Effect of Plant Biostimulants on Macronutrient Content in Early Crop Potato Tubers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. Experimental Design
2.3. Laboratory Analysis
2.4. Statistical Analysis
3. Results
3.1. Macronutrient Content
3.2. Macronutrient Ionic Ratios
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Burgos, G.; Felde, T.Z.; Andre, C.M.; Kubow, S. The Potato and Its Contribution to the Human Diet and Health. In The Potato Crop; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2020; pp. 37–74. [Google Scholar]
- White, P.J.; Bradshaw, J.E.; Finlay, M.; Dale, B.; Ramsay, G.; Hammond, J.P.; Broadley, M.R. Relationships Between Yield and Mineral Concentrations in Potato Tubers. HortScience 2009, 44, 6–11. [Google Scholar] [CrossRef]
- Lombardo, S.; Pandino, G.; Mauromicale, G. The mineral profile in organically and conventionally grown “early” crop potato tubers. Sci. Hortic. 2014, 167, 169–173. [Google Scholar] [CrossRef]
- Halpern, M.; Bar-Tal, A.; Ofek, M.; Minz, O.; Müller, T.; Yermiyahu, U. The Use of Biostimulants for Enhancing Nutrient Uptake. Advances in Agronomy 2015, 130, 141–174. [Google Scholar] [CrossRef]
- De Pascale, S.; Rouphael, Y.; Colla, G. Plant biostimulants: Innovative tool for enhancing plant nutrition in organic farming. Eur. J. Hortic. Sci. 2018, 82, 277–285. [Google Scholar] [CrossRef]
- Boukhari, M.E.M.E.; Barakate, M.; Bouhia, Y.; Lyamlouli, K. Trends in Seaweed Extract Based Biostimulants: Manufacturing Process and Beneficial Effect on Soil-Plant Systems. Plants 2020, 9, 359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukherjee, A.; Patel, J.S. Seaweed extract: Biostimulator of plant defense and plant productivity. Int. J. Environ. Sci. Technol. 2019, 17, 553–558. [Google Scholar] [CrossRef]
- Dobromilska, R.; Mikiciuk, R.; Gubarewicz, K. Evaluation of cherry tomato yielding and fruit mineral composition after using of Bio-algeen S-90 preparation. J. Elem. 2008, 13, 491–499. [Google Scholar]
- Haliniarz, M.; Kołodziej, B.; Tomczyńska-Mleko, M.; Kwiatkowski, C.A.; Harasim, E. Content of some chemical components in carrot (Daucus carota L.) roots depending on growth stimulators and stubble crops. J. Elem. 2015, 20, 933–943. [Google Scholar] [CrossRef] [Green Version]
- Szczepanek, M.; Ochmian, I.; Wszelaczyńska, E.; Pobereżny, J.; Keutgen, A.J.; Wilczewski, E. Effect of biostimulants and storage on the content of macroelements in storage roots of carrot. J. Elem. 2015, 20, 1021–1031. [Google Scholar] [CrossRef]
- Wierzbowska, J.; Cwalina-Ambroziak, B.; Głosek-Sobieraj, M.; Sienkiewicz, S. Content of minerals in tubers of potato plants treated with bioregulators. Rom. Agric. Res. 2016, 33, 291–298. [Google Scholar]
