Response of Switchgrass Grown for Forage and Bioethanol to Nitrogen, Phosphorus, and Potassium on Semiarid Marginal Land
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design and Operation
2.3. Sample Collection and Measurements
2.4. Calculations and Data Analyses
3. Results
3.1. Effects of Year, Nutrient Treatment, and Their Interaction
3.2. Biomass Compositions
3.3. Partitioning of Chemical Compositions
3.4. Crude Protein Yield and Theoretical Ethanol Yield
4. Discussion
4.1. N Supply Needs to Be the Focus for Switchgrass as a Candidate Forage Crop
4.2. Application of NPK Needs to Be the Focus for Switchgrass as a Candidate Bioenergy Crop
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xiong, S.; Zhang, Q.G.; Zhang, D.Y.; Olsson, R. Influence of harvest time on fuel characteristics of five potential energy crops in northern China. Bioresour. Technol. 2008, 99, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Hou, X.; Fan, X.; Yi, Z.; Zhao, C.; Wu, J. Biomass yield components for 12 switchgrass cultivars grown in Northern China. Biomass Bioenergy 2017, 102, 44–51. [Google Scholar] [CrossRef]
- Guretzky, J.A.; Biermacher, J.T.; Cook, B.J.; Kering, M.K.; Mosali, J. Switchgrass for forage and bioenergy: Harvest and nitrogen rate effects on biomass yields and nutrient composition. Plant Soil 2011, 339, 69–81. [Google Scholar] [CrossRef] [Green Version]
- Mclaughlin, S.B.; Kszos, L.A. Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass Bioenergy 2005, 28, 515–535. [Google Scholar] [CrossRef]
- Schmer, M.R.; Vogel, K.P.; Mitchell, R.B.; Perrin, R.K. Net energy of cellulosic ethanol from switchgrass. Proc. Natl. Acad. Sci. USA 2008, 105, 464–469. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, R.B.; Schmer, M.R.; Anderson, W.F.; Jin, V.; Balkcom, K.S.; Kiniry, J.; White, P. Dedicated energy crops and crop residues for bioenergy feedstocks in the central and eastern USA. Bioenergy Res. 2016, 9, 384–398. [Google Scholar] [CrossRef] [Green Version]
- Berti, M.T.; Johnson, B.L. Switchgrass establishment as affected by seeding depth and soil type. Ind. Crops Prod. 2013, 41, 289–293. [Google Scholar] [CrossRef]
- Duclos, D.V.; Ray, D.T.; Johnson, D.J.; Taylor, A.G. Investigating seed dormancy in switchgrass (Panicum virgatum L.): Understanding the physiology and mechanisms of coat-imposed seed dormancy. Ind. Crops Prod. 2013, 45, 377–387. [Google Scholar] [CrossRef]
- Tang, C.; Li, S.; Li, M.; Xie, G.H. Bioethanol potential of energy sorghum grown on marginal and arable lands. Front. Plant Sci. 2018, 9, 440. [Google Scholar] [CrossRef] [Green Version]
- Anderson, E.K.; Parrish, A.S.; Voigt, T.B.; Owens, V.N.; Hong, C.H.; Lee, D.K. Nitrogen fertility and harvest management of switchgrass for sustainable bioenergy feedstock production in Illinois. Ind. Crops Prod. 2013, 48, 19–27. [Google Scholar] [CrossRef]
- Stals, H.; Inzé, D. When plant cells decide to divide. Trends Plant Sci. 2001, 6, 359–364. [Google Scholar] [CrossRef]
