Feasibility of Vermicomposting of Spent Coffee Grounds and Silverskin from Coffee Industries: A Laboratory Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Design and Vermicomposting
2.3. Biological Analysys
2.4. Seed Germination
2.5. Statistical Analysis
3. Results and Discussion
3.1. Biological Results
3.2. Germination Results
3.3. Troublesome Inconvenience Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CH | coffee husk |
CP | coffee pulp |
CS | coffee silverskin |
EC | electrical conductivity |
GI | germination index |
GP | germination percentage |
GR | growth rate |
HM | horse manure |
NC | number of cocoons |
OMC | organic matter content |
PR | cocoon production ratio |
RRG | relative root growth |
RSG | relative seed germination |
RShG | relative shoot growth |
SCG | spent coffee grounds |
TBG | total biomass gain |
TK | total potassium |
TKN | total Kjeldahl nitrogen |
TOC | total organic carbon |
TP | total phosphorus |
References
- Mussatto, S.I.; Machado, E.M.S.; Martins, S.; Teixeira, J.A. Production, Composition, and Application of Coffee and Its Industrial Residues. Food Bioprocess Technol. 2011, 4, 661–672. [Google Scholar] [CrossRef] [Green Version]
- Blinová, L.; Sirotiak, M.; Bartošová, A.; Soldán, M. Review: Utilization of Waste From Coffee Production. Res. Pap. 2017, 25, 91–102. [Google Scholar] [CrossRef] [Green Version]
- Hachicha, R.; Rekik, O.; Hachicha, S.; Ferchichi, M.; Woodward, S.; Moncef, N.; Cegarra, J.; Mechichi, T. Co-composting of spent coffee ground with olive mill wastewater sludge and poultry manure and effect of Trametes versicolor inoculation on the compost maturity. Chemosphere 2012, 88, 677–682. [Google Scholar] [CrossRef] [PubMed]
- Ronga, D.; Pane, C.; Zaccardelli, M.; Pecchioni, N. Use of Spent Coffee Ground Compost in Peat-Based Growing Media for the Production of Basil and Tomato Potting Plants. Commun. Soil Sci. Plant Anal. 2016, 47, 356–368. [Google Scholar] [CrossRef]
- Limousy, L.; Jeguirim, M.; Dutournié, P.; Kraiem, N.; Lajili, M.; Said, R. Gaseous products and particulate matter emissions of biomass residential boiler fired with spent coffee grounds pellets. Fuel 2013. [Google Scholar] [CrossRef]
- Seco, A.; Espuelas, S.; Marcelino, S.; Echeverría, Á.M.; Prieto, E. Characterization of Biomass Briquettes from Spent Coffee Grounds and Xanthan Gum Using Low Pressure and Temperature. Bioenergy Res. 2020, 13, 369–377. [Google Scholar] [CrossRef]
- Espuelas, S.; Marcelino, S.; Echeverría, A.M.; del Castillo, J.M.; Seco, A. Low energy spent coffee grounds briquetting with organic binders for biomass fuel manufacturing. Fuel 2020, 278, 118310. [Google Scholar] [CrossRef]
- Zuorro, A.; Lavecchia, R. Spent coffee grounds as a valuable source of phenolic compounds and bioenergy. J. Clean. Prod. 2012, 34, 49–56. [Google Scholar] [CrossRef]
- Kondamudi, N.; Mohapatra, S.K.; Misra, M. Spent coffee grounds as a versatile source of green energy. J. Agric. Food Chem. 2008, 56, 11757–11760. [Google Scholar] [CrossRef]
- Plaza, M.G.; González, A.S.; Pevida, C.; Pis, J.J.; Rubiera, F. Valorisation of spent coffee grounds as CO2 adsorbents for postcombustion capture applications. Appl. Energy 2012, 99, 272–279. [Google Scholar] [CrossRef] [Green Version]