- Subramanian, N.K.; White, P.J.; Broadley, M.R.; Ramsay, G. The three-dimensional distribution of minerals in potato tubers. Ann. Bot. 2011, 107, 681–691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Głosek-Sobieraj, M.; Cwalina-Ambroziak, B.; Wierzbowska, J.; Waśkiewicz, A. The Influence of Biostimulants on the Content of P, K, Ca, Mg, and Na in the Skin and Flesh of Potato Tubers. Pol. J. Environ. Stud. 2019, 28, 1693–1700. [Google Scholar] [CrossRef]
- Haider, M.W.; Ayyub, C.M.; Pervez, M.A.; Asad, H.U.; Manan, A.; Raza, S.A.; Ashraf, I. Impact of foliar application of seaweed extract on growth, yield and quality of potato (Solanum tuberosum L.). Soil Environ. 2012, 31, 157–162. [Google Scholar]
- October, J.; Raitt, L.; Ndakidemi, P. The effects of drench and foliar application of a commercial seaweed extract on the leaf nutrient content of potato, Solanum tuberosum ‘BP1’. Acta Hortic. 2019, 217–222. [Google Scholar] [CrossRef]
- Canellas, L.P.; Olivares, F.L.; Aguiar, N.O.; Jones, D.L.; Nebbioso, A.; Mazzei, P.; Piccolo, A. Humic and fulvic acids as biostimulants in horticulture. Sci. Hortic. 2015, 196, 15–27. [Google Scholar] [CrossRef]
- Conselvan, G.B.; Pizzeghello, D.; Francioso, O.; Di Foggia, M.; Nardi, S.; Carletti, P. Biostimulant activity of humic substances extracted from leonardites. Plant Soil 2017, 420, 119–134. [Google Scholar] [CrossRef]
- Bulgari, R.; Franzoni, G.; Ferrante, A. Biostimulants Application in Horticultural Crops under Abiotic Stress Conditions. Agronomy 2019, 9, 306. [Google Scholar] [CrossRef] [Green Version]
- El-Nemr, M.A.; El-Desuki, M.; El-Bassiony, A.M.; Fawzy, Z.F. Response of growth and yield of cucumber plants (Cucumis sativus L.) to different foliar application of humic acid and bio-stimulators. Aust. J. Basic Appl. Sci. 2012, 6, 630–637. [Google Scholar]
- Husein, M.E.; Abou El Hassan, S.; Shahein, M.M. Effect of humic, fulvic acid and calcium foliar application on growth and yield of tomato plants. Int. J. Biosci. 2015, 7, 132–140. [Google Scholar]
- Suh, H.Y.; Yoo, K.S.; Suh, S.G. Tuber growth and quality of potato (Solanum tuberosum L.) as affected by foliar or soil application of fulvic and humic acids. Hortic. Environ. Biotechnol. 2014, 55, 183–189. [Google Scholar] [CrossRef]
- Hartz, T.K.; Bottoms, T.G. Humic Substances Generally Ineffective in Improving Vegetable Crop Nutrient Uptake or Productivity. HortScience 2010, 45, 906–910. [Google Scholar] [CrossRef] [Green Version]
- IUSS Working Group WRB. World References Base for Soil Resources. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 2015th ed.; World Soil Resources Reports No. 106; World Soil Resources: Rome, Italy, 2014. [Google Scholar]
