Comparison of Selected Costs in Greenhouse Cucumber Production with LED and HPS Supplemental Assimilation Lighting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Parameters of the Greenhouse Experiment
2.2. Gross Margin Model
- GM—gross margin expressed as a percentage,
- TR—total revenue in EUR,
- TVC—total variable cost in EUR,
- P—cumber price per kg in EUR,
- Q—cucumber quantity produced in kg.
- Δk—increase in costs,
- Δx—increase in production,
- K0—costs of the base period (2015),
- X0—production of the base period (2015).
- Wzk = 1—proportional variable cost,
- Wzk < 1—degressive variable cost,
- Wzk > 1—progressive variable cost.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Svatoš, M. Global consequences of sustainable development of agriculture. Agric. Econ. Czech 2005, 51, 20–26. [Google Scholar] [CrossRef] [Green Version]
- Canakci, M.; Akinci, I. Energy use pattern analyses of greenhouse vegetable production. Energy 2006, 31, 1243–1256. [Google Scholar] [CrossRef]
- Mohammadi, A.; Omid, M. Economical analysis and relation between energy inputs and yield of greenhouse cucumber production in Iran. Appl. Energy 2010, 87, 191–196. [Google Scholar] [CrossRef]
- Heidari, M.D.; Omid, M. Energy use patterns and econometric models of major greenhouse vegetable productions in Iran. Energy 2011, 36, 220–225. [Google Scholar] [CrossRef]
- Balafoutis, A.; Beck, B.; Fountas, S.; Vangeyte, J.; Wal, T.; van der Soto, I.; Gómez-Barbero, M.; Barnes, A.; Eory, V. Precision agriculture technologies positively contributing to GHG emissions mitigation, farm productivity and economics. Sustainability 2017, 9, 1339. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, B.N.; Savory, E.A.; Vaillancourt, B.; Childs, K.L.; Hamilton, J.P.; Day, B.; Buell, C.R. Expression profiling of Cucumis sativus in response to infection by Pseudoperonospora cubensis. PLoS ONE 2012, 7, e34954. [Google Scholar] [CrossRef] [Green Version]
- FAOSTAT-Crops. 2018. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 5 May 2020).
- Gruda, N.; Sallaku, G.; Balliu, A. Crop Technologies: Cucumber. FAO Plant Prod. Prot. Pap. 2017, 230, 287–300. [Google Scholar]
- Schrader, W.L.; Aguiar, J.L.; Mayberry, K.S. Cucumber production in California. UC ANR 2002, 8050, 1–8. [Google Scholar] [CrossRef]
- Clutter, M.L. An Economic Assessment of Dynamic Led Supplemental Lighting Installations in Greenhouse Production. Master’s Thesis, The University of Georgia, Athens, GA, USA, 2014. [Google Scholar]
- Hovi, T.; Nakkila, J.; Tahvonen, R. Intra-canopy lighting improves production of year-round cucumber. Sci. Hortic. 2004, 102, 283–294. [Google Scholar] [CrossRef]
- Nederhoff, E.M. LEDs for greenhouse lighting. Pract. Hydroponics Greenh. 2010, 110, 32–40. [Google Scholar]
- Kumar, K.G.S.; Hao, X.; Khosla, S.; Guo, X.; Bennett, N. Comparison of HPS lighting and hybrid lighting with top HPS and intra-canopy LED lighting for high-wire mini-cucumber production. Acta Hortic. 2016, 1134, 111–117. [Google Scholar] [CrossRef]
- Särkkä, L.E.; Jokinen, K.; Ottosen, C.O.; Kaukoranta, T. Effects of HPS and LED lighting on cucumber leaf photosynthesis, light quality penetration and temperature in the canopy, plant morphology and yield. Agric. Food Sci. 2017, 26, 101–109. [Google Scholar] [CrossRef] [Green Version]
- Kusuma, P.; Pattison, P.M.; Bugbee, B. From physics to fixtures to food: Current and potential LED efficacy. Hortic. Res. 2020, 7. [Google Scholar] [CrossRef] [Green Version]
- Hao, X.; Zheng, J.; Little, C.; Khosla, S. LED inter-lighting in year-round greenhouse mini-cucumber production. Acta Hortic 2012, 956, 335–340. [Google Scholar] [CrossRef]
- Mitchell, C.A.; Both, A.J.; Bourget, M.C.; Burr, J.F.; Kubota, C.; Lopez, R.G.; Morrow, R.C.; Runkle, E.S. LEDs: The future of greenhouse lighting! Chron. Horticult. 2012, 52, 6–12. [Google Scholar]
- Klamkowski, K.; Treder, W.; Wójcik, K.; Puternicki, A.; Lisak, E. Influence of supplementary lighting on growth and photosynthetic activity of tomato transplants. Infrastruct. Ecol. Rural Areas 2014, IV/3, 1377–1385. [Google Scholar]