- Mussatto, S.I.; Ballesteros, L.F.; Martins, S.; Teixeira, J.A. Extraction of antioxidant phenolic compounds from spent coffee grounds. Sep. Purif. Technol. 2011, 83, 173–179. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Saez, N.; García, A.T.; Pérez, I.D.; Rebollo-Hernanz, M.; Mesías, M.; Morales, F.J.; Martín-Cabrejas, M.A.; del Castillo, M.D. Use of spent coffee grounds as food ingredient in bakery products. Food Chem. 2017, 216, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Kovalcik, A.; Obruca, S.; Marova, I. Valorization of spent coffee grounds: A review. Food Bioprod. Process. 2018, 110, 104–119. [Google Scholar] [CrossRef]
- Arulrajah, A.; Kua, T.A.; Horpibulsuk, S.; Mirzababaei, M.; Chinkulkijniwat, A. Recycled glass as a supplementary filler material in spent coffee grounds geopolymers. Constr. Build. Mater. 2017, 151, 18–27. [Google Scholar] [CrossRef]
- Sharma, K.; Garg, V.K. Comparative analysis of vermicompost quality produced from rice straw and paper waste employing earthworm Eisenia fetida (Sav.). Bioresour. Technol. 2018, 250, 708–715. [Google Scholar] [CrossRef]
- Nogales, R.; Romero Taboada, E.; Fernández Gómez, M.J. Vermicompostaje: Procesos, Productos y Aplicaciones III.5; Mundi Prensa & Red Española de Compostaje: Madrid, Spain, 2014; ISBN 9788484766933. [Google Scholar]
- Darwin, C. The Formation of Vegetable Mould though the Action of Worms with Observations on Their Habits; Murray: London, UK, 1881. [Google Scholar]
- Edwards, C.A. Earthworm Ecology, 2nd ed.; Edwards, C.A., Ed.; CRC Press LLC: Boca Raton, FL, USA, 2004; ISBN 978-1884015748. [Google Scholar]
- Zhi-wei, S.; Tao, S.; Wen-jing, D.; Jing, W. Investigation of rice straw and kitchen waste degradation through vermicomposting. J. Environ. Manag. 2019, 243, 269–272. [Google Scholar] [CrossRef]
- Karwal, M.; Kaushik, A. Co-composting and vermicomposting of coal fly-ash with press mud: Changes in nutrients, micro-nutrients and enzyme activities. Environ. Technol. Innov. 2020, 18, 100708. [Google Scholar] [CrossRef]
- Orozco, F.H.; Cegarra, J.; Trujillo, L.M.; Roig, A. Vermicomposting of coffee pulp using the earthworm Eisenia fetida: Effects on C and N contents and the availability of nutrients. Biol. Fertil. Soils 1996, 22, 162–166. [Google Scholar] [CrossRef]
- Degefe, G.; Mengistu, S.; Dominguez, J. Vermicomposting as a sustainable practice to manage coffee husk, enset waste(enset ventricosum), khat waste (Catha edulis) and vegetable waste amended with cow dung using an epigeic earthworm eisenia andrei (Bouch’ 1972). Int. J. PharmTech Res. 2012, 4, 15–24. [Google Scholar]
- Sathianarayanan, A.; Khan, A.B. An Eco-Biological Approach for Resource Recycling and Pathogen (Rhizoctoniae Solani Kuhn.) Suppression. J. Environ. Prot. Sci. 2008, 2, 36–39. [Google Scholar]
- Raphael, K.; Sureka; Velmourougane, K. Vermicomposting of coffee processing wastes using exotic (Eudrilus eugeniae) and native earthworm (Perionyx ceylanesis) species. Macromol. Symp. 2012, 320, 61–69. [Google Scholar] [CrossRef]
- Adi, A.J.; Noor, Z.M. Waste recycling: Utilization of coffee grounds and kitchen waste in vermicomposting. Bioresour. Technol. 2009, 100, 1027–1030. [Google Scholar] [CrossRef] [PubMed]
- Murthy, P.S.; Madhava Naidu, M. Sustainable management of coffee industry by-products and value addition—A review. Resour. Conserv. Recycl. 2012, 66, 45–58. [Google Scholar] [CrossRef]
- Pandey, A.; Soccol, C.R.; Nigam, P.; Brand, D.; Mohan, R.; Roussos, S. Biotechnological potential of coffee pulp and coffee husk for bioprocesses. Biochem. Eng. J. 2000, 6, 153–162. [Google Scholar] [CrossRef]
- Narita, Y.; Inouye, K. Review on utilization and composition of coffee silverskin. Food Res. Int. 2014, 61, 16–22. [Google Scholar] [CrossRef] [Green Version]