- Skowera, B. Changes of hydrothermal conditions in the Polish area (1971–2010). Fragm. Agron. 2014, 31, 74–87. (In Polish) [Google Scholar]
- Nowacki, W. Characteristic of Native Potato Cultivars Register, XXII ed.; Plant Breeding Acclimatization Institute—National Research Institute: Jadwisin, Poland, 2019; pp. 1–43. (In Polish) [Google Scholar]
- Meier, U. Growth Stages of Mono- and Dicotyledonous plants: BBCH Monograph; Open Agrar Repositorium: Quedlinburg, Germany, 2018; pp. 1–204. [Google Scholar]
- Ostrowska, A.; Gawliński, S.; Szczubiałka, Z. Methods of analysis and evaluation of soil properties and plants; Environmental Protection Institute: Warsaw, Poland, 1991; pp. 1–333. (In Polish) [Google Scholar]
- Trętowski, J.; Wójcik, R. Methodology of Agricultural Experiments; Wyższa Szkoła Rolniczo Pedagogiczna: Siedlce, Poland, 1999; pp. 1–500. (In Polish) [Google Scholar]
- Wadas, W.; Dziugieł, T. Growth and marketable potato (Solanum tuberosum L.) tuber yield in response to foliar application of seaweed extract and humic acids. Appl. Ecol. Environ. Res. 2019, 17, 13219–13230. [Google Scholar] [CrossRef]
- Wadas, W.; Dziugieł, T. Quality of New Potatoes (Solanum Tuberosum L.) in Response to Plant Biostimulants Application. Agriculture 2020, 10, 265. [Google Scholar] [CrossRef]
- Gugała, M.; Mystkowska, I.; Rogóż-Matyszczak, A.; Zarzecka, K.; Sikorska, A. Content of the selected macro-elements in potato tubers (Solanum tuberosum L.) treated with biostimulators. Appl. Ecol. Environ. Res. 2019, 17, 11925–11933. [Google Scholar] [CrossRef]
- Ekin, Z. Integrated Use of Humic Acid and Plant Growth Promoting Rhizobacteria to Ensure Higher Potato Productivity in Sustainable Agriculture. Sustainability 2019, 11, 3417. [Google Scholar] [CrossRef] [Green Version]
- Khan, W.; Rayirath, U.P.; Subramanian, S.; Jithesh, M.N.; Rayorath, P.; Hodges, D.M.; Critchley, A.T.; Craigie, J.S.; Norrie, J.; Prithiviraj, B. Seaweed Extracts as Biostimulants of Plant Growth and Development. J. Plant Growth Regul. 2009, 28, 386–399. [Google Scholar] [CrossRef]
- Wierzbicka, A. Mineral content of potato tubers grown in the organic system, their nutritional value and interaction. J. Res. Appl. Agric. Engng. 2012, 57, 188–192. [Google Scholar]
- Leonel, M.; Carmo, E.L.D.; Fernandes, A.M.; Soratto, R.P.; Ebúrneo, J.A.M.; Garcia, É.L.; Dos Santos, T.P.R. Chemical composition of potato tubers: The effect of cultivars and growth conditions. J. Food Sci. Technol. 2017, 54, 2372–2378. [Google Scholar] [CrossRef] [Green Version]
- Rivero, R.C.; Hernández, P.S.; Rodríguez, E.M.R.; Martín, J.D.; Romero, C.D. Mineral concentrations in cultivars of potatoes. Food Chem. 2003, 83, 247–253. [Google Scholar] [CrossRef]
