Revamping of Cotton Breeding Programs for Efficient Use of Genetic Resources under Changing Climate
Abstract
:1. Introduction
2. Concept of Sustainable Cotton Production
3. Cotton Genetic Resources
4. Classical Cotton Breeding Concept
5. Tolerance to Environmental Stresses
6. New Emerging Technologies
7. Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ulloa, M.; De Santiago, L.M.; Hulse-Kemp, A.M.; Stelly, D.M.; Burke, J.J. Enhancing Upland cotton for drought resilience, productivity, and fiber quality: Comparative evaluation and genetic dissection. Mol. Genet. Genom. 2020, 295, 155–176. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.J.; Myers, G.O. Combining abilities and inheritance of yield components in influential upland cotton varieties. Aust. J. Crop Sci. 2011, 5, 384–390. [Google Scholar]
- Thyssen, G.N.; Jenkins, J.N.; McCarty, J.C.; Zeng, L.H.; Campbell, B.T.; Delhom, C.D.; Islam, M.S.; Li, P.; Jones, D.C.; Condon, B.D.; et al. Whole genome sequencing of a MAGIC population identified genomic loci and candidate genes for major fiber quality traits in upland cotton (Gossypium hirsutum L.). Theor. Appl. Genet. 2019, 132, 989–999. [Google Scholar] [CrossRef] [PubMed]
- Raman, R. The impact of Genetically Modified (GM) crops in modern agriculture: A review. GM Crop. Food Biotechnol. Agric. Food Chain 2017, 8, 195–208. [Google Scholar] [CrossRef]
- Srikanth, P.; Maxton, A.; Masih, S. Bt Cotton: A Boon against Insect Resistance. J. Pharm. Phys. 2019, 8, 202–205. [Google Scholar]
- Fangbin, Q. Fifteen Years of Bt Cotton in China: The Economic Impact and its Dynamics. World Dev. 2015, 70, 177–185. [Google Scholar]
- Zhu, T.; Liang, C.Z.; Meng, Z.G.; Sun, G.Q.; Meng, Z.H.; Guo, S.D.; Zhang, R. CottonFGD: An integrated functional genomics database for cotton. BMC Plant Biol. 2017, 17. [Google Scholar] [CrossRef] [Green Version]
- Constable, G.A.; Bange, M.P. The yield potential of cotton (Gossypium hirsutum L.). Field Crop. Res. 2015, 182, 98–106. [Google Scholar] [CrossRef]
- Gruda, N.; Bisbis, M.; Tanny, J. Influence of climate change on protected cultivation: Impacts and sustainable adaptation strategies—A review. J. Clean. Prod. 2019, 225, 481–495. [Google Scholar] [CrossRef]
- Abobatta, W. Precision Agriculture Age. Open Acc. J. Agric. Res. 2020, 2, 1–5. [Google Scholar]
- Fryxell, P.; Craven, L.; Stewart, J. A Revision of Gossypium Sect. Grandicalyx (Malvaceae), Including the Description of Six New Species. Syst. Bot. 1992, 17, 91. [Google Scholar] [CrossRef]
- Yang, Z.R.; Qanmber, G.; Wang, Z.; Yang, Z.E.; Li, F.G. Gossypium Genomics: Trends, Scope, and Utilization for Cotton Improvement. Trends Plant Sci. 2020, 25, 488–500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, G.; Wu, Z.G.; Percy, R.G.; Bai, M.Z.; Li, Y.; Frelichowski, J.E.; Hu, J.; Wang, K.; Yu, J.Z.; Zhu, Y.X. Genome sequence of Gossypium herbaceum and genome updates of Gossypium arboreum and Gossypium hirsutum provide insights into cotton A-genome evolution. Nat. Genet. 2020, 52, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wendel, J.F.; Brubaker, C.; Alvarez, I.; Cronn, R.; Stewart, J.M. Evolution and Natural History of the Cotton Genus. In Genetics and Genomics of Cotton; Paterson, A.H., Ed.; Springer: New York, NY, USA, 2009; pp. 3–22. [Google Scholar] [CrossRef]