- Nagavallemma, K.; Wani, S.; Lacroix, S.; Padmaja, W.; Vineela, C.; Babu Rao, M.; Sahrawat, K. Vermicomposting: Recyclin Wastes into Valuable Organic Fertilizer; ICRISAT: Andhra Pradesh, India, 2004. [Google Scholar]
- Bouché, M.B. Lombriciens De France: Écologie Et Systématique; Annales de Zoologie-Ecologie Animale; Institut National de la Recherche Agronomique: Paris, France, 1972. [Google Scholar]
- Li, W.; Bhat, S.A.; Li, J.; Cui, G.; Wei, Y.; Yamada, T.; Li, F. Effect of excess activated sludge on vermicomposting of fruit and vegetable waste by using novel vermireactor. Bioresour. Technol. 2020, 302, 122816. [Google Scholar] [CrossRef]
- Zucconi, F.; Forte, M.; Monaco, A.; De Bertoldi, M. Biological evaluation of compost maturity. Biocycle 1981, 22, 27–29. [Google Scholar]
- USEPA (US Environmental Protection Agency). Seed germination/Root elongation toxicity test. EG-12. In Environmental Effects Test Guidelines: Part Two; Office of Pesticides & Toxic Substances: Washington, DC, USA, 1982. [Google Scholar]
- Karmegam, N.; Vijayan, P.; Prakash, M.; John Paul, J.A. Vermicomposting of paper industry sludge with cowdung and green manure plants using Eisenia fetida: A viable option for cleaner and enriched vermicompost production. J. Clean. Prod. 2019, 228, 718–728. [Google Scholar] [CrossRef]
- Usmani, Z.; Kumar, V.; Mritunjay, S.K. Vermicomposting of coal fly ash using epigeic and epi-endogeic earthworm species: Nutrient dynamics and metal remediation. RSC Adv. 2017, 7, 4876–4890. [Google Scholar] [CrossRef] [Green Version]
- Gong, X.; Li, S.; Carson, M.A.; Chang, S.X.; Wu, Q.; Wang, L.; An, Z.; Sun, X. Spent mushroom substrate and cattle manure amendments enhance the transformation of garden waste into vermicomposts using the earthworm Eisenia fetida. J. Environ. Manage. 2019, 248, 109263. [Google Scholar] [CrossRef]
- Suthar, S.; Pandey, B.; Gusain, R.; Gaur, R.Z.; Kumar, K. Nutrient changes and biodynamics of Eisenia fetida during vermicomposting of water lettuce (Pistia sp.) biomass: A noxious weed of aquatic system. Environ. Sci. Pollut. Res. 2017, 24, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, J.; Edwards, C.A. Effects of stocking rate and moisture content on the growth and maturation of Eisenia andrei (Oligochaeta) in pig manure. Soil Biol. Biochem. 1997, 29, 743–746. [Google Scholar] [CrossRef]
- Elvira, C.; Dominguez, J.; Briones, M.J.I. Growth and reproduction of Eisenia andrei and E. fetida (Oligochaeta, Lumbricidae) in different organic residues. Pedobiologia 1996, 40, 377–384. [Google Scholar]
- Cluzeau, D.; Fayolle, L.; Hubert, M. The adaptation value of reproductive strategy and mode in three epigeous earthworm species. Soil Biol. Biochem. 1992, 24, 1309–1315. [Google Scholar] [CrossRef]
- Elvira, C.; Domínguez, J.; Mato, S. The growth and reproduction of Lumbricus rubellus and Dendrobaena rubida in cow manure Mixed cultures with Eisenia andrei. Appl. Soil Ecol. 1997, 5, 97–103. [Google Scholar] [CrossRef]
- Haimi, J. Growth and reproduction of the compost-living earthworms Eisenia andrei and E. fetida. Rev. Eco. Biol. Sol 1990, 27, 415–421. [Google Scholar]
- Domínguez, J.; Edwards, C.A.; Webster, M. Vermicomposting of sewage sludge: Effect of bulking materials on the growth and reproduction of the earthworm Eisenia andrei. Pedobiologia 2000, 44, 24–32. [Google Scholar] [CrossRef] [Green Version]
- Elvira, C.; Sampedro, L.; Benítez, E.; Nogales, R. Vermicomposting of sludges from paper mill and dairy industries with Eisena andrei: A pilot-scale study. Bioresour. Technol. 1998, 63, 205–211. [Google Scholar] [CrossRef]