- Fredeen, A.L.; Rao, I.M.; Terry, N. Influence of phosphorus nutrition on growth and carbon partitioning in Glycine max. Plant Physiol. 1989, 89, 225–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kering, M.K.; Butler, T.J.; Mosali, J.; Guretzky, J.A. Biomass yield and nutrient responses of switchgrass to phosphorus application. Bioenergy Res. 2012, 5, 71–78. [Google Scholar] [CrossRef] [Green Version]
- Kayser, M.; Isselstein, J. Potassium cycling and losses in grassland systems: A review. Grass Forage Sci. 2010, 60, 213–224. [Google Scholar] [CrossRef]
- Kering, M.K.; Butler, T.J.; Biermacher, J.T.; Mosali, J.; Guretzky, J.A. Effect of potassium and nitrogen fertilizer on switchgrass productivity and nutrient removal rates under two harvest systems on a low potassium soil. Bioenergy Res. 2013, 6, 329–335. [Google Scholar] [CrossRef] [Green Version]
- Lemus, R.; Brummer, E.C.; Burras, C.L.; Moore, K.J.; Barker, M.F.; Molstad, N.E. Effects of nitrogen fertilization on biomass yield and quality in large fields of established switchgrass in southern Iowa, USA. Biomass Bioenergy 2008, 32, 1187–1194. [Google Scholar] [CrossRef] [Green Version]
- Hong, C.O.; Owens, V.N.; Bransby, D.; Farris, R.; Fike, J.; Heaton, E.; Viands, D. Switchgrass response to nitrogen fertilizer across diverse environments in the USA: A regional feedstock partnership report. Bioenergy Res. 2014, 7, 777–788. [Google Scholar] [CrossRef]
- Hao, B.; Xue, Q.; Bean, B.W.; Rooney, W.L.; Becker, J.D. Biomass production, water and nitrogen use efficiency in photoperiod-sensitive sorghum in the Texas High Plains. Biomass Bioenergy 2014, 62, 108–116. [Google Scholar] [CrossRef]
- Njoroge, S.; Schut, A.G.T.; Giller, K.E.; Zingore, S. Strong spatial-temporal patterns in maize yield response to nutrient additions in African smallholder farms. Field Crops Res. 2017, 214, 321–330. [Google Scholar] [CrossRef] [Green Version]
- Ameen, A.; Tang, C.; Han, L.; Xie, G.H. Short-term response of switchgrass to nitrogen, phosphorus, and potassium on semiarid sandy wasteland managed for biofuel feedstock. Bioenergy Res. 2018, 11, 228–238. [Google Scholar] [CrossRef]
- Emami Bistgani, Z.; Ataollah Siadat, S.; Bakhshandeh, A.; Ghasemi Pirbalouti, A.; Hashemi, M.; Maggi, F.; Reza Morshedloo, M. Application of combined fertilizers improves biomass, essential oil yield, aroma profile, and antioxidant properties of Thymus daenensis Celak. Ind. Crops Prod. 2018, 121, 434–440. [Google Scholar] [CrossRef]
- Subedi, K.D.; Ma, B.L. Assessment of some major yield-limiting factors on maize production in a humid temperate environment. Field Crops Res. 2009, 110, 21–26. [Google Scholar] [CrossRef]
- Dai, X.Q.; Zhang, H.Y.; Spiertz, J.H.J.; Yu, J.; Xie, G.H.; Bouman, B.A.M. Crop response of aerobic rice and winter wheat to nitrogen, phosphorus and potassium in a double cropping system. Nutr. Cycl. Agroecosyst. 2010, 86, 301–315. [Google Scholar] [CrossRef]