- Bao, Y.; Hu, G.J.; Grover, C.E.; Conover, J.; Yuan, D.J.; Wendel, J.F. Unraveling cis and trans regulatory evolution during cotton domestication. Nat. Commun. 2019, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Y.; Chen, J.; Fang, L.; Zhang, Z.; Ma, W.; Niu, Y.; Ju, L.; Deng, J.; Zhao, T.; Lian, J.; et al. Gossypium Barb. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat. Genet. 2019, 51, 739–748. [Google Scholar] [CrossRef] [Green Version]
- Lubbers, E.L.; Chee, P.W. The Worldwide Gene Pool of G. hirsutum and its Improvement. In Genetics and Genomics of Cotton; Paterson, A.H., Ed.; Springer: New York, NY, USA, 2009; pp. 23–52. [Google Scholar] [CrossRef]
- Ai, X.T.; Liang, Y.J.; Wang, J.D.; Zheng, J.Y.; Gong, Z.L.; Guo, J.P.; Li, X.Y.; Qu, Y.Y. Genetic diversity and structure of elite cotton germplasm (Gossypium hirsutum L.) Using Genome-Wide SNP Data. Genetica 2017, 145, 409–416. [Google Scholar] [CrossRef]
- Hinze, L.L.; Hulse-Kemp, A.M.; Wilson, I.W.; Zhu, Q.H.; Llewellyn, D.J.; Taylor, J.M.; Spriggs, A.; Fang, D.D.; Ulloa, M.; Burke, J.J.; et al. Diversity analysis of cotton (Gossypium hirsutum L.) Germplasm Using CottonSNP63K Array. BMC Plant Biol. 2017, 17. [Google Scholar] [CrossRef] [Green Version]
- Shaheen, T.; Tabbasam, N.; Atif, M.; Muhammad, I.; Yusuf, A. Cotton genetic resources. A review. Agron. Sustain. Dev. 2012, 32, 419–432. [Google Scholar]
- Fang, L.; Guan, X.Y.; Zhang, T.Z. Asymmetric evolution and domestication in allotetraploid cotton (Gossypium hirsutum L.). Crop J. 2017, 5, 159–165. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.J.; Tu, L.L.; Lin, M.; Lin, Z.X.; Wang, P.C.; Yang, Q.Y.; Ye, Z.X.; Shen, C.; Li, J.Y.; Zhang, L.; et al. Asymmetric subgenome selection and cis-regulatory divergence during cotton domestication. Nat. Genet. 2017, 49, 579–587. [Google Scholar] [CrossRef] [Green Version]
- Shim, J.; Mangat, P.K.; Angeles-Shim, R.B. Natural variation in wild Gossypium species as a tool to broaden the genetic base of cultivated cotton. J. Plant Res. 2018, 2, 005. [Google Scholar]
- Shen, C.; Wang, N.; Huang, C.; Wang, M.J.; Zhang, X.L.; Lin, Z.X. Population genomics reveals a fine-scale recombination landscape for genetic improvement of cotton. Plant J. 2019, 99, 494–505. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Zhang, K.; Li, S.; Yu, S.; Zhang, J. Mapping quantitative trait loci for lint yield and fiber quality across environments in a Gossypium hirsutum × Gossypium barbadense backcross inbred line population. Theor. Appl. Genet. 2013, 126, 275–287. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.R.; Gong, Y.C.; Zhang, C.Y.; Liu, G.D.; Wang, L.M.; Xu, Z.Z.; Zhang, J. Genetic effects of introgression genomic components from Sea Island cotton (Gossypium barbadense L.) on fiber related traits in upland cotton (G. hirsutum L.). Euphytica 2011, 181, 41–53. [Google Scholar] [CrossRef]
- Zhai, H.C.; Gong, W.K.; Tan, Y.N.; Liu, A.Y.; Song, W.W.; Li, J.W.; Deng, Z.Y.; Kong, L.L.; Gong, J.W.; Shang, H.H.; et al. IIdentification of Chromosome Segment Substitution Lines of Gossypium barbadense Introgressed in G. hirsutum and Quantitative Trait Locus Mapping for Fiber Quality 316 and Yield Traits. PLoS ONE 2016, 11, e0159101. [Google Scholar] [CrossRef]
