Long-Term No-Tillage and Straw Retention Management Enhances Soil Bacterial Community Diversity and Soil Properties in Southern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
2.3. Soil Sampling
2.4. Soil Analysis
2.5. DNA Extraction, Bacterial 16S rRNA Gene Amplification and MiSeq Sequencing
2.6. Processing of Illumina Sequencing Data
2.7. Statistical Analysis
3. Results
3.1. Sequencing Reads and Bacterial Diversity
3.2. Soil Properties
3.3. SBC Composition and Structure
3.3.1. Soil Bacterial Diversity and Abundance Index
3.3.2. Bacterial Community Diversity
3.3.3. Bacterial Community Composition
3.4. Relationship between Bacterial Community Composition and Soil Properties
4. Discussion
4.1. Bacterial Community Structure and Soil C/N Ratio
4.2. Effects of No-Tillage on Soil Properties and Bacterial Community Composition
4.3. Effects of Straw Retention on Soil Properties and Bacterial Community Composition
4.4. Relationship between Soil Properties and Bacterial Community Structure
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Minoshima, H.; Jackson, L.E.; Cavagnaro, T.R.; Sánchez-Moreno, S.; Ferris, H.; Temple, S.R.; Goyal, S.; Mitchell, J.P. Soil food webs and carbon dynamics in response to conservation tillage in California. Soil Sci. Soc. Am. J. 2007, 71, 952–963. [Google Scholar] [CrossRef] [Green Version]
- Van der Heijden, M.G.A.; Wagg, C. Soil microbial diversity and agro-ecosystem functioning. Plant Soil 2013, 363, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.K.; Hong, K. DGGE analysis of PCR products of 16SrDNA V3 fragment of mangrove soil bacterial community. Acta Microbiol. Sin. 2005, 45, 201–204. [Google Scholar]
- Kulmatiski, A.; Beard, K.H.; Stevens, J.R. Plant-soil feedbacks: A meta-analytical review. Ecol. Lett. 2008, 11, 980–992. [Google Scholar] [CrossRef]
- Coleman, D.C. From peds to paradoxes: Linkages between soil biota and their influences on ecological processes. Soil Biol. Biochem. 2008, 40, 271–289. [Google Scholar] [CrossRef]
- Li, Q.; Bao, X.L.; Lu, C.Y.; Zhang, X.K.; Zhu, J.G.; Jiang, Y.; Liang, W.J. Soil microbial food web responses to free-air ozone enrichment can depend on the ozone-tolerance of wheat cultivars. Soil Biol. Biochem. 2012, 47, 27–35. [Google Scholar] [CrossRef]
- Scharroba, A.; Dibbern, D.; Hünninghaus, M.; Kramer, S.; Moll, J.; Butenschoen, O.; Bonkowski, M.; Buscot, F.; Kandeler, E.; Koller, R.; et al. Effects of resource availability and quality on the structure of the micro-food web of an arable soil across depth. Soil Biol. Biochem. 2012, 50, 1–11. [Google Scholar] [CrossRef]
- Wardle, D.A. Communities and Ecosystems: Linking the Aboveground and Belowground Components; Princeton University Press: Princeton, NJ, USA, 2002. [Google Scholar]
- Treonis, A.M.; Austin, E.E.; Buyer, J.S.; Maul, J.E.; Spicer, L.; Zasada, I.A. Effects of organic amendment and tillage on soil microorganisms and microfauna. Appl. Soil Ecol. 2010, 46, 103–110. [Google Scholar] [CrossRef]
- Wall, D.H.; Bardgett, R.; Behan-Pelletier, V.; Herrick, J.E.; Jones, H.; Ritz, K.; Six, J.; Stone, D.; Van Der Putten, W.H. Soil Ecology and Ecosystem Services; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Lemanceau, P.; Maron, P.A.; Mazurier, S.; Mougel, C.; Pivato, B.; Plassart, P.; Ranjard, L.; Revellin, C.; Tardy, V.; Wipf, D. Understanding and managing soil biodiversity: A major challenge in agroecology. Agron. Sustain. Dev. 2015, 35, 67–81. [Google Scholar] [CrossRef] [Green Version]
- Eo, J.; Park, K.C. Long-term effects of imbalanced fertilization on the composition and diversity of soil bacterial community. Agric. Ecosyst. Environ. 2016, 231, 176–182. [Google Scholar] [CrossRef]