- Sawicka, B.; Noaema, A.H.; Hameed, T.S.; Skiba, D. Genotype and environmental variability of chemical elements in potato tubers. Review article. Acta Sci. Pol. Agric. 2016, 15, 79–91. [Google Scholar]
- Wegener, C.B.; Jurgens, H.-U.; Jansen, G. Drought stress affects bioactive compounds in potatoes (Solanum tuberosum L.) relevant to non-communicable diseases. Funct. Foods Heal. Dis. 2017, 7, 17. [Google Scholar] [CrossRef]
- Mazurczyk, W.; Lis, B. Variation of chemical composition of tubers of potato table cultivars grown under deficit and excess of water. Pol. J. Food Nat. Sci. 2001, 10, 27–30. [Google Scholar]
- Rogóż, A.; Tabak, M. Contents of selected macroelements in soils, potatoes and fodder beets at variable soil reaction / Zawartość wybranych makroelementów w glebach oraz w ziemniakach i burakach pastewnych przy zmiennym odczynie gleby. Soil Sci. Annu. 2015, 66, 3–9. [Google Scholar] [CrossRef]
- Westermann, D.T. Nutritional requirements of potatoes. Am. J. Potato Res. 2005, 82, 301–307. [Google Scholar] [CrossRef]
- Wadas, W.; Kalinowski, K. Effect of Tytanit on the dry matter and macroelement contents in potato tuber. J. Central Eur. Agric. 2018, 19, 557–570. [Google Scholar] [CrossRef] [Green Version]
Soil Chemical Properties | Years | ||
---|---|---|---|
2012 | 2013 | 2014 | |
Organic carbon Corg (g∙kg−1) | 7.89 | 14.21 | 11.83 |
Soil pHKCl | 4.7 | 6.3 | 5.3 |
Available nutrients (mg∙kg−1) | |||
P | 122 | 144 | 118 |
K | 208 | 124 | 191 |
Mg | 22 | 40 | 51 |
Years | Months | ||
---|---|---|---|
April | May | June | |
Temperature (°C) | |||
2012 | 8.9 | 14.6 | 16.3 |
2013 | 7.4 | 15.3 | 18.0 |
2014 | 9.8 | 13.5 | 15.4 |
Many year (1996–2010) | 8.0 | 13.5 | 17.0 |
Rainfall (mm) | |||
2012 | 29.9 | 53.4 | 76.2 |
2013 | 36.0 | 105.9 | 98.8 |
2014 | 45.0 | 92.7 | 55.4 |
Many year (1996–2010) | 33.6 | 58.3 | 59.6 |
Hydrothermal Index | |||
2012 | 1.1 | 1.2 | 1.5 |
2013 | 1.6 | 2.2 | 1.8 |
2014 | 1.5 | 2.2 | 1.2 |
Plant Biostimulant | Years | Cultivar | Mean | ||||
---|---|---|---|---|---|---|---|
2012 | 2013 | 2014 | Denar | Lord | Miłek | ||
Potassium–K (g∙kg−1 dry matter–DM) | |||||||
Without biostimulant | 20.14 b | 20.99 a | 18.28 b | 19.85 a | 19.36 a | 20.19 a | 19.80 b |
Bio-algeen S90 | 22.38 a | 20.97 a | 20.87 a | 21.77 a | 21.25 a | 21.20 a | 21.41 a |
Kelpak SL | 21.15 ab | 20.21 a | 21.32 a | 20.91 a | 21.26 a | 20.51 a | 20.89 a |
HumiPlant | 21.25 ab | 20.96 a | 20.45 a | 20.70 a | 21.17 a | 20.79 a | 20.89 a |
Phosphorus–P (g∙kg−1 DM) | |||||||
Without biostimulant | 2.659 a | 2.326 a | 2.579 a | 2.507 a | 2.453 a | 2.603 a | 2.524 a |
Bio-algeen S90 | 2.758 a | 2.330 a | 2.578 a | 2.489 a | 2.680 a | 2.497 a | 2.555 a |
Kelpak SL | 2.654 a | 2.312 a | 2.504 a | 2.513 a | 2.511 a | 2.447 a | 2.490 ab |