- Gaur, R.; Jyoti, A.; Kaushik, S.; Srivastava, V.K. Sequencing Technologies: Introduction and Applications. Int. J. Hum. Genet. 2019, 19, 123–133. [Google Scholar] [CrossRef]
- Zaidi, S.S.E.A.; Mansoor, S.; Paterson, A. The Rise of Cotton Genomics. Trends Plant Sci. 2018, 23, 953–955. [Google Scholar] [CrossRef]
- Liu, S.Z.; Yeh, C.T.; Tang, H.M.; Nettleton, D.; Schnable, P.S. Gene Mapping via Bulked Segregant RNA-Seq (BSR-Seq). PLoS ONE 2012, 7, e36406. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Meng, M.H.; Yan, Z.H.; Lin, Z.X.; Nie, X.H.; Yang, X.Y. Genome-wide association mapping of stress-tolerance traits in cotton. Crop J. 2019, 7, 77–88. [Google Scholar] [CrossRef]
- Zhu, J.K.; Chen, J.D.; Gao, F.K.; Xu, C.Y.; Wu, H.T.; Chen, K.; Si, Z.F.; Yan, H.; Zhang, T.Z. Rapid mapping and cloning of the virescent-1 gene in cotton by bulked segregant analysis-next generation sequencing and virus-induced gene silencing strategies. J. Exp. Bot. 2017, 68, 4125–4135. [Google Scholar] [CrossRef] [Green Version]
- Du, X.; Huang, G.; He, S.; Yang, Z.; Sun, G.; Ma, X.; Li, N.; Zhang, X.; Sun, J.; Liu, M. Resequencing of 243 diploid cotton accessions based on an updated A genome identifies the genetic basis of key agronomic traits. Nat. Genet. 2018, 20, 796–802. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.Y.; Zhang, M.; Zhang, X.X.; Guo, L.P.; Qi, T.X.; Wang, H.L.; Tang, H.N.; Zhang, J.F.; Xing, C.Z. Development of InDel markers for the restorer gene and Rf1 assessment of their utility for marker-assisted selection in cotton. Euphytica 2017, 213, 251. [Google Scholar] [CrossRef]
- Ahmed, M.M.; Huang, C.; Shen, C.; Khan, A.Q.; Lin, Z.X. Map-based cloning of qBWT-c12 discovered brassinosteroid-mediated control of organ size in cotton. Plant Sci. 2020, 291. [Google Scholar] [CrossRef] [PubMed]
- Shan, C.M.; Shangguan, X.X.; Zhao, B.; Zhang, X.F.; Chao, L.M.; Yang, C.Q.; Wang, L.J.; Zhu, H.Y.; Zeng, Y.D.; Guo, W.Z.; et al. Control of cotton fibre elongation by a homeodomain transcription factor GhHOX3. Nat. Commun. 2014, 5. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhao, B.; Zheng, H.J.; Hu, Y.; Lu, G.; Yang, C.Q.; Chen, J.D.; Chen, J.J.; Chen, D.Y.; Zhang, L.; et al. Gossypium barbadense genome sequence provides insight into the evolution of extra-long staple fiber and specialized metabolites. Sci. Rep. 2015, 5, 14139. [Google Scholar] [CrossRef]
- Van Ginkel, M.; Ortiz, R. Cross the Best with the Best, and Select the Best: HELP in Breeding Selfing Crops. Crop Sci. 2018, 58, 17–30. [Google Scholar] [CrossRef] [Green Version]
- Bourland, F.; Myers, G. Conventional Cotton Breeding. Cotton 2015, 57, 205–228. [Google Scholar]
- McKinney, K. “Hybrid cottonseed production is children’s work”: Making sense of migration and wage labor in western India. ACME 2014, 13, 404–423. [Google Scholar]
- Shamsuzzaman, K.M.; Hamid, M.A.; Azad, M.A.K.; Hussain, M.; Majid, M.A. Varietal improvement of cotton (Gossypium hirsutum) through mutation breeding. In Improvement of New and Traditional Industrial Crops by Induced Mutations and Related Biotechnology; International Atomic Energy Agency: Vienna, Austria, 2003; pp. 81–94. [Google Scholar]
- Ahloowalia, B.S.; Maluszynski, M.; Nichterlein, K. Global impact of mutation-derived varieties. Euphytica 2004, 135, 187–204. [Google Scholar] [CrossRef]