- Brennan, E.B.; Acosta-Martinez, V. Cover cropping frequency is the main driver of soil microbial changes during six years of organic vegetable production. Soil Biol. Biochem. 2017, 109, 188–204. [Google Scholar] [CrossRef]
- Eldridge, D.J.; Woodhouse, J.N.; Curlevski, N.J.; Hayward, M.W.; Brown, M.V.; Neilan, B.A. Soil-foraging animals alter the composition and co-occurrence of microbial communities in a desert shrubland. Int. Soc. Microb. Ecol. J. 2015, 9, 2671–2681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Creamer, R.E.; Hannula, S.E.; Van Leeuwen, J.P.; Stone, D.; Rutgers, M.; Schmelz, R.M.; de Ruiter, P.C.; Hendriksen, N.B.; Bolger, T.; Bouffaud, M.L. Ecological network analysis reveals the inter-connection between soil biodiversity and ecosystem function as affected by land use across Europe. Appl. Soil Ecol. 2016, 97, 112–124. [Google Scholar] [CrossRef]
- Yin, C.; Jones, K.L.; Peterson, D.E.; Garrett, K.A.; Hulbert, S.H.; Paulitz, T.C. Members of soil bacterial communities sensitive to tillage and crop rotation. Soil Biol. Biochem. 2010, 42, 2111–2118. [Google Scholar] [CrossRef]
- Busari, M.A.; Kukal, S.S.; Kaur, A.; Bhatt, R.; Dulazi, A.A. Conservation tillage impacts on soil, crop and the environment. Int. Soil Conserv. Res. 2015, 3, 119–129. [Google Scholar] [CrossRef] [Green Version]
- Gao, W.S. On the basic principles and development trend of conservation tillage technology. China Agric. Sci. 2007, 40, 2702–2708. [Google Scholar]
- Jaskulska, I.; Jaskulski, D. Strip-Till One-Pass Technology in Central and Eastern Europe: A MZURI Pro-Til Hybrid Machine Case Study. Agronomy 2020, 10, 925. [Google Scholar] [CrossRef]
- Badagliacca, G.; Petrovičovà, B.; Pathan, S.I.; Roccotelli, A.; Romeo, M.; Monti, M.; Gelsomino, A. Use of solid anaerobic digestate and no-tillage practice for restoring the fertility status of two Mediterranean orchard soils with contrasting properties. Agric. Ecosyst. Environ. 2020, 300, 107010. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J.; Liu, D.; Li, Z.; Zhang, G.; Tao, Y.; Xie, J.; Pan, J.; Chen, F. Straw mulching reduces the harmful effects of extreme hydrological and temperature conditions in citrus orchards. PLoS ONE 2014, 9, e87094. [Google Scholar] [CrossRef] [Green Version]
- Zuber, S.M.; Villamil, M.B. Meta-analysis approach to assess effect of tillage on microbial biomass and enzyme activities. Soil Biol. Biochem. 2016, 97, 176–187. [Google Scholar] [CrossRef] [Green Version]
- Kabiri, V.; Raiesi, F.; Ghazavi, M.A. Tillage effects on soil microbial biomass, SOM mineralization and enzyme activity in a semi-arid Calcixerepts. Agric. Ecosyst. Environ. 2016, 232, 73–84. [Google Scholar] [CrossRef]
- Nivelle, E.; Verzeaux, J.; Habbib, H.; Kuzyakov, Y.; Decocq, G.; Roger, D.; Lacoux, J.; Duclercq, J.; Spicher, F.; Nava-Saucedo, J.E.; et al. Functional response of soil microbial communities to tillage, cover crops and nitrogen fertilization. Appl. Soil Ecol. 2016, 108, 147–155. [Google Scholar] [CrossRef]
- Staley, T.E. Soil microbial and organic component al-teration in a no-tillage chrono-sequence. Soil Sci. 1988, 52, 998–1005. [Google Scholar] [CrossRef]
- Ali, I.; He, L.; Ullah, S.; Quan, Z.; Wei, S.; Iqbal, A.; Munsif, F.; Shah, T.; Xuan, Y.; Luo, Y.; et al. Biochar addition coupled with nitrogen fertilization impacts on soil quality, crop productivity, and nitrogen uptake under double-cropping system. Food Energy Secur. 2020, 3, e208. [Google Scholar] [CrossRef]
- Obia, A.; Cornelissen, G.; Martinsen, V.; Smebye, A.B.; Mulder, J. Conservation tillage and biochar improve soil water content and moderate soil temperature in a tropical Acrisol. Soil Tillage Res. 2020, 197, 104–121. [Google Scholar] [CrossRef]
- Iqbal, A.; He, L.; Khan, A.; Wei, S.; Akhtar, K.; Ali, I.; Ullah, S.; Munsif, F.; Zhao, Q.; Jiang, L. Organic manure coupled with inorganic fertilizer: An approach for the sustainable production of rice by improving soil properties and nitrogen use efficiency. Agronomy 2019, 9, 651. [Google Scholar] [CrossRef] [Green Version]
- Bu, R.; Ren, T.; Lei, M.; Liu, B.; Li, X.; Cong, R.; Lu, J. Tillage and straw-returning practices effect on soil dissolved organic matter, aggregate fraction and bacteria community under rice-rice-rapeseed rotation system. Agric. Ecosyst. Environ. 2020, 287, 106–681. [Google Scholar] [CrossRef]
- Yang, M.F. Effects of Different Tillage Measures and Straw Returning on Soil Nutrients, Microorganisms and Carbon Pools in Rice Wheat Dual Cropping Farmland; College of Resources and Environmental Science, Nanjing Agricultural University: Nanjing, China, 2013. [Google Scholar]
- Xiang, X.H.; Wei, W.; Zhang, X.Y. Effects of conservation tillage on soybean growth and soil microbial diversity. Soybean Sci. 2013, 32, 321–327. [Google Scholar]
- Lu, D.; Lei, J.; Wei, Y.Y. Effects of short-term no tillage and ridge cultivation on microbial community and diversity index of paddy soil. J. Southwest Agric. 2015, 28, 1670–1674. [Google Scholar]
- Balota, E.L.; Colozzi-Filho, A.; Andrade, D.S.; Dick, R.P. Microbial biomass in soils under different tillage and crop rotation systems. Biol. Fertil. Soils 2003, 38, 15–20. [Google Scholar] [CrossRef]
- Lin, Y.H.; Cha, Y.L.; Mao, K.M. Effect of wheat straw coverage on the number of microorganisms in different tobacco planting soils. Crop Res. 2012, 26, 664–667. [Google Scholar]
- Wang, L.L.; Dong, M.; Zhang, L. Effects of organic fertilizers with different carbon nitrogen ratios on soil microbial biomass in organic agriculture. Chin. J. Ecol. Agric. 2013, 21, 1073–1077. [Google Scholar] [CrossRef]
- Liu, Y.; Zeng, Q.C.; Huang, Y.M. Characteristics of soil bacterial community in different arbor forests on the Loess Plateau Based on 454 high-throughput sequencing. Chin. Environ. Sci. 2016, 36, 3487–3494. [Google Scholar]
- Spedding, T.A.; Hamel, C.; Mehuys, G.R. Soil microbial dynamics in maizegrowing soil under different tillage and residue management systems. Soil Biol. Biochem. 2004, 36, 499–512. [Google Scholar] [CrossRef]
- Huang, B.; Sun, W.X.; Zhao, Y.C. Temporal and spatial variability of soil organic matter and total nitrogen in an agricultural ecosystem as affected by farming practices. Geoderma 2007, 139, 336–345. [Google Scholar] [CrossRef]
- Bao, S.D. Soil and Agricultural Chemistry Analysis; Chinese Agriculture Press: Beijing, China, 2000; pp. 263–270. [Google Scholar]
- Ohyama, T.; Ito, M.; Kobayashi, K.; Araki, S.; Yasuyoshi, S.; Sasaki, O.; Yamazaki, T.; Soyama, K.; Tanemura, R.; Mizuno, Y. Analytical procedures of N, P, K contents in plant and manure materials using H2SO4-H2O2 Kjeldahl digestion method. Bull. Fac. Agric. Niigata Univ. 1991, 43, 110–120. [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis—Advanced Course; University of Wisconsin: Madison, WI, USA, 1956; p. 991. [Google Scholar]
- Bates, S.T.; Cropsey, G.W.; Caporaso, J.G.; Knight, R.; Fierer, N. Bacterial communities associated with the lichen symbiosis. Appl. Environ. Microbiol. 2011, 77, 1309–1314. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Kobert, K.; Flouri, T.; Stamatakis, A. PEAR: A fast and accurate Illumina Paired-End read merger. Bioinformatics 2014, 30, 614–620. [Google Scholar] [CrossRef] [Green Version]
- Robert, C.E. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar]
- Wei, T. Package ‘Corrplot’. 2016. Available online: https://cran.r-project.org/web/packages/corrplot/corrplot.pdf (accessed on 15 May 2020).