- Kowalczyk, K.; Gajc-Wolska, J.; Mirgos, M.; Geszprych, A.; Kowalczyk, W.; Sieczko, L.; Niedzińska, M.; Gajewski, M. Mineral nutrients needs of cucumber and its yield in protected winter cultivation, with HPS and LED supplementary lighting. Sci. Hortic. 2020, 265, 109217. [Google Scholar] [CrossRef]
- Kowalczyk, K.; Gajc-Wolska, J.; Bujalski, D.; Mirgos, M.; Niedzińska, M.; Mazur, K.; Żołnierczyk, P.; Szatkowski, D.; Cichoń, M.; Łęczycka, N. The effect of supplemental assimilation lighting with HPS and LED lamps on the cucumber yielding and fruit quality in autumn crop. Acta Sci. Pol. Hortorum Cultus 2018, 17, 193–200. [Google Scholar] [CrossRef] [Green Version]
- Elum, Z.A.; Etowa, E.B.; Ogonda, A.U. Economics of cucumber production in rivers state, Nigeria. Agro-Sci. 2016, 15, 48–53. [Google Scholar] [CrossRef]
- Cuce, E.; Harjunowibowo, D.; Cuce, P.M. Renewable and sustainable energy saving strategies for greenhouse systems: A comprehensive review. Renew. Sust. Energy Rev. 2016, 64, 34–59. [Google Scholar] [CrossRef]
- Deram, P. Light-emitting-Diode (LED) Lighting for Greenhouse Tomato Production. Ph.D. Thesis, McGill University, Montréal, QC, Canada, 2013. [Google Scholar]
- Singh, D.; Basu, C.; Meinhardt-Wollweber, M.; Roth, B. LEDs for energy efficient greenhouse lighting. Renew. Sustain. Energy Rev. 2015, 49, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Marcelis, L.F.M. LED lighting can significantly reduce energy consumption in greenhouse horticulture. Wageningen University and Research Centre. ScienceDaily. 2014, 31. Available online: www.sciencedaily.com/releases/2014/10/141031082025.htm (accessed on 5 May 2020).
- Mantere, T.; Harju, T.; Välisuo, P.; Alander, J.T. Using the LED lighting in the greenhouses–a pre-study. In Proceedings of the Next 2007—The 4th Conference on New Exploratory Technologies, Seoul, Korea, 25–27 October 2007; pp. 292–295. [Google Scholar]
- Savage, L. LEDs lower costs, boost crops inside greenhouses. Photonics Spectra. 2012, pp. 50–53. Available online: http://leds.hrt.msu.edu/assets/Uploads/LEDsInsideGreenhouses.pdf (accessed on 16 November 2019).
- Dueck, T.A.; Janse, J.; Eveleens, B.A.; Kempkes, F.L.K.; Marcelis, L.F.M. Growth of tomatoes under hybrid LED and HPS lighting. Acta Hortic. 2012, 952, 335–342. [Google Scholar] [CrossRef]
- Kong, Y.; Llewellyn, D.; Zheng, Y. Response of growth, yield, and quality of pea shoots to supplemental light-emitting diode lighting during winter greenhouse production. Can. J. Plant Sci. 2018, 98, 732–740. [Google Scholar] [CrossRef]
- Paucek, I.; Pennisi, G.; Pistillo, A.; Appolloni, E.; Crepaldi, A.; Calegari, B.; Spinelli, F.; Cellini, A.; Gabarrell, X.; Orsini, F.; et al. Supplementary LED interlighting improves yield and precocity of greenhouse tomatoes in the Mediterranean. Agronomy 2020, 10, 1002. [Google Scholar] [CrossRef]
- Loconsole, D.; Cocetta, G.; Santoro, P.; Ferrante, A. Optimization of LED lighting and quality evaluation of Romaine lettuce grown in an innovative indoor cultivation system. Sustainability 2019, 11, 841. [Google Scholar] [CrossRef] [Green Version]
- Ahamed, S.; Guo, H.; Tanino, K. Energy saving techniques for reducing the heating cost of conventional greenhouse. Biosyst. Eng. 2019, 178, 9–33. [Google Scholar] [CrossRef]
- Katzin, D.; van Mourik, S.; Kempkes, F.; van Henten, E.J. GreenLight—An open source model for greenhouses with supplemental lighting: Evaluation of heat requirements under LED and HPS lamps. Biosyst. Eng. 2020, 194, 61–81. [Google Scholar] [CrossRef]
- Nelson, J.A.; Bugbee, B. Economic analysis of greenhouse lighting: Light Emitting Diodes vs. High Intensity Discharge Fixtures. PLoS ONE 2014, 9, e99010. [Google Scholar] [CrossRef] [Green Version]
Specification | Compartment 1 HPS | Compartment 2 HPS-LED | Compartment 3 LED-LED | ||
---|---|---|---|---|---|
HPS Top | HPS Top | LED Interlighting | LED Top | LED Interlighting | |
Number of plants | |||||
Total 2015 | 125 | 125 | 125 | ||
per m2 2015 | 3.14 | 3.14 | 3.14 | ||
Total 2016 | 114 | 146 | 146 | ||
per m2 2016 | 2.85 | 3.65 | 3.65 | ||
Number of lamps | 24 | 18 | 18 | 24 | 18 |
Power in W/pcs | 634 | 634 | 105 | 195 | 105 |
Power in kW/40 m2 | 14.4 | 10.8 | 1.89 | 4.80 | 1.89 |
Power in kW/1 m2 | 0.36 | 0.27 | 0.05 | 0.12 | 0.05 |
Energy consumption in the entire cycle (146 days) 2015 | 550 | 894 | 360 | ||
Energy consumption in the entire cycle (119 days) 2016 | 529 | 502 | 345 |
Items | HPS | HPS-LED | LED-LED | |||
---|---|---|---|---|---|---|
Average Amount (In EUR) | Percentage of Cost | Average Amount (In EUR) | Percentage of Cost | Average Amount (In EUR) | Percentage of Cost | |
Average variable cost | ||||||
Seedlings | 1.69 | 4.57 | 1.99 | 5.08 | 2.01 | 5.06 |
Fertilizers | 9.32 | 25.22 | 11.44 | 29.20 | 11.59 | 29.19 |
Plant protection | 1.10 | 2.98 | 1.1 | 2.81 | 1.10 | 2.77 |
Special costs (heating, CO2) | 18.92 | 51.19 | 18.49 | 47.19 | 18.68 | 47.05 |
Labor costs | 5.93 | 16.04 | 6.16 | 15.72 | 6.32 | 15.92 |
Total variable cost (TVC) | 36.95 | 100.00 | 39.18 | 100.00 | 39.70 | 100.00 |
Total revenue (TR) | 59.42 | - | 70.62 | - | 78.76 | - |
Gross profit (TR –TVC) | 22.47 | - | 31.44 | - | 39.06 | - |
Gross profit margin (%) | 38.00 | - | 45.00 | - | 50,00 | - |
Cost Variability Coefficient | HPS | HPS-LED | LED-LED |
---|---|---|---|
Total variable costs of which: | 1.23 | 3.97 | 6.90 |
lighting costs | 0.99 | 0.56 | 1.02 |
heating costs | 0.69 | 0.37 | 0.70 |
Specification | Lamp Type | ||
---|---|---|---|
HPS 600 W | LED 105 W | LED 195 W | |
Number of lamps [pcs.] | 24 | 18 | 24 |
Lamp/fixture life [hours of operation] | 8000/20,000 | 35,000/35,000 | 35,000/35,000 |
Permissible (recommended) ambient/housing temperature [°C] (affects the lifetime) | 35/75 | 35/40 | 35/40 |
Current consumption [A] | 2.9–3.1 | 0.6–0.65 | 0.95–1.05 |
Power consumption [W] | 634 | 105 | 200 |
Bulb temperature/heat released | 60–70% of power | 40–50% of power | 40–50% of power |
Possibility of power control | no (possible for power = 1000 W or higher) | yes | yes |
Permissible voltage drop in the network | 10% but at the expense of operational efficiency and operating time | 20–30% but at the expense of operational efficiency | 20–30% but at the expense of operational efficiency |
Warm-up time [min.] | 5 min. | none | none |
Refrigeration [min.] | after cooling down in about 10 min. | none | none |
Flickering | yes the degree depends on the type of the ballast | no | no |
Light intensity loss ratio | up to 20% after approx. 2000 h, it is recommended to replace the lamp after 6000–8000 h | up to 10% after about 4–5 years of use (approx. 25,000 h) | up to 10% after about 4–5 years of use (approx. 25,000 h) |
Price of a set of lamps, net [EURO] | 3680.38 | 4166.27 | 9505.26 |
Cost of electrical installations, slings and accessories, net [EURO] | 2511.96 | 526.32 (supplemental toplighting) | 1698.56 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowalczyk, K.; Olewnicki, D.; Mirgos, M.; Gajc-Wolska, J. Comparison of Selected Costs in Greenhouse Cucumber Production with LED and HPS Supplemental Assimilation Lighting. Agronomy 2020, 10, 1342. https://doi.org/10.3390/agronomy10091342
Kowalczyk K, Olewnicki D, Mirgos M, Gajc-Wolska J. Comparison of Selected Costs in Greenhouse Cucumber Production with LED and HPS Supplemental Assimilation Lighting. Agronomy. 2020; 10(9):1342. https://doi.org/10.3390/agronomy10091342
Chicago/Turabian StyleKowalczyk, Katarzyna, Dawid Olewnicki, Małgorzata Mirgos, and Janina Gajc-Wolska. 2020. "Comparison of Selected Costs in Greenhouse Cucumber Production with LED and HPS Supplemental Assimilation Lighting" Agronomy 10, no. 9: 1342. https://doi.org/10.3390/agronomy10091342
APA StyleKowalczyk, K., Olewnicki, D., Mirgos, M., & Gajc-Wolska, J. (2020). Comparison of Selected Costs in Greenhouse Cucumber Production with LED and HPS Supplemental Assimilation Lighting. Agronomy, 10(9), 1342. https://doi.org/10.3390/agronomy10091342