- Dhakal, C.; Lange, K.; Parajulee, M.; Segarra, E. Dynamic Optimization of Nitrogen in Plateau Cotton Yield Functions with Nitrogen Carryover Considerations. J. Agric. Appl. Econ. 2019, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Meredith, W.R., Jr. Cotton yield progress-why has it reached a plateau. Better Crop. 2000, 84, 6–9. [Google Scholar]
- Tarazi, R. Biotechnological solutions for major cotton (Gossypium hirsutum) pathogens and pests. Biotechnol. Res. Innov. 2020, 3, 19–26. [Google Scholar] [CrossRef]
- Morrison, N.I.; Simmons, G.S.; Fu, G.L.; O’Connell, S.; Walker, A.S.; Dafa’alla, T.; Walters, M.; Claus, J.; Tang, G.L.; Jin, L.; et al. Engineered Repressible Lethality for Controlling the Pink Bollworm, a Lepidopteran Pest of Cotton. PLoS ONE 2012, 7, e50922. [Google Scholar] [CrossRef] [PubMed]
- Trapero, C.; Wilson, I.W.; Stiller, W.N.; Wilson, L.J. Enhancing Integrated Pest Management in GM Cotton Systems Using Host Plant Resistance. Front. Plant Sci. 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Tabashnik, B.E.; Carriere, Y. Global Patterns of Resistance to Bt Crops Highlighting Pink Bollworm in the United States, China, and India. J. Econ. Entomol. 2019, 112, 2513–2523. [Google Scholar] [CrossRef]
- Haq, S.K.; Atif, S.M.; Khan, R.H. Protein proteinase inhibitor genes in combat against insects, pests, and pathogens: Natural and engineered phytoprotection. Arch. Biochem. Biophys. 2004, 431, 145–159. [Google Scholar] [CrossRef]
- Harrison, R.L.; Bonning, B.C. Proteases as Insecticidal Agents. Toxins 2010, 2, 935–953. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.Y.; Park, S.C.; Hwang, I.; Cheong, H.; Nah, J.W.; Hahm, K.S.; Park, Y. Protease Inhibitors from Plants with Antimicrobial Activity. Int. J. Mol. Sci. 2009, 10, 2860–2872. [Google Scholar] [CrossRef] [Green Version]
- Mao, Y.B.; Tao, X.Y.; Xue, X.Y.; Wang, L.J.; Chen, X.Y. Cotton plants expressing CYP6AE14 double-stranded RNA show enhanced resistance to bollworms. Transgenic Res. 2011, 20, 665–673. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Singh, A.; Kumar, S.; Mittal, P.; Singh, I.K. Protease inhibitors: Recent advancement in its usage as a potential biocontrol agent for insect pest management. Insect Sci. 2020, 27, 186–201. [Google Scholar] [CrossRef] [Green Version]
- Morton, R.L.; Schroeder, H.E.; Bateman, K.S.; Chrispeels, M.J.; Armstrong, E.; Higgins, T.J.V. Bean alpha-amylase inhibitor 1 in transgenic peas (Pisum Sativum) Provid. Complet. Prot. Pea Weevil (Bruchus Pisorum) Field Cond. Proc. Natl. Acad. Sci. USA 2000, 97, 3820–3825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chougule, N.P.; Bonning, B.C. Toxins for Transgenic Resistance to Hemipteran Pests. Toxins 2012, 4, 405–429. [Google Scholar] [CrossRef] [PubMed]
- Baum, J.A. AGRO 121-Control of coleopteran insect pests through RNA interference. Abstr. Pap. Am. Chem. Soc. 2008, 236, S2. [Google Scholar]
- Singh, R.P.; Prasad, P.V.V.; Sunita, K.; Giri, S.N.; Reddy, K.R. Influence of high temperature and breeding for heat tolerance in cotton: A review. Adv. Agron. 2007, 93, 313–385. [Google Scholar] [CrossRef]
- Majeed, S.; Malik, T.A.; Rana, I.A.; Azhar, M.T. Antioxidant and Physiological Responses of Upland Cotton Accessions Grown Under High-Temperature Regimes. Iran. J. Sci. Technol. Trans. A Sci. 2019, 43, 2759–2768. [Google Scholar] [CrossRef]