- Kurwakumire, N.; Chikowo, R.; Mtambanengwe, F.; Mapfumo, P.; Snapp, S.; Johnston, A.; Zingore, S. Maize productivity and nutrient and water use efficiencies across soil fertility domains on smallholder farms in Zimbabwe. Field Crops Res. 2014, 164, 136–147. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, T.; Li, X.K.; Tao, R.; Cong, R.H.; Lu, J.W. Nutrient deficiency limits population development, yield formation, and nutrient uptake of direct sown winter oilseed rape. J. Integr. Agric. 2015, 14, 670–680. [Google Scholar] [CrossRef] [Green Version]
- Springer, T.L. Effect of nitrogen fertilization and residual nitrogen on biomass yield of switchgrass. Bioenergy Res. 2017, 10, 648–656. [Google Scholar] [CrossRef]
- Nazli, R.I.; Tansi, V.; Ozturk, H.H.; Kusvuran, A. Miscanthus, switchgrass, giant reed, and bulbous canary grass as potential bioenergy crops in a semi-arid Mediterranean environment. Ind. Crops Prod. 2018, 125, 9–23. [Google Scholar] [CrossRef]
- An, Y.; Gao, Y.; Ma, Y. Growth performance and weed control effect in response to nitrogen supply for switchgrass after establishment in the semiarid environment. Field Crops Res. 2018, 221, 175–181. [Google Scholar] [CrossRef]
- Hoagland, K.C.; Ruark, M.D.; Renz, M.J.; Jackson, R.D. Agricultural management of switchgrass for fuel quality and thermal energy yield on highly erodible land in the driftless area of Southwest Wisconsin. Bioenergy Res. 2013, 6, 1012–1021. [Google Scholar] [CrossRef]
- Sadeghpour, A.; Gorlitsky, L.E.; Hashemi, M.; Weis, S.A.; Herbert, S.J. Response of switchgrass yield and quality to harvest season and nitrogen fertilizer. Agron. J. 2014, 106, 290–296. [Google Scholar] [CrossRef]
- Ameen, A.; Tang, C.; Liu, J.; Han, L.; Xie, G.H. Switchgrass as forage and biofuel feedstock: Effect of nitrogen fertilization rate on the quality of biomass harvested in late summer and early fall. Field Crops Res. 2019, 235, 154–162. [Google Scholar] [CrossRef]
- Haque, M.; Biermacher, J.T.; Kering, M.K.; Guretzky, J.A. Economics of alternative fertilizer supply systems for switchgrass produced in phosphorus-deficient soils for bioenergy feedstock. Bioenergy Res. 2013, 6, 351–357. [Google Scholar] [CrossRef] [Green Version]
- Muir, J.P.; Sanderson, M.A.; Ocumpaugh, W.R.; Jones, R.M.; Reed, R.L. Biomass production of ‘Alamo’ switchgrass in response to nitrogen, phosphorus, and row spacing. Agron. J. 2001, 93, 896–901. [Google Scholar] [CrossRef]
- Foth, H.D. Fundamentals of Soil Science, 8th ed.; John Wiley & Sons: New York, NY, USA, 1990. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total nitrogen analysis of soil and plant tissues. J. Assoc. Off. Anal. Chem. 1980, 63, 770–777. [Google Scholar] [CrossRef]
- Hewitt, B.R. Spectrophotometric determination of total carbohydrate. Nature 1958, 182, 246–247. [Google Scholar] [CrossRef]
- Van Soest, P.; Robertson, J.; Lewis, B. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Lithourgidis, A.S.; Vasilakoglou, I.B.; Dhima, K.V.; Dordas, C.A.; Yiakoulaki, M.D. Forage yield and quality of common vetch mixtures with oat and triticale in two seeding ratios. Field Crop Res. 2006, 99, 106–113. [Google Scholar] [CrossRef]