- Suthar, S. Recycling of agro-industrial sludge through vermitechnology. Ecol. Eng. 2010, 36, 1028–1036. [Google Scholar] [CrossRef]
- Suthar, S. Bioconversion of post harvest crop residues and cattle shed manure into value-added products using earthworm Eudrilus eugeniae Kinberg. Ecol. Eng. 2008, 32, 206–214. [Google Scholar] [CrossRef]
- Bhat, S.A.; Singh, J.; Vig, A.P. Potential utilization of bagasse as feed material for earthworm Eisenia fetida and production of vermicompost. Springerplus 2015, 4, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frederickson, J.; Butt, K.R.; Morris, R.M.; Catherine, D. Combining vermicultura with traditional green waste composting systems. Soil Biol. Biochem. 1997, 29, 725–730. [Google Scholar] [CrossRef]
- Edwards, C.A.; Dominguez, J.; Neuhauser, E.F. Growth and reproduction of Perionyx excavatus (Perr.) (Megascolecidae) as factors in organic waste management. Biol. Fertil. Soils 1998, 27, 155–161. [Google Scholar] [CrossRef]
- Suthar, S.; Singh, S. Feasibility of vermicomposting in biostabilization of sludge from a distillery industry. Sci. Total Environ. 2008, 394, 237–243. [Google Scholar] [CrossRef]
- Butt, K.R. Utilisation of solid paper-mill sludge and spent brewery yeast as a feed for soil-dwelling earthworms. Bioresour. Technol. 1993, 44, 105–107. [Google Scholar] [CrossRef]
- Negi, R.; Suthar, S. Vermistabilization of paper mill wastewater sludge using Eisenia fetida. Bioresour. Technol. 2013, 128, 193–198. [Google Scholar] [CrossRef]
- Roberts, B.L.; Wyman Dorough, H. Relative toxicities of chemicals to the earthworm Eisenia foetida. Environ. Toxicol. Chem. 1984, 3, 67–78. [Google Scholar] [CrossRef]
- Suthar, S. Nutrient changes and biodynamics of epigeic earthworm Perionyx excavatus (Perrier) during recycling of some agriculture wastes. Bioresour. Technol. 2007, 98, 1608–1614. [Google Scholar] [CrossRef]
- Kavitha, P.; Ravikumar, G.; Manivannan, S. Vermicomposting of banana agro-waste using an epigeic earthworm Eudrilus eugeniae (kinberg) C:N (%). Int. J. Recent Sci. Res. 2010, 1, 32–35. [Google Scholar]
- Karak, T.; Paul, R.K.; Sonar, I.; Sanyal, S.; Ahmed, K.Z.; Boruah, R.K.; Das, D.K.; Dutta, A.K. Chromium in soil and tea (Camellia sinensis L.) infusion: Does soil amendment with municipal solid waste compost make sense? Food Res. Int. 2014, 64, 114–124. [Google Scholar] [CrossRef]
- Das, S.; Deka, P.; Goswami, L.; Sahariah, B.; Hussain, N.; Bhattacharya, S.S. Vermiremediation of toxic jute mill waste employing Metaphire posthuma. Environ. Sci. Pollut. Res. 2016, 23, 15418–15431. [Google Scholar] [CrossRef] [PubMed]
- Unuofin, F.O.; Mnkeni, P.N.S. Optimization of Eisenia fetida stocking density for the bioconversion of rock phosphate enriched cow dung-waste paper mixtures. Waste Manag. 2014, 34, 2000–2006. [Google Scholar] [CrossRef] [PubMed]
- Che, J.; Lin, W.; Ye, J.; Liao, H.; Yu, Z.; Lin, H.; Zhou, S. Insights into compositional changes of dissolved organic matter during a full-scale vermicomposting of cow dung by combined spectroscopic and electrochemical techniques. Bioresour. Technol. 2020, 301, 122757. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Sun, X. Using cow dung and spent coffee grounds to enhance the two-stage co-composting of green waste. Bioresour. Technol. 2017, 245, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Hussain, N.; Das, S.; Goswami, L.; Das, P.; Sahariah, B.; Bhattacharya, S.S. Intensification of vermitechnology for kitchen vegetable waste and paddy straw employing earthworm consortium: Assessment of maturity time, microbial community structure, and economic benefit. J. Clean. Prod. 2018, 182, 414–426. [Google Scholar] [CrossRef]