- Pettigrew, W.T. The effect of higher temperatures on cotton lint yield production and fiber quality. Crop Sci. 2008, 48, 278–285. [Google Scholar] [CrossRef] [Green Version]
- Magwanga, R.; Pu, L.; Kirungu, J.; Cai, X.; Zhou, Z.; Agong, G.; Gaya, S.; Wang, K.; Wang, Y. Identification of QTLs and candidate genes for physiological traits associated with drought tolerance in cotton. J. Cotton Res. 2020, 3, 3. [Google Scholar] [CrossRef] [Green Version]
- Majeed, S.; Ahmad, I.; Atif, R.M.; Azhar, M.T. Role of SNPs in determining QTLs for major traits in cotton. J. Cotton Res. 2019, 2. [Google Scholar] [CrossRef] [Green Version]
- Azhar, M.T.; Wani, S.; Chaudhary, M.; Jameel, T.; Kaur, P.; Du, X. Heat Tolerance in Cotton: Morphological, Physiological, and Genetic Perspectives; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2020; Volume 1, pp. 1–22. [Google Scholar] [CrossRef]
- Blum, A. Towards a conceptual ABA ideotype in plant breeding for water limited environments. Funct. Plant Biol. 2015, 42, 502–513. [Google Scholar] [CrossRef]
- Arora, R.; Kataria, S.K.; Singh, P. Breeding for Insect Resistance in Cotton: Advances and Future Perspectives. In Breeding insect Resistant Crops for Sustainable Agriculture; Paterson, A.H., Ed.; Springer: New York, NY, USA, 2017; pp. 265–288. [Google Scholar]
- Rathore, K.S.; Pandeya, D.; Campbell, L.M.; Wedegaertner, T.C.; Puckhaber, L.; Stipanovic, R.D.; Thenell, J.S.; Hague, S.; Hake, K. Ultra-Low Gossypol Cottonseed: Selective Gene Silencing Opens Up a Vast Resource of Plant-Based Protein to Improve Human Nutrition. Crit. Rev. Plant Sci. 2020, 39, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Bowman, D.T.; Bourland, F.; Kuraparthy, V. Measuring maturity in cotton cultivar trials. J. Cotton Sci. 2016, 20, 40–45. [Google Scholar]
- Zhang, X.; Rui, Q.Z.; Li, Y.; Chen, Y.; Zhang, X.L.; Chen, D.H.; Song, M.Z. Architecture of stem and branch affects yield formation in short season cotton. J. Integr. Agric. 2020, 19, 680–689. [Google Scholar] [CrossRef]
- Yue, H.; Sun, C. Analysis on the Key Problems of Chinese Cotton Full Mechanization Based on System Engineering Theory. IOP Conf. Ser. Mater. Sci. Eng. 2019, 688, 055077. [Google Scholar] [CrossRef]
- Kumar, P.; Kirti, S.; Rana, V.A. Glance on genetically engineered (GE) crops. AGRIALLIS 2020, 2, 3. [Google Scholar]
- Bhatti, K.; Bardak, A.; Parlak, D.; Ashraf, F.; Imran, H.; Haq, H.; Mian, M.; Mehmood, Z.; Akhtar, M. Biotechnology for Cotton Improvement. Cotton Prod. Uses 2020, 509–525. [Google Scholar] [CrossRef]
- Traxler, G.; Godoy-Avila, S.; Falck-Zepeda, J.; Dejesús, J. Transgenic Cotton in Mexico: Economic and Environmental Impacts; The International Consortium on Applied Bioeconomy Reasearch: Buenos Aires, Argentina, 2001; p. 1. [Google Scholar]
- Rauf, S.; Shehzad, M.; Al-Khayri, J.M.; Imran, H.M.; Noorka, I.R. Cotton (Gossypium hirsutum L.) Breeding Strategies In Advances in Plant Breeding Strategies: Industrial and Food Crops; Springer Nature: Cham, Switzerland, 2019; pp. 28–59. [Google Scholar] [CrossRef]
- Gupta, S.; Shukla, P. Gene editing for cell engineering: Trends and applications. Crit. Rev. Biotechnol. 2016, 37, 1–13. [Google Scholar] [CrossRef]