- Jahanzad, E.; Jorat, M.; Moghadam, H.; Sadeghpour, A.; Chaichi, M.R.; Dashtaki, M. Response of a new and a commonly grown forage sorghum cultivar to limited irrigation and planting density. Agric. Water Manag. 2013, 117, 62–69. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Dolat, A.; Steinberger, Y.; Wang, X.; Osman, A.; Xie, G.H. Biomass yield and changes in chemical composition of sweet sorghum cultivars grown for biofuel. Field Crop Res. 2009, 111, 55–64. [Google Scholar] [CrossRef]
- Liu, X.J.A.; Fike, J.H.; Galbraith, J.M.; Fike, W.B.; Parrish, D.J.; Evanylo, G.K.; Strahm, B.D. Effects of harvest frequency and biosolids application on switchgrass yield, feedstock quality, and theoretical ethanol yield. GCB Bioenergy 2015, 7, 112–121. [Google Scholar] [CrossRef]
- Waramit, N.; Moore, K.J.; Fales, S.L. Forage quality of native warm-season grasses in response to nitrogen fertilization and harvest date. Anim. Feed Sci. Technol. 2012, 174, 46–59. [Google Scholar] [CrossRef]
- Burton, G.W.; Wilkinson, W.S.; Carter, R.L. Effect of nitrogen, phosphorus and potassium levels and clipping frequency on the forage yield and protein, carotene, and xanthophyll content of coastal bermudagrass. Agron. J. 1969, 61, 60–64. [Google Scholar] [CrossRef]
- Haque, M.; Biermacher, J.T.; Kering, M.K.; Guretzky, J.A. Economic evaluation of switchgrass feedstock production systems tested in potassium-deficient soils. Bioenergy Res. 2014, 7, 260–267. [Google Scholar] [CrossRef] [Green Version]
- Allison, G.G.; Morris, C.; Lister, S.J.; Barraclough, T.; Yates, N.; Shield, I.; Donnison, I.S. Effect of nitrogen fertiliser application on cell wall composition in switchgrass and reed canary grass. Biomass Bioenergy 2012, 40, 19–26. [Google Scholar] [CrossRef]
- Ashworth, A.J.; Weiss, S.A.; Keyser, P.D.; Allen, F.L.; Tyler, D.D.; Taylor, A.; Pote, D.H. Switchgrass composition and yield response to alternative soil amendments under intensified heat and drought conditions. Agric. Ecosyst. Environ. 2016, 233, 415–424. [Google Scholar] [CrossRef] [Green Version]
- Burner, D.M.; Tew, T.L.; Harvey, J.J.; Belesky, D.P. Dry matter partitioning and quality of Miscanthus, Panicum, and Saccharum genotypes in Arkansas, USA. Biomass Bioenergy 2009, 33, 610–619. [Google Scholar] [CrossRef]
- Cherney, J.H.; Cherney, D.J.R.; Paddock, K.M. Biomass yield and composition of switchgrass bales on marginal land as influenced by harvest management scheme. Bioenergy Res. 2018, 11, 33–43. [Google Scholar] [CrossRef]
- Keshwani, D.R.; Cheng, J.J. Switchgrass for bioethanol and other value-added applications: A review. Bioresour. Technol. 2009, 100, 1515–1523. [Google Scholar] [CrossRef] [Green Version]
- Gelfand, I.; Sahajpal, R.; Zhang, X.; Izaurralde, R.C.; Gross, K.L.; Robertson, G.P. Sustainable bioenergy production from marginal lands in the US Midwest. Nature 2013, 493, 514–517. [Google Scholar] [CrossRef]
- Dale, B.E.; Anderson, J.E.; Brown, R.C.; Steven, C.; Dale, V.H.; Gary, H.; Lynd, L.R. Take a closer look: Biofuels can support environmental, economic and social goals. Environ. Sci. Technol. 2014, 48, 7200–7203. [Google Scholar] [CrossRef]