- Jost, L. Entropy and diversity. Oikos 2006, 113, 363–375. [Google Scholar] [CrossRef]
- Shannon, C.E.; Weaver, W. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423, 623–656. [Google Scholar] [CrossRef] [Green Version]
- Pielou, E.C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 1966, 13, 131–144. [Google Scholar] [CrossRef]
- Insam, H.; Hutchinson, T.C.; Reber, H.H. Effects of heavy metal stress on the metabolic quotient of the soil microflora. Soil Biol. Biochem. 1996, 28, 691–694. [Google Scholar] [CrossRef]
- Li, T.; Sun, Z.; He, C.; Ge, X.; Ouyang, Z.; Wu, L. Changes in soil bacterial community structure and microbial function caused by straw retention in the North China Plain. Arch. Agron. Soil Sci. 2020, 66, 46–57. [Google Scholar] [CrossRef]
- Zhang, X. Effect of Different Tillage Measures on Soil Microbial Functional Diversity in the Loess Plateau of Central Gansu; Gansu Agricultural University: Lanzhou, China, 2017; pp. 1–58. [Google Scholar]
- Kou, W.B.; Huang, Z.Y.; Zhang, J. Composition and structure of bacterial community in Poyang Lake: A case study of Songmen mountain. J. Ecol. 2015, 35, 7608–7614. [Google Scholar]
- Nacke, H.; Thurmer, A.; Wollherr, A. Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils. PLoS ONE 2011, 6, e17000. [Google Scholar] [CrossRef] [Green Version]
- Luo, P.Y. Effects of Long-Term Fertilization on Microbial Communities in Brown Soil under Rotation Conditions; Shenyang Agricultural University: Shenyang, China, 2014. [Google Scholar]
- Zhang, J.; Ke, W.J.; Liu, J.; Wang, L.H.; Chen, H.; Peng, T.; Zhao, Q.Z. Influence of water controlling depth on soil micro-flora and bacterial community diversity in paddy soil. Chin. J. Eco-Agric. 2019, 27, 277–285. [Google Scholar]
- Gao, S.C.; Guan, D.W.; Ma, M.C. Effect of Fertilization on bacterial community of black soil in Northeast China under soybean continuous cropping. China Agric. Sci. 2017, 50, 1271–1281. [Google Scholar]
- Ren, W.J.; Liu, D.Y.; Wu, J.X. Effects of no till and high stubble and seedling throwing on soil fertility and microbial community in rice field. J. Appl. Ecol. 2009, 20, 817–822. [Google Scholar]
- Liu, J.J.; Sui, Y.Y.; Yu, Z.H. High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of northeast China. Soil Biol. Biochem. 2014, 70, 113–122. [Google Scholar] [CrossRef]
- Xue, J.F.; Zhao, X.; Dikgwatlhe, S.B. Research progress on the effect of conservation tillage on carbon and nitrogen in farmland. Acta Ecol. Sin. 2013, 33, 6006–6013. [Google Scholar]
- Sainju, U.M.; Singh, B.P.; Whitehead, W.F. Long-term effects of tillage, cover crops, and nitrogenfertilization on organic carbon and nitrogen concentrations in sandy loam soils in Georgia, USA. Soil Tillage Res. 2002, 63, 167–179. [Google Scholar] [CrossRef]