- Li, F.G.; Fan, G.Y.; Lu, C.R.; Xiao, G.H.; Zou, C.S.; Kohel, R.J.; Ma, Z.Y.; Shang, H.H.; Ma, X.F.; Wu, J.Y.; et al. Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat. Biotechnol. 2015, 33, 242–524. [Google Scholar] [CrossRef] [Green Version]
- Janga, M.; Campbell, L.; Rathore, K. CRISPR/Cas9-mediated targeted mutagenesis in upland cotton (Gossypium hirsutum L.). Plant Mol. Biol. 2017, 94. [Google Scholar] [CrossRef]
- Chen, X.G.; Lu, X.K.; Shu, N.; Wang, S.; Wang, J.J.; Wang, D.L.; Guo, L.X.; Ye, W.W. Targeted mutagenesis in cotton (Gossypium hirsutum L.) using CRISPR/Cas9 System. Sci. Rep. 2017, 7, 44304. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Unver, T.; Zhang, B.H. A high-efficiency CRISPR/Cas9 system for targeted mutagenesis in Cotton (Gossypium hirsutum L.). Sci. Rep. 2017, 7, 43902. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Ge, X.; Luo, X.; Wang, P.; Fan, Q.; Hu, G.; Xiao, J.; Li, F.; Jiahe, W. Simultaneous Editing of Two Copies of Gh14-3-3d Confers Enhanced Transgene-Clean Plant Defense Against Verticillium Dahliae Allotetraploid Upl. Cotton. Front. Plant Sci. 2018, 9. [Google Scholar] [CrossRef]
- Ali, Z.; Ali, S.; Tashkandi, M.; Zaidi, S.S.E.A.; Mahfouz, M. CRISPR/Cas9-Mediated Immunity to Geminiviruses: Differential Interference and Evasion. Sci. Rep. 2016, 6, 26912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, Z.; Khan, S.H.; Ahmad, A.; Aslam, S.; Mubarik, M.S.; Khan, S. CRISPR/dCas9-Mediated Inhibition of Replication of Begomoviruses. Int. J. Agric. Biol. 2019, 21, 711–718. [Google Scholar] [CrossRef]
- Mubarik, M.; Khan, S.; Sadia, B.; Ahmad, A. CRISPR-Cas9 based suppression of cotton leaf curl virus in Nicotiana Benthamina. Int. J. Agric. Biol. 2019, 22, 517–522. [Google Scholar] [CrossRef]
- Ma, W.; Guan, X.; Li, J.; Pan, R.; Wang, L.; Liu, F.; Ma, H.; Zhu, S.; Hu, J.; Ruan, Y.L.; et al. Mitochondrial small heat shock protein mediates seed germination via thermal sensing. Proc. Natl. Acad. Sci. USA 2019, 116, 4716–4721. [Google Scholar] [CrossRef] [Green Version]
- Qanmber, G.; Lu, L.L.; Liu, Z.; Yu, D.Q.; Zhou, K.H.; Huo, P.; Li, F.G.; Yang, Z.R. Genome-wide identification of GhAAI Genes Reveal. That GhAAI66 Triggers A Phase Transit. Induce Early Flowering. J. Exp. Bot. 2019, 70, 4721–4735. [Google Scholar] [CrossRef] [Green Version]
- Xiao, G.H.; He, P.; Zhao, P.; Liu, H.; Zhang, L.; Pang, C.Y.; Yu, J.N. Genome-wide identification of the GhARF Gene Fam. Reveal. That GhARF2 GhARF18 Are Involv. Cotton Fibre Cell Initiat. J. Exp. Bot. 2018, 69, 4323–4337. [Google Scholar] [CrossRef]
- Li, Y.; Wang, N.N.; Wang, Y.; Liu, D.; Gao, Y.; Li, L.; Li, X.B. The cotton XLIM protein (GhXLIM6) is required for fiber development via maintaining dynamic F-actin cytoskeleton and modulating cellulose biosynthesis. Plant J. 2018, 96, 1269–1282. [Google Scholar] [CrossRef] [Green Version]
- Tian, X.; Ruan, J.X.; Huang, J.Q.; Yang, C.Q.; Fang, X.; Chen, Z.W.; Hong, H.; Wang, L.J.; Mao, Y.B.; Lu, S.; et al. Characterization of gossypol biosynthetic pathway. Proc. Natl. Acad. Sci. USA 2018, 115, E5410–E5418. [Google Scholar] [CrossRef] [Green Version]
- Han, L.B.; Li, Y.B.; Wang, F.X.; Wang, W.Y.; Liu, J.; Wu, J.H.; Zhong, N.Q.; Wu, S.J.; Jiao, G.L.; Wang, H.Y.; et al. The Cotton Apoplastic Protein CRR1 Stabilizes Chitinase 28 to Facilitate Defense against the Fungal Pathogen Verticillium dahliae. Plant Cell 2019, 31, 520–536. [Google Scholar] [CrossRef]