- Moreno Casco, J.; Moral Herrero, R. Compostaje; Mundi-Prensa: Madrid, Spain, 2008; ISBN 9788484764793. [Google Scholar]
PARAMETERS | HM | CS | SCG |
---|---|---|---|
pH | 8.3 | 8.5 | 3.9 |
EC (dS/m) | 1.4 | 2 | 0.5 |
OMC (g 100 g−1) | 73.9 | 91.3 | 99.1 |
TOC (g 100 g−1) | 42.9 | 53 | 57.5 |
TKN (g 100 g−1) | 3.2 | 5.1 | 2.1 |
Ammonia (g 100 g−1) | 0.2 | 0.5 | <0.1 |
Organic N (g 100 g−1) | 3 | 4.6 | 2 |
C:N ratio | 14 | 11 | 28 |
TP (g 100 g−1) | 2.1 | 0.4 | 0 |
TK (g 100 g−1) | 2.2 | 3.3 | <0.1 |
Ca (g 100 g−1) | 6.6 | 2.2 | 0.2 |
Mg (g 100 g−1) | 1.2 | 0.8 | <0.1 |
Na (g 100 g−1) | 0.2 | <0.1 | <0.1 |
S (g 100 g−1) | 1.7 | 1.2 | 0.3 |
Fe (g 100 g−1) | 0.21 | 0.15 | 0.58 |
Treatments | Name Given | HM | SCG | CS |
---|---|---|---|---|
T1 | Control | 100 | 0 | 0 |
T2 | HM75/25SCG | 75 | 25 | 0 |
T3 | HM50/50SCG | 50 | 50 | 0 |
T4 | HM25/75SCG | 25 | 75 | 0 |
T5 | 100% SCG | 0 | 100 | 0 |
T6 | HM75/25CS | 75 | 0 | 25 |
T7 | HM50/50CS | 50 | 0 | 50 |
T8 | HM25/75CS | 25 | 0 | 75 |
T9 | 100% CS | 0 | 0 | 100 |
Mean Values (and Standard Deviations) of Bread Wheat Seeds Essay Germination Parameters | |||||
---|---|---|---|---|---|
Treatment | GP (%) | RSG (%) | RRG (%) | RShG (%) | GI (%) |
T1 | 49.3 ± 8.3 a | 96.9 ± 13.3 a | 161.5 ± 85.8 a | 231.4 ± 86.6 a | 158.1 ± 90.0 a |
T2 | 45.3 ± 25.4 a | 90.5 ± 58.4 a | 158.8 ± 159.1 a | 238.9 ± 244.5 a | 204.5 ± 262.0 a |
T3 | 50.7 ± 18.9 a | 104.3 ± 48.8 a | 133.6 ± 79.8 a | 171.8 ± 121.8 a | 158.7 ± 116.4 a |
T4 | 54.7 ± 18.0 a | 107.0 ± 32.5 a | 275.2 ± 253.3 a | 307.7 ± 255.4 a | 346.3 ± 388.0 a |
T5 | 44.0 ± 6.9 a | 91.0 ± 34.4 a | 185.6 ± 198.2 a | 179.6 ± 190.9 a | 205.5 ± 253.6 a |
T6 | 49.3 ± 12.2 a | 102.6 ± 43.1 a | 153.3 ± 135.9 a | 205.8 ± 175.4 a | 181.4 ± 195.2 a |
T7 | 66.7 ± 11.5 a | 135.0 ± 41.3 a | 256.4 ± 216.0 a | 345.1 ± 294.3 a | 384.3 ± 339.7 a |
T8 | 42.7 ± 6.1 a | 84.9 ± 18.2 a | 140.2 ± 84.7 a | 244.5 ± 128.0 a | 124.3 ± 83.1 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Moreno, M.A.; García Gracianteparaluceta, B.; Marcelino Sádaba, S.; Zaratiegui Urdin, J.; Robles Domínguez, E.; Pérez Ezcurdia, M.A.; Seco Meneses, A. Feasibility of Vermicomposting of Spent Coffee Grounds and Silverskin from Coffee Industries: A Laboratory Study. Agronomy 2020, 10, 1125. https://doi.org/10.3390/agronomy10081125
González-Moreno MA, García Gracianteparaluceta B, Marcelino Sádaba S, Zaratiegui Urdin J, Robles Domínguez E, Pérez Ezcurdia MA, Seco Meneses A. Feasibility of Vermicomposting of Spent Coffee Grounds and Silverskin from Coffee Industries: A Laboratory Study. Agronomy. 2020; 10(8):1125. https://doi.org/10.3390/agronomy10081125
Chicago/Turabian StyleGonzález-Moreno, M.A., B. García Gracianteparaluceta, S. Marcelino Sádaba, J. Zaratiegui Urdin, E. Robles Domínguez, M.A. Pérez Ezcurdia, and A. Seco Meneses. 2020. "Feasibility of Vermicomposting of Spent Coffee Grounds and Silverskin from Coffee Industries: A Laboratory Study" Agronomy 10, no. 8: 1125. https://doi.org/10.3390/agronomy10081125
APA StyleGonzález-Moreno, M. A., García Gracianteparaluceta, B., Marcelino Sádaba, S., Zaratiegui Urdin, J., Robles Domínguez, E., Pérez Ezcurdia, M. A., & Seco Meneses, A. (2020). Feasibility of Vermicomposting of Spent Coffee Grounds and Silverskin from Coffee Industries: A Laboratory Study. Agronomy, 10(8), 1125. https://doi.org/10.3390/agronomy10081125