- Jungers, J.M.; Sheaffer, C.C.; Lamb, J.A. The effect of nitrogen, phosphorus, and potassium fertilizers on prairie biomass yield, ethanol yield, and nutrient harvest. Bioenergy Res. 2015, 8, 279–291. [Google Scholar] [CrossRef]
- Schmer, M.R.; Vogel, K.P.; Varvel, G.E.; Follett, R.F.; Mitchell, R.B.; Jin, V.L. Energy potential and greenhouse gas emissions from bioenergy cropping systems on marginally productive cropland. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.M.; Meng, F.Y.; Molatudi, R.L.; Zhang, B.G. Sorghum and switchgrass as biofuel feedstocks on marginal lands in northern China. Bioenergy Res. 2016, 9, 633–642. [Google Scholar] [CrossRef]
- Tang, C.C.; Yang, X.L.; Xie, G.H. Establishing sustainable sweet sorghum-based cropping systems for forage and bioenergy feedstock in North China Plain. Field Crops Res. 2018, 227, 144–154. [Google Scholar] [CrossRef]
- Parrish, D.J.; Fike, J.H. The biology and agronomy of switchgrass for biofuels. Crit. Rev. Plant Sci. 2005, 24, 423–459. [Google Scholar] [CrossRef]
- Madakadze, I.C.; Stewart, K.; Peterson, P.R.; Coulman, B.E.; Smith, D.L. Switchgrass biomass and chemical composition for biofuel in eastern Canada. Agron. J. 1999, 91, 696–701. [Google Scholar] [CrossRef]
- Waramit, N.; Moore, K.J.; Heggenstaller, A.H. Composition of native warm-season grasses for bioenergy production in response to nitrogen fertilization rate and harvest date. Agron. J. 2011, 103, 655–662. [Google Scholar] [CrossRef]
- Sanderson, M.A.; Reed, R.L.; McLaughlin, S.B.; Wullschleger, S.D.; Conger, B.V.; Parrish, D.J.; Hussey, M.A. Switchgrass as a sustainable bioenergy crop. Bioresour. Technol. 1996, 56, 83–93. [Google Scholar] [CrossRef]
- Lewandowski, I.; Kicherer, A. Combustion quality of biomass: Practical relevance and experiments to modify the biomass quality of Miscanthus x giganteus. Eur. J. Agron. 1997, 6, 163–177. [Google Scholar] [CrossRef]
- Zhang, K.; Zhou, L.; Brady, M.; Xu, F.; Yu, J.; Wang, D. Fast analysis of high heating value and elemental compositions of sorghum biomass using near-infrared spectroscopy. Energy 2017, 118, 1353–1360. [Google Scholar] [CrossRef] [Green Version]
Nutrient | Treatment | Split | |||||
---|---|---|---|---|---|---|---|
(kg ha−1) | NPK | PK (N Omission) | NK (P Omission) | NP (K Omission) | CK (Blank Control) | Elongation (%) | Anthesis (%) |
N | 120 | 0 | 120 | 120 | 0 | 65 | 35 |
P | 100 | 100 | 0 | 100 | 0 | 100 | 0 |
K | 45 | 45 | 45 | 0 | 0 | 100 | 0 |
Parameter | Year (df = 1) | Nutrient Treatment (df = 4) | Year × Nutrient Treatment (df = 4) |
---|---|---|---|
Crude Protein (%) | ns | *** | ns |
Protein Yield (kg ha−1) | ns | *** | ns |
NDF (%) | *** | ns | ** |
ADF (%) | ns | ns | ns |
DMD (%) | ns | ns | ns |
DMI (%) | *** | ns | ** |
TDN (%) | ns | ns | ns |
NEL (%) | ns | ns | ns |
RFV (%) | *** | ns | ** |
Soluble Sugar (g kg−1) | * | ns | ns |
Cellulose (g kg−1) | ns | ns | ns |
Hemicellulose (g kg−1) | *** | ns | ns |
Ash (g kg−1) | *** | * | ns |
TEY (L ha−1) | * | *** | ns |
Treatment | Forage Quality (%) | |||||||
---|---|---|---|---|---|---|---|---|