- Zhou, Y.; Sun, L.; Wassan, G.M.; He, X.; Shaban, M.; Zhang, L.; Zhu, L.; Zhang, X. GbSOBIR1 Confers Verticillium Wilt Resist. Phosphorylating Transcr. Factor GbbHLH171 Gossypium Barb. Plant Biotechnol. J. 2019, 17, 152–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, C.; Meng, Z.; Meng, Z.; Malik, W.; Yan, R.; Lwin, K.M.; Lin, F.; Wang, Y.; Sun, G.; Zhou, T.; et al. GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.). Sci. Rep. 2016, 6, 35040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mu, C.; Zhou, L.; Shan, L.B.; Li, F.J.; Li, Z.H. Phosphatase GhDsPTP3a interacts with annexin protein GhANN8b to reversely regulate salt tolerance in cotton (Gossypium spp.). New Phytol. 2019, 223, 1856–1872. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.F.; Hu, L.X.; Fan, J.B.; Amombo, E.; Khaldun, A.B.M.; Zheng, Y.; Chen, L. Cotton GhERF38 gene is involved in plant response to salt/drought and ABA. Ecotoxicology 2017, 26, 841–854. [Google Scholar] [CrossRef]
- Ran, Y.D.; Liang, Z.; Gao, C.X. Current and future editing reagent delivery systems for plant genome editing. Sci. China Life Sci. 2017, 60, 490–505. [Google Scholar] [CrossRef]
Breeding Trait | Indeotypes | References |
---|---|---|
Heat tolerance | Efficient canopy architecture, capable to hold flower and retain bolls at lower nodes, leaf angle and thickness. | [62] |
Drought tolerance | Early maturity, deep root system, small leaf area, improved stem reserve mobilization, high cuticular waxes. | [63] |
Insect resistant | Small and okra type, and hairy leaves, long frego bract, red colored leaves and stem, extra glands in leaves. | [64] |
Ultra-low gossypol in seed | Ultra-low gossypol contents in seed, tissue specific suppression of genes involved in gossypol synthesis in seed. | [65] |
Early maturity | Swift vegetative growth phase, efficient and quick flowering, plant height to node ratio, boll retention at first fruiting branch. | [66] |
High yield potential | Compact canopy type, extended reproductive growth, high photosynthetic rate, increase number of bolls per plant, effective boll opening, earlier anthesis. | [67] |
Mechanized farming | Small to medium compact canopy type, early reproductive growth, early maturing, uniform flowering and fluffy boll opening. | [68] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mubarik, M.S.; Ma, C.; Majeed, S.; Du, X.; Azhar, M.T. Revamping of Cotton Breeding Programs for Efficient Use of Genetic Resources under Changing Climate. Agronomy 2020, 10, 1190. https://doi.org/10.3390/agronomy10081190
Mubarik MS, Ma C, Majeed S, Du X, Azhar MT. Revamping of Cotton Breeding Programs for Efficient Use of Genetic Resources under Changing Climate. Agronomy. 2020; 10(8):1190. https://doi.org/10.3390/agronomy10081190
Chicago/Turabian StyleMubarik, Muhammad Salman, Chenhui Ma, Sajid Majeed, Xiongming Du, and Muhammad Tehseen Azhar. 2020. "Revamping of Cotton Breeding Programs for Efficient Use of Genetic Resources under Changing Climate" Agronomy 10, no. 8: 1190. https://doi.org/10.3390/agronomy10081190
APA StyleMubarik, M. S., Ma, C., Majeed, S., Du, X., & Azhar, M. T. (2020). Revamping of Cotton Breeding Programs for Efficient Use of Genetic Resources under Changing Climate. Agronomy, 10(8), 1190. https://doi.org/10.3390/agronomy10081190