HumiPlant | 2.590 a | 2.206 a | 2.500 a | 2.376 a | 2.469 a | 2.451 a | 2.432 b |
Calcium–Ca (g∙kg−1 DM) | |||||||
Without biostimulant | 0.388 a | 0.510 a | 0.456 a | 0.447 a | 0.440 a | 0.467 a | 0.451 a |
Bio-algeen S90 | 0.403 a | 0.533 a | 0.478 a | 0.471 a | 0.488 a | 0.456 a | 0.471 a |
Kelpak SL | 0.384 a | 0.491 a | 0.443 a | 0.411 a | 0.450 a | 0.458 a | 0.440 a |
HumiPlant | 0.374 a | 0.504 a | 0.443 a | 0.441 a | 0.432 a | 0.449 a | 0.441 a |
Magnesium–Mg (g∙kg−1 DM) | |||||||
Without biostimulant | 1.353 a | 1.094 a | 1.238 a | 1.239 a | 1.240 a | 1.207 a | 1.229 a |
Bio-algeen S90 | 1.376 a | 1.124 a | 1.243 a | 1.229 a | 1.289 a | 1.226 a | 1.248 a |
Kelpak SL | 1.312 a | 1.148 a | 1.220 a | 1.243 a | 1.236 a | 1.201 a | 1.227 a |
HumiPlant | 1.290 a | 1.110 a | 1.218 a | 1.209 a | 1.266 a | 1.143 a | 1.206 a |
Sodium–Na (g∙kg−1 DM) | |||||||
Without biostimulant | 0.367 a | 0.333 a | 0.369 a | 0.340 a | 0.366 a | 0.363 a | 0.356 a |
Bio-algeen S90 | 0.373 a | 0.338 a | 0.380 a | 0.359 a | 0.367 a | 0.366 a | 0.364 a |
Kelpak SL | 0.356 a | 0.348 a | 0.384 a | 0.364 a | 0.338 a | 0.386 a | 0.363 a |
HumiPlant | 0.349 a | 0.350 a | 0.407 a | 0.350 a | 0.392 a | 0.363 a | 0.369 a |
Year and Cultivar | K (g∙kg−1 DM) | P (g∙kg−1 DM) | Ca (g∙kg−1 DM) | Mg (g∙kg−1 DM) | Na (g∙kg−1 DM) |
---|---|---|---|---|---|
Year | |||||
2012 | 21.23 a | 2.665 a | 0.388 c | 1.333 a | 0.361 ab |
2013 | 20.78 ab | 2.293 c | 0.510 a | 1.119 c | 0.342 b |
2014 | 20.23 b | 2.540 b | 0.455 b | 1.230 b | 0.385 a |
Cultivar | |||||
Denar | 20.81 a | 2.471 a | 0.443 a | 1.230 a | 0.353 a |
Lord | 20.76 a | 2.528 a | 0.453 a | 1.258 a | 0.366 a |
Miłek | 20.67 a | 2.499 a | 0.457 a | 1.194 b | 0.369 a |
Plant Biostimulant | Years | Cultivar | Mean | ||||
---|---|---|---|---|---|---|---|
2012 | 2013 | 2014 | Denar | Lord | Miłek | ||
K+:Ca2+ | |||||||
Without biostimulant | 52.27 b | 41.17 a | 40.80 c | 45.27 a | 45.10 a | 43.87 a | 44.75 b |
Bio-algeen S90 | 55.90 ab | 39.64 a | 44.06 bc | 47.64 a | 44.76 a | 47.22 a | 46.54 ab |
Kelpak SL | 55.02 ab | 41.35 a | 48.66 a | 51.97 a | 48.85 a | 45.21 a | 48.68 a |
HumiPlant | 57.42 a | 41.98 a | 46.40 ab | 48.47 a | 50.39 a | 46.94 a | 48.60 a |
K+:Mg2+ | |||||||
Without biostimulant | 14.92 a | 19.16 a | 14.86 b | 16.19 a | 15.86 a | 16.90 a | 16.32 b |
Bio-algeen S90 | 16.32 a | 18.81 a | 16.82 a | 17.80 a | 16.59 a | 17.56 a | 17.31 ab |
Kelpak SL | 16.15 a | 17.62 a | 17.52 a | 16.87 a | 17.24 a | 17.18 a | 17.10 ab |
HumiPlant | 16.58 a | 18.90 a | 16.84 a | 17.22 a | 16.86 a | 18.24 a | 17..44 a |
Na+:Ca2+ | |||||||
Without biostimulant | 0.951 a | 0.656 a | 0.818 a | 0.787 a | 0.847 ab | 0.790 a | 0.808 a |