CP | NDF | ADF | DMD | DMI | TDN | NEL | RFV | |
2015 | ||||||||
NPK | 5.46 ± 0.15 a | 58.1 ± 2.8 bc | 32.9 ± 2.3 | 63.2 ± 1.8 | 2.07 ± 0.10 ab | 58.8 ± 3.0 | 1.44 ± 0.06 | 101.5 ± 7.4 a |
PK | 4.34 ± 0.46 bc | 58.8 ± 2.4 abc | 33.4 ± 1.4 | 62.9 ± 1.4 | 2.04 ± 0.09 abc | 58.2 ± 2.4 | 1.42 ± 0.05 | 99.6 ± 6.3 ab |
NK | 5.14 ± 0.60 ab | 62.4 ± 0.7 a | 35.1 ± 0.8 | 61.5 ± 0.6 | 1.92 ± 0. 02 c | 56.0 ± 1.1 | 1.38 ± 0.02 | 91.8 ± 1.8 b |
NP | 5.48 ± 0.94 a | 57.1 ± 1.8 c | 32.9 ± 2.1 | 63.3 ± 1.7 | 2.10 ± 0.07 a | 58.9 ± 2.77 | 1.44 ± 0.06 | 103.2 ± 4.8 a |
CK | 3.92 ± 0.50 c | 60.9 ± 2.9 ab | 34.0 ± 2.0 | 62.4 ± 1.6 | 1.97 ± 0.09 bc | 57.4 ± 2.6 | 1.41 ± 0.05 | 95.5 ± 6.6 ab |
2016 | ||||||||
NPK | 5.20 ± 0.31 ab | 63.4 ± 0.8 ab | 35.0 ± 0.6 | 61.7 ± 4.9 | 1.89 ± 0.02 ab | 56.2 ± 0.8 | 1.38 ± 0.02 | 90.5 ± 0.6 b |
PK | 5.07 ± 0.36 ab | 63.2 ± 3.1 ab | 35.1 ± 1.3 | 61.6 ± 1.0 | 1.90 ± 0.09 ab | 56.1 ± 1.7 | 1.38 ± 0.03 | 90.8 ± 4.4 b |
NK | 5.13 ± 0.67 ab | 60.7 ± 0.6 b | 33.9 ± 0.9 | 62.5 ± 0.7 | 1.98 ± 0.02 a | 57.6 ± 1.2 | 1.41 ± 0.02 | 95.9 ± 1.9 a |
NP | 5.55 ± 0.54 a | 64.0 ± 1.4 a | 35.0 ± 0.3 | 61.6 ± 0.3 | 1.87 ± 0.04 b | 56.1 ± 0.4 | 1.38 ± 0.01 | 89.5 ± 2.2 b |
CK | 4.53 ± 0.43 c | 63.0 ± 1.7 ab | 34.4 ± 1.8 | 62.1 ± 1.4 | 1.91 ± 0.05 ab | 56.9 ± 2.3 | 1.40 ± 0.05 | 91.8 ± 4.3 ab |
Treatment | Bioenergy Quality (g kg−1) | |||
---|---|---|---|---|
Soluble Sugar | Cellulose | Hemicellulose | Ash | |
2015 | ||||
NPK | 77.0 ± 11.2 | 294.6 ± 36.1 | 251.9 ± 11.0 ab | 54.6 ± 9.1 |
PK | 85.7 ± 7.1 | 305.5 ± 26.7 | 253.8 ± 12.7 ab | 50.0 ± 3.6 |
NK | 75.3 ± 1.6 | 307.1 ± 14.0 | 272.7 ± 7.1 a | 55.1 ± 5.0 |
NP | 88.0 ± 3.3 | 296.1 ± 18.5 | 242.1 ± 25.6 b | 57.4 ± 7.4 |
CK | 83.9 ± 15.3 | 318.4 ± 16.6 | 268.6 ± 13.8 a | 54.8 ± 3.2 |
2016 | ||||
NPK | 72.1 ± 4.7 | 312.2 ± 7.3 | 284.6 ± 13.7 | 75.9 ± 5.6 abc |
PK | 77.9 ± 4.2 | 315.6 ± 20.1 | 280.9 ± 35.4 | 70.6 ± 5.6 bc |
NK | 71.9 ± 8.9 | 313.8 ± 10.9 | 268.4 ± 6.7 | 78.4 ± 3.7 ab |
NP | 72.6 ± 10.2 | 318.7 ± 9.3 | 290.2 ± 12.5 | 82.1 ± 8.8 a |
CK | 76.2 ± 13.6 | 320.2 ± 19.4 | 285.1 ± 7.6 | 67.6 ± 5.8 c |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, C.-C.; Han, L.-P.; Xie, G.-H. Response of Switchgrass Grown for Forage and Bioethanol to Nitrogen, Phosphorus, and Potassium on Semiarid Marginal Land. Agronomy 2020, 10, 1147. https://doi.org/10.3390/agronomy10081147
Tang C-C, Han L-P, Xie G-H. Response of Switchgrass Grown for Forage and Bioethanol to Nitrogen, Phosphorus, and Potassium on Semiarid Marginal Land. Agronomy. 2020; 10(8):1147. https://doi.org/10.3390/agronomy10081147
Chicago/Turabian StyleTang, Chao-Chen, Li-Pu Han, and Guang-Hui Xie. 2020. "Response of Switchgrass Grown for Forage and Bioethanol to Nitrogen, Phosphorus, and Potassium on Semiarid Marginal Land" Agronomy 10, no. 8: 1147. https://doi.org/10.3390/agronomy10081147
APA StyleTang, C. -C., Han, L. -P., & Xie, G. -H. (2020). Response of Switchgrass Grown for Forage and Bioethanol to Nitrogen, Phosphorus, and Potassium on Semiarid Marginal Land. Agronomy, 10(8), 1147. https://doi.org/10.3390/agronomy10081147