 | ab | 3.6 | ± | 0.2 | B | 5.0 | ± | 0.2 | a’b’ | 5.3 | ± | 0.1 | B’ | 5.6 | ± | 0.5 | 4.3 | ± | 0.1 | B’’ | ||
120 ppm | 5.9 | ± | 0.2 | b | 4.1 | ± | 0.4 | B | 5.4 | ± | 0.2 | b’ | 5.9 | ± | 0.3 | B’ | 6.0 | ± | 0.2 | 5.4 | ± | 0.1 | C’’ | ||
RW | 40 ppm | 2.0 | ± | 0.2 | a | 1.9 | ± | 0.2 | A | 3.0 | ± | 0.2 | a’ | 2.0 | ± | 0.1 | A’ | 5.2 | ± | 0.3 | n.s. | 2.4 | ± | 0.1 | A’’ |
80 ppm | 4.2 | ± | 0.3 | b | 2.6 | ± | 0.1 | B | 3.7 | ± | 0.1 | b’ | 3.0 | ± | 0.1 | B’ | 5.3 | ± | 0.2 | 3.1 | ± | 0.1 | B’’ | ||
120 ppm | 5.2 | ± | 0.3 | b | 3.2 | ± | 0.2 | C | 4.3 | ± | 0.2 | b’ | 4.1 | ± | 0.1 | C’ | 5.9 | ± | 0.4 | 3.9 | ± | 0.1 | C’’ | ||
VP | 40 ppm | 2.2 | ± | 0.2 | n.s. | 2.9 | ± | 0.3 | A | 5.1 | ± | 0.5 | a’ | 2.2 | ± | 0.5 | A’ | 3.8 | ± | 0.4 | n.s. | 2.9 | ± | 0.2 | A’’ |
80 ppm | 2.3 | ± | 0.5 | 3.8 | ± | 0.5 | AB | 4.4 | ± | 0.4 | a’ | 2.6 | ± | 0.1 | A’ | 4.0 | ± | 0.8 | 3.6 | ± | 0.2 | B’’ | |||
120 ppm | 2.6 | ± | 0.4 | 5.1 | ± | 0.6 | B | 7.0 | ± | 0.4 | b’ | 3.8 | ± | 0.3 | B’ | 3.9 | ± | 0.2 | 4.4 | ± | 0.4 | B’’ |
Cultivar | Ca Treatment | K Concentration (mg-K/kg-DW) | |||||||
---|---|---|---|---|---|---|---|---|---|
Total | Tips of Top (1st) Leaves | ||||||||
UH | 40 ppm | 38.5 | ± | 0.5 | a | 25.3 | ± | 0.8 | a |
80 ppm | 41.4 | ± | 0.6 | b | 27.8 | ± | 1.0 | ab | |
120 ppm | 44.5 | ± | 0.7 | c | 30.0 | ± | 1.1 | b | |
RW | 40 ppm | 32.5 | ± | 0.8 | a | 26.7 | ± | 1.5 | a |
80 ppm | 36.4 | ± | 0.6 | b | 30.0 | ± | 1.5 | a | |
120 ppm | 39.1 | ± | 0.7 | c | 37.1 | ± | 1.1 | b | |
VP | 40 ppm | 27.8 | ± | 0.4 | a | 45.0 | ± | 4.0 | n.s. |
80 ppm | 45.6 | ± | 1.2 | c | 46.7 | ± | 5.1 | ||
120 ppm | 39.0 | ± | 0.8 | b | 55.5 | ± | 3.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuronuma, T.; Saotome, M.; Ando, M.; Watanabe, H. Excessive Calcium Accumulation in the Roots Is a Key Factor in Tipburn Incidence under High Ca Supply in Lisianthus (Eustoma grandiflorum) Cultivars. Agronomy 2020, 10, 1123. https://doi.org/10.3390/agronomy10081123
Kuronuma T, Saotome M, Ando M, Watanabe H. Excessive Calcium Accumulation in the Roots Is a Key Factor in Tipburn Incidence under High Ca Supply in Lisianthus (Eustoma grandiflorum) Cultivars. Agronomy. 2020; 10(8):1123. https://doi.org/10.3390/agronomy10081123
Chicago/Turabian StyleKuronuma, Takanori, Masanori Saotome, Masaya Ando, and Hitoshi Watanabe. 2020. "Excessive Calcium Accumulation in the Roots Is a Key Factor in Tipburn Incidence under High Ca Supply in Lisianthus (Eustoma grandiflorum) Cultivars" Agronomy 10, no. 8: 1123. https://doi.org/10.3390/agronomy10081123
APA StyleKuronuma, T., Saotome, M., Ando, M., & Watanabe, H. (2020). Excessive Calcium Accumulation in the Roots Is a Key Factor in Tipburn Incidence under High Ca Supply in Lisianthus (Eustoma grandiflorum) Cultivars. Agronomy, 10(8), 1123. https://doi.org/10.3390/agronomy10081123