Bio-algeen S90 | 0.931 a | 0.636 a | 0.806 a | 0.782 a | 0.775 b | 0.816 a | 0.791 a |
Kelpak SL | 0.932 a | 0.715 a | 0.887 a | 0.901 a | 0.780 b | 0.852 a | 0.844 a |
HumiPlant | 0.941 a | 0.698 a | 0.927 a | 0.819 a | 0.929 a | 0.819 a | 0.855 a |
Na+:Mg2+ | |||||||
Without biostimulant | 0.270 a | 0.305 a | 0.300 a | 0.275 a | 0.297 a | 0.303 a | 0.292 a |
Bio-algeen S90 | 0.271 a | 0.300 a | 0.307 a | 0.294 a | 0.286 a | 0.299 a | 0.293 a |
Kelpak SL | 0.273 a | 0.304 a | 0.316 a | 0.294 a | 0.279 a | 0.323 a | 0.297 a |
HumiPlant | 0.272 a | 0.316 a | 0.335 a | 0.292 a | 0.312 a | 0.319 a | 0.308 a |
(K+ + Na+):(Ca2+ + Mg2+) | |||||||
Without biostimulant | 11.79 b | 13.28 a | 11.05 b | 12.00 a | 11.81 a | 12.29 a | 12.04 b |
Bio-algeen S90 | 12.82 ab | 12.94 a | 12.35 a | 13.03 a | 12.19 a | 12.89 a | 12.70 a |
Kelpak SL | 12.68 ab | 12.55 a | 13.09 a | 12.85 a | 12.84 a | 12.62 a | 12.77 a |
HumiPlant | 13.03 a | 13.21 a | 12.58 a | 12.77 a | 12.73 a | 13.32 a | 12.94 a |
Ca:P | |||||||
Without biostimulant | 0.146 a | 0.220 a | 0.146 a | 0.181 a | 0.180 a | 0.181 a | 0.181 a |
Bio-algeen S90 | 0.148 a | 0.229 a | 0.148 a | 0.192 a | 0.186 a | 0.185 a | 0.188 a |
Kelpak SL | 0.146 a | 0.213 a | 0.146 a | 0.165 a | 0.183 a | 0.189 a | 0.179 a |
HumiPlant | 0.146 a | 0.231 a | 0.146 a | 0.187 a | 0.181 a | 0.187 a | 0.185 a |
Year and Cultivar | K+:Ca2+ | K+:Mg2+ | Na+:Ca2+ | Na+:Mg2+ | (K+ + Na+):(Ca2+ + Mg2+) | Ca:P |
---|---|---|---|---|---|---|
Year | ||||||
2012 | 55.40 a | 15.99 b | 0.939 a | 0.272 b | 12.58 ab | 0.146 c |
2013 | 41.04 c | 18.62 a | 0.676 c | 0.306 a | 12.99 a | 0.223 a |
2014 | 44.98 b | 16.51 b | 0.859 b | 0.314 a | 12.27 b | 0.180 b |
Cultivar | ||||||
Denar | 48.34 a | 17.02 a | 0.822 a | 0.289 b | 12.66 a | 0.181 a |
Lord | 47.27 a | 16.64 a | 0.833 a | 0.292 b | 12.39 a | 0.182 a |
Miłek | 45.81 a | 17.47 a | 0.819 a | 0.311 a | 12.78 a | 0.185 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dziugieł, T.; Wadas, W. Effect of Plant Biostimulants on Macronutrient Content in Early Crop Potato Tubers. Agronomy 2020, 10, 1202. https://doi.org/10.3390/agronomy10081202
Dziugieł T, Wadas W. Effect of Plant Biostimulants on Macronutrient Content in Early Crop Potato Tubers. Agronomy. 2020; 10(8):1202. https://doi.org/10.3390/agronomy10081202
Chicago/Turabian StyleDziugieł, Tomasz, and Wanda Wadas. 2020. "Effect of Plant Biostimulants on Macronutrient Content in Early Crop Potato Tubers" Agronomy 10, no. 8: 1202. https://doi.org/10.3390/agronomy10081202
APA StyleDziugieł, T., & Wadas, W. (2020). Effect of Plant Biostimulants on Macronutrient Content in Early Crop Potato Tubers. Agronomy, 10(8), 1202. https://doi.org/10.3390/agronomy10081202