- Lopez-Fando, C.; Pardo, M.T. Use of a partial-width tillage system maintains benefits of no-tillage in increasing total soil nitrogen. Soil Tillage Res. 2012, 118, 32–39. [Google Scholar] [CrossRef]
- Puget, P.; Lal, R. Soil organic carbon and nitrogen in a Mollisol in central Ohio as affected by tillage and land use. Soil Tillage Res. 2005, 80, 201–213. [Google Scholar] [CrossRef]
- Beare, M.H.; Hendix, P.F.; Coleman, D.C. Water stable aggregates and organic matter fraetions in coventional and no-till soils. Soils Sci. Soc. Am. 1994, 58, 777–786. [Google Scholar] [CrossRef]
- Kumar, K.; Goh, K. Crop residues and management practices: Effects on soil quality, soil nitrogen dynamics, crop yield and nitrogen recovery. Adv. Agron. 2000, 68, 197–319. [Google Scholar]
- Singh, B.; Shan, Y.H.; Johnson-Beebout, S.E. Crop residue management for lowland rice-based cropping systems in Asia. Adv. Agron. 2008, 98, 117–119. [Google Scholar]
- Wei, Y.H.; Zhao, X.; Zhai, Y.L. Effects of Tillage Methods on soil carbon sequestration in North China. J. Agric. Eng. 2013, 29, 87–95. [Google Scholar]
- Baker, J.M.; Ochsner, T.E.; Venterea, R.T. Tillage and soil carbon sequestration-What dowe really know? Agric. Ecosyst. Environ. 2007, 118, 1–5. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Lal, R. No-tillage and soil-profile carbon sequestration: An on-farm assessment. Soil Sci. Soc. Am. J. 2008, 72, 693–701. [Google Scholar] [CrossRef] [Green Version]
- Torbert, H.A.; Potter, K.N.; Morrison, J.E. Tillage intensity and fertility level effects on nitrogenand carbon cycling in a vertisol. Commun. Soil Sci. Plant Anal. 1997, 28, 699–710. [Google Scholar] [CrossRef]
- Segal, L.M.; Miller, D.N.; Mcghee, R.P.; Loecke, T.D.; Cook, K.L.; Shapiro, C.A. Bacterial and archaeal ammonia oxidizers respond differently to long-term tillage and fertilizer management at a continuous maize site. Soil Tillage Res. 2017, 168, 110–117. [Google Scholar] [CrossRef]
- Bai, Z.G.; Thomas, C.; Ruiperez, G.M.; Batjes, N.H.; Paul, M.; Bünemann Else, K. Effects of agricultural management practices on soil quality: A review of long-term experiments for Europe and China. Appl. Soil Ecol. 2018, 265, 1–7. [Google Scholar] [CrossRef]
- Yuan, H.C.; Qin, H.L.; Liu, S.L. Effects of long-term fertilization on bacterial community structure and quantity in red soil paddy soil. China Agric. Sci. 2011, 42, 4610–4617. [Google Scholar]
- Zhao, M.Q.; Zhou, N.N.; Du, Q.J. Effect of rice vegetable rotation on soil bacterial community under the condition of straw returning to the field. North. Hortic. 2018, 14, 109–117. [Google Scholar]
- Wang, W.X.; Luo, D.; Shi, Z.M. Effect of afforestation on soil microbial community structure in the arid valley of Minjiang River. J. Ecol. 2014, 34, 890–898. [Google Scholar]
Soil Depth | Treatment | Number of Sequences |
---|---|---|
A (0–5 cm) | NT | 70,909.33 ab |
NT-SM | 66,549.67 b | |
CT-SM | 69,558.67 ab | |
CT | 70,315.67 ab | |
CT-SR | 72,301.00 a | |
B (5–10 cm) | NT | 71,403.67 a |
NT-SM | 66,134.33 d | |
CT-SM | 67,705.67 c | |
CT | 67,061.33 cd | |
CT-SR | 69,141.00 b | |
C (10–20 cm) | NT | 68,210.67 b |
NT-SM | 63,035.67 c | |
CT-SM | 76,540.67 a | |
CT | 68,950.00 b | |
CT-SR | 76,122.33 a |
Year | Soil Depth | Treatment | Early Season | Late Season | ||||
---|---|---|---|---|---|---|---|---|
SOC (g kg−1) | TN (g kg−1) | C/N | SOC (g kg−1) | TN (g kg−1) | C/N | |||
2018 | A (0–5 cm) | NT | 18.99 b | 1.70 c | 9.93 c | 19.28 b | 1.98 b | 9.73 c |
NT-SM | 21.21 a | 2.00 a | 10.61 a | 23.51 a | 2.28 a | 10.30 a | ||
CT-SM | 18.19 bc | 1.81 b | 10.05 b | 19.25 b | 1.88 cd | 10.23 a | ||
CT | 17.19 c | 1.73 c | 9.84 c | 17.49 c | 1.83 d | 9.58 c | ||
CT-SR | 19.14 b | 1.87 b | 10.24 b | 19.32 b | 1.94 bc | 9.95 b | ||
Average | 18.94 | 1.87 | 10.13 | 19.77 | 1.98 | 9.96 | ||
B (5–10 cm) | NT | 14.52 c | 1.50 c | 9.53 b | 15.24 d | 1.61 c | 9.45 c | |
NT-SM | 15.03 c | 1.55 c | 9.66 b | 16.55 c | 1.70 b | 9.74 bc | ||
CT-SM | 16.55 a | 1.68 a | 9.86 ab | 18.31 a | 1.78 a | 10.75 a | ||
CT | 15.64 b | 1.62 b | 9.83 ab | 16.94 b | 1.71 b | 9.88 b | ||
CT-SR | 16.06 ab | 1.64 ab | 10.14 a | 18.17 a | 1.80 a | 9.69 bc | ||
Average | 15.56 | 1.60 | 9.80 | 17.04 | 1.72 | 9.90 | ||
C (10–20 cm) | NT | 12.42 bc | 1.21 c | 10.21 a | 11.68 c | 1.24 c | 9.44 b | |
NT-SM | 12.53 ab | 1.25 bc | 10.23 a | 12.71 b | 1.30 b | 9.76 a | ||
CT-SM | 12.87 a | 1.31 a | 9.80 b | 13.68 a | 1.41 a | 9.73 a | ||
CT | 12.11 c | 1.26 b | 9.59 c | 13.42 a | 1.41 a | 9.56 b | ||
CT-SR | 12.57 ab | 1.26 b | 9.93 b | 13.65 a | 1.41 a | 9.73 a | ||
Average | 12.50 | 1.26 | 9.95 | 13.03 | 1.35 | 9.64 | ||
2019 | A (0–5 cm) | NT | 21.09 c | 2.14 d | 9.84 d | 24.52 b | 2.43 b | 10.43 c |
NT-SM | 23.48 a | 2.40 a | 10.23 a | 28.51 a | 2.75 a | 10.68 a | ||
CT-SM | 22.28 b | 2.21 c | 10.09 bc | 24.39 b | 2.33 c | 10.56 b | ||
CT | 20.82 c | 2.08 e | 10.02 c | 21.91 c | 2.12 d | 10.38 c | ||
CT-SR | 23.23 a | 2.28 b | 10.18 ab | 24.24 b | 2.41 b | 10.52 b | ||
Average | 22.18 | 2.22 | 10.07 | 24.71 | 2.41 | 10.51 | ||
B (5–10 cm) | NT | 15.65 c | 1.57 c | 9.99 a | 17.85 e | 1.70 d | 10.48 ab | |
NT-SM | 14.64 d | 1.58 c | 9.54 b | 19.39 d | 1.84 c | 10.56 a | ||
CT-SM | 18.07 a | 1.87 a | 9.97 a | 21.59 b | 2.08 ab | 10.39 b | ||
CT | 16.70 b | 1.75 b | 9.52 b | 20.82 c | 2.01 b | 10.34 b | ||
CT-SR | 18.86 a | 1.88 a | 10.03 a | 22.63 a | 2.13 a | 10.62 a | ||
Average | 16.78 | 1.72 | 9.81 | 20.46 | 1.95 | 10.48 | ||
C (10–20 cm) | NT | 12.92 c | 1.36 b | 9.53 b | 14.01 d | 1.39 c | 10.08 c | |
NT-SM | 13.59 b | 1.44 a | 9.64 a | 14.84 c | 1.48 b | 10.00 cd | ||
CT-SM | 13.47 b | 1.43 a | 9.44 b | 15.01 c | 1.51 ab | 10.42 b | ||
CT | 13.36 b | 1.42 a | 9.43 b | 15.63 b | 1.50 b | 9.92 d | ||
CT-SR | 13.91 a | 1.44 a | 9.43 b | 16.49 a | 1.54 a | 10.69 a | ||
Average | 13.45 | 1.42 | 9.49 | 15.20 | 1.48 | 10.22 |
Soil Depth | Treatments | Shannon | Simpson | ACE | Chao1 |
---|---|---|---|---|---|
A (0–5 cm) | NT | 6.73 b | 0.0066 a | 12,980 b | 9950 b |
NT-SM | 7.09 a | 0.0038 d | 13,257 ab | 10,419 ab | |
CT-SM | 7.00 a | 0.0046 c | 13,995 a | 10,989 a | |
CT | 6.85 ab | 0.0057 b | 13,626 ab | 10,480 ab | |
CT-SR | 7.08 a | 0.0038 d | 13,673 ab | 10,726 ab | |
Average | 6.95 | 0.0049 | 13,506.2 | 10,512.8 | |
B (5–10 cm) | NT | 6.75 ab | 0.0060 b | 13,435 ab | 10,377 a |
NT-SM | 6.73 b | 0.0070 a | 12,916 b | 9883 a | |
CT-SM | 6.94 a | 0.0047 c | 13,362 ab | 10,303 a | |
CT | 6.86 ab | 0.0050 c | 13,351 ab | 10,083 a | |
CT-SR | 6.86 ab | 0.0052 bc | 13,752 a | 10,575 a | |
Average | 6.828 | 0.00558 | 13,363.2 | 10,244.2 | |
C (10–20 cm) | NT | 6.47 ab | 0.0063 b | 10,402 b | 7975 ab |
NT-SM | 6.53 a | 0.0062 b | 10,403 b | 8014 ab | |
CT-SM | 6.36 b | 0.0081 a | 8945 c | 7501 b | |
CT | 6.49 ab | 0.0069 ab | 11,534 a | 8686 a | |
CT-SR | 6.40 ab | 0.0080 a | 11,853 a | 8930 a | |
Average | 6.45 | 0.0071 | 10,627.4 | 8221.2 |
Treatments | Shannon | Simpson | ACE | Chao1 |
---|---|---|---|---|
NT | 7.08 c | 0.0047 b | 27,089 c | 25,419 c |
NT-SM | 7.17 a | 0.0042 c | 26,229 e | 24,711 e |
CT-SM | 7.07 c | 0.0046 b | 26,727 d | 25,373 d |
CT | 7.03 d | 0.0050 a | 27,161 b | 25,511 b |
CT-SR | 7.10 b | 0.0046 b | 27,363 a | 25,629 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Y.; Iqbal, A.; He, L.; Zhao, Q.; Wei, S.; Ali, I.; Ullah, S.; Yan, B.; Jiang, L. Long-Term No-Tillage and Straw Retention Management Enhances Soil Bacterial Community Diversity and Soil Properties in Southern China. Agronomy 2020, 10, 1233. https://doi.org/10.3390/agronomy10091233
Luo Y, Iqbal A, He L, Zhao Q, Wei S, Ali I, Ullah S, Yan B, Jiang L. Long-Term No-Tillage and Straw Retention Management Enhances Soil Bacterial Community Diversity and Soil Properties in Southern China. Agronomy. 2020; 10(9):1233. https://doi.org/10.3390/agronomy10091233
Chicago/Turabian StyleLuo, Yuqiong, Anas Iqbal, Liang He, Quan Zhao, Shangqin Wei, Izhar Ali, Saif Ullah, Bo Yan, and Ligeng Jiang. 2020. "Long-Term No-Tillage and Straw Retention Management Enhances Soil Bacterial Community Diversity and Soil Properties in Southern China" Agronomy 10, no. 9: 1233. https://doi.org/10.3390/agronomy10091233
APA StyleLuo, Y., Iqbal, A., He, L., Zhao, Q., Wei, S., Ali, I., Ullah, S., Yan, B., & Jiang, L. (2020). Long-Term No-Tillage and Straw Retention Management Enhances Soil Bacterial Community Diversity and Soil Properties in Southern China. Agronomy, 10(9), 1233. https://doi.org/10.3390/agronomy10091233