Effect of Site Specific Nitrogen Management on Seed Nitrogen—A Driving Factor of Winter Oilseed Rape (Brassica napus L.) Yield
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiments Set Up
2.2. Experimental Design
- (1)
- Control—PK + 0 N + 0.00 kg S ha;
- (2)
- PK + 80 kg N ha−1 + 12.50 kg S ha−1;
- (3)
- PK + 120 kg N ha−1 + 18.75 kg S ha−1;
- (4)
- PK + 160 kg N ha−1 + 25.00 kg S ha−1.
2.3. Source of Primary Materials
2.4. Calculated Indices/Parameters
- A
- Plant and nutrient indices:
where: Y, Y0, Yi—seed yield, seed yield on the N control plot and N fertilized plots, t ha−1 or kg ha−1; TB—total biomass—t ha−1 or kg ha−1; TN—total N uptake, kg ha−1; Nse—amount of N in seeds, kg ha−1; Nf − N fertilizer rate, kg ha−1; TN, TN0, TNi—total amount of N in WOSR at harvest for the N control and N fertilized plots.1. Harvest index: HI = Y/TB · 100%, (1) 2. Nitrogen Harvest Index: NHI = (Nse/TN) · 100%, (2) 3. Partial factor productivity of Nf: PFPNf = Y/Nf (kg seeds kg−1 Nf, (3) 4. Agronomic N efficiency: AEN = (Yi − Y0)/Nf (kg seeds kg−1 Nf), (4) 5. Physiological Nf efficiency: PEN= (Yi − Y0)/(TNi − TN0) (kg seeds kg−1 NT), (5) 6. Apparent Nf recovery: RN = (TNi − TN0)/Nf ∙ 100%, (6) 7. Unit Nitrogen Accumulation: UNA = Nse/Y (kg N t−1 seeds), (7) 8. Unit Nitrogen productivity: UNP = Y/Nse (kg seeds kg Nse), (8) - B
- Soil nitrogen parameters:
where: Nmins—the amount of mineral N at the WOSR spring regrowth, kg ha−1; Nminr—the amount of mineral N after WOSR harvest, kg ha−1.1. N input: Nin = Nmins + Nf (kg ha−1), (9) 2. Mineral N balance: Nb = Nin − TN (kg ha−1), (10) 3. Net N gain: Ngain = Nminr − Nb (kg ha−1), (11) 4. Total N input: Nint = Nin + Ngain (kg ha−1), (12) 5. Nitrogen input efficiency: NEin = Nse/Nin · 100%, (13) 6. Total N input efficiency: NEint = Nse/Nint · 100%, (14)
2.5. Statistical Analyses
3. Results
3.1. Yield and Its Components
3.2. Characteristics of Nitrogen Accumulation Patterns at Harvest
3.3. Indices of Fertilizer N Management
3.4. Indices of Soil N Management
- The Nminr content on the N control plot:
- a.
- Go (52.0) < Do (83.5 < Bu (98.3) ≤ Ko (102.5) < Wi (117.2) < Ve (146.1 kg ha−1).
- The maximum Nminr content:
- b.
- Go (85.6) < Ko (102.5) < Bu (111.8) ≤ Wi (119.5) ≤ Do (121.1) < Ve (146.1 kg ha−1).
- The net Nminr increase with respect to the N control:
- c.
- Do (+37.6) > Go (+33.5) > Ko (+18.6) > Bu (+13.5) > Wi (+2.3) > Ve (+0.0 kg ha−1)
4. Discussion
- Seed density (SD);
- Amount of N in seeds (Nse);
- N sources: indigenous N in spring, fertilizer N, in-season N (Nin, Nint);
- N productivity (PFPNin, PFPNint).
4.1. Seed Density and Yield
- Ve (4.46) > Do (4.01) ≥ Wi (3.79) ≥ Ko (3.63) = Bu (3.59) > Go (3.14 t ha−1);
- Yield increase: Ve (+2.45) > Bu (+2.18) > Wi (+1.69) > Go (+1.38) > Do (+1.08) ≥ Ko (+0.98).
- (1)
- Indigenous N (Nmins, control N plot):Ko (57707) > Do (49646) ≥ Go (49562) > Ve (39935) > Wi (34135) > Bu (27745 seeds m−2).
- (2)
- N input (Nin) for Nfop or Nfmax for respective treatments:Ko (83612) ≥ Ve (76463) >Do (67810) ≥ Go (66312) ≥ Bu (59755) ≥ Wi (56359 seeds m−2).
4.2. Seed Nitrogen as Yield Driver
4.3. Impact of the In-Season N Supply on Nse and Yield
- (1)
- Nse response to Ni:Do (102.5) ≥ Ko (93.1) > Wi (71.0) ≥ Go (66.7) ≥ Ve (66.1) > Bu (46.1 kg ha−1);
- (2)
- Nse response to Nin, i.e., Nseinop or Nseinmax:Do (153.2) ≥ Ve (145.8) > Ko (131.2) ≥ Wi (125.2) ≥ Bu (124.2 kg ha−1) > Go (95.1, kg ha−1);
- (2′)
- Nse net increase with respect to the N control:Ve (+79.7) ≥ Bu (+78.1) > Wi (+54.2) ≥ Do (+50.7) > Ko (+38.1) > Go (+28.4 kg ha−1);
- (1)
- Nse response to Nint, i.e., Nseintop or Nseintmax:Do (162.7) ≥ Ve (152.9) > Ko (135.1) ≥ Bu (123.0) ≥ Wi (116.4) > Go (91.9, kg ha−1);
- (3′)
- Nse net increase with respect to Nin:Do (+9.5) > Ve (+7.8) > Ko (+3.9) > Bu (−1.2) > Go (−3.2) > Wi (−8.8 kg ha−1).
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix
Year | Site | Equation | R2 | p | Nop, | Ymax/SDmax/ |
---|---|---|---|---|---|---|
kg ha−1 | Nsemax | |||||
Yield, Y, t ha−1 | ||||||
2009 | Gostyń, Go | Y = −0.00008Nf2 +0.017Nf + 2.38 | 0.99 | ≤0.001 | 103.1 | 3.142 |
Kołaczkowo, Ko | Y = −0.00005Nf2 + 0.014Nf + 2.65 | 0.94 | ≤0.01 | 142.7 | 3.629 | |
2010 | Buszewo, Bu | Y = −0.0002Nf2 + 0.042Nf + 1.41 | 0.99 | ≤0.001 | 104.3 | 3.589 |
Wieszczyn, Wi | Y = 0.009Nf + 2.1 | 0.91 | ≤0.01 | - | 3.540 | |
2011 | Wenecja, Ve | Y = 0.015Nf + 2.01 | 0.98 | ≤0.001 | - | 4.410 |
Donatowo, Do | Y = −0.00007Nf2 + 0.017Nf + 2.93 | 0.99 | ≤0.001 | 128.0 | 4.012 | |
Seed density, SD, number m−2 | ||||||
2009 | Gostyń, Go | SD = −1.759Nf2 + 343.3Nf + 49,562 | 0.97 | ≤0.01 | 97.6 | 66,312 |
Kołaczkowo, Ko | SD = −0.988Nf2 + 332Nf + 55,707 | 0.87 | ≤0.05 | 168.1 | 83,612 | |
2010 | Buszewo, Bu | SD = −3.09Nf2 + 629Nf + 27,745 | 0.99 | ≤0.001 | 101.8 | 59,755 |
Wieszczyn, Wi | SD = 138.9Nf + 34,135 | 0.93 | ≤0.001 | - | 56,359 | |
2011 | Wenecja, Ve | SD = 228.3Nf + 39,935 | 0.98 | ≤0.001 | - | 74,463 |
Donatowo, Do | SD = −0.99Nf2 + 268.2Nf + 49,646 | 0.99 | ≤0.001 | 135.5 | 67,810 | |
Nitrogen accumulated in seeds, Nse, kg ha−1 | ||||||
2009 | Gostyń, Go | Nse = −0.0032Nf2 + 0.59Nf + 68.9 | 0.98 | ≤0.001 | 92,2 | 96.1 |
Kołaczkowo, Ko | Nse = 0.225Nf + 95.2 | 0.87 | ≤0.05 | - | 131.2 | |
Buszewo, Bu | Nse = −0.0064Nf2 + 1.41Nf + 46.3 | 0.99 | ≤0.001 | 110.3 | 124.2 | |
Wieszczyn, Wi | Nse = 0.368Nf + 66.0 | 0.85 | ≤0.05 | - | 124.9 | |
Wenecja, Ve | Nse = 0.558Nf + 64.5 | 0.95 | ≤0.001 | - | 153.8 | |
Donatowo, Do | Nse = −0.0022Nf2 + 0.67Nf + 102.8 | 0.99 | ≤0.001 | 152.7 | 154.1 |
Characteristics | TB | HI | PD | Se/Po | SD | TSW | Nc | Nse | Nr | TN | NHI | UNA | UNP |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Y | 0.56 ** | 0.19 | 0.65 ** | −0.00 | 0.84 *** | 0.19 | 5473 | 0.96 *** | 0.47 * | 0.83 *** | −0.00 | 0.18 | −0.26 |
TB | 1.00 | −0.67 *** | 0.63 ** | −0.29 | 0.62 ** | −0.06 | 0.24 | 0.49 * | 0.91 *** | 0.83 *** | −0.69 *** | 0.74 *** | −0.70 *** |
HI | 1.00 | −0.23 | 0.42 * | −0.01 | 0.24 | 0.16 | 0.25 | −0.63 ** | −0.24 | 0.84 *** | −0.70 *** | 0.64 ** | |
PD | 1.00 | −0.63 ** | 0.71 *** | −0.19 | −0.06 | 0.47 * | 0.36 | 0.48 * | −0.17 | 0.09 | −0.12 | ||
Se/Po | 1.00 | 0.06 | −0.12 | 0.37 | 0.16 | −0.07 | 0.05 | 0.24 | −0.05 | 0.04 | |||
SD | 1.00 | −0.35 | 0.30 | 0.76 *** | 0.49 | 0.73 *** | −0.09 | 0.17 | −0.21 | ||||
TSW | 1.00 | 0.42 * | 0.28 | 0.03 | 0.18 | 0.03 | 0.13 | −0.19 | |||||
N | 1.00 | 0.75 *** | 0.36 | 0.65 ** | −0.01 | 0.43 * | −0.51 * | ||||||
Nse | 1.00 | 0.46 * | 0.85 *** | 0.03 | 0.25 | −0.34 | |||||||
Nr | 1.00 | 0.86 *** | −0.82 *** | 0.91 *** | −0.87 *** | ||||||||
TN | 1.00 | −0.48 * | 0.69 *** | −0.72 *** | |||||||||
NHI | 1.00 | −0.87 *** | 0.86 *** | ||||||||||
UNA | 1.00 | −0.95 *** |
Variables | F1 | F2 | F3 | F4 |
---|---|---|---|---|
Y | 0.95 1 | −0.11 | −0.05 | −0.27 |
PD | 0.60 | −0.77 | 0.18 | −0.05 |
Se/Po | 0.02 | 0.66 | −0.74 | 0.01 |
SD | 0.83 | −0.38 | −0.39 | 0.03 |
TSW | 0.16 | 0.55 | 0.68 | −0.42 |
N | 0.68 | 0.64 | 0.01 | −0.05 |
Nse | 0.95 | 0.14 | −0.07 | −0.25 |
TN | 0.95 | 0.10 | 0.08 | 0.26 |
UNA | 0.45 | 0.27 | 0.34 | 0.78 |
Year | Site | Equation | R2 | p | Nop kg ha−1 | Ninmax/ |
---|---|---|---|---|---|---|
Ngainmax/ | ||||||
Nintmax | ||||||
Ninput, Nin, kg ha−1 | ||||||
2009 | Gostyń, Go | Nin = −0.0033Nf2 + 1.36Nf + 42.5 | 0.98 | ≤0.001 | 206.2 | 182.8 |
Kołaczkowo, Ko | Nin = 0.225Nf + 88.1 | 0.89 | ≤0.05 | - | 124.1 | |
2010 | Buszewo, Bu | Nin = −0.006Nf2 + 2.26Nf + 74.7 | 0.99 | ≤0.001 | 176.3 | 273.7 |
Wieszczyn, Wi | Nin = 0.37Nf + 47.9 | 0.85 | ≤0.05 | - | 107.1 | |
2011 | Wenecja, Ve | Nin = 0.57Nf − 5.27 | 0.95 | ≤0.001 | - | 85.9 |
Donatowo, Do | Nse = −0.0022Nf2 + 20.91Nf + 59.1 | 0.99 | ≤0.001 | 207.5 | 154.1 | |
Ngain, kg ha−1 | ||||||
2009 | Gostyń, Go | Ngain = −0.73Nf2 + 0.78Nf + 31.5 | 0.99 | ≤0.001 | 53.5 | 52.4 |
Kołaczkowo, Ko | Ngain = −0.62Nf + 229.6 | 0.96 | ≤0.001 | - | 129.6 | |
2010 | Buszewo, Bu | Ngain = −0.014Nf2+ 1.75Nf + 104.8 | 0.97 | ≤0.001 | 64.8 | 161.6 |
Wieszczyn, Wi | Ngain = −0.0057Nf2 + 0.62Nf + 186.2 | 0.52 | ≤0.05 | 54.4 | 169.3 | |
2011 | Wenecja, Ve | Ngain = −0.111Nf + 135 | 0.52 | ≤0.05 | - | 117.2 |
Donatowo, Do | Ngain = −0.381Nf + 203.3 | 0.89 | ≤0.05 | - | 142.3 | |
Ninput total, Nint, kg ha−1 | ||||||
2009 | Gostyń, Go | Nint = −0.007Nf2 + 1.78Nf + 140.7 | 0.99 | ≤0.001 | 122.0 | 249.4 |
Kołaczkowo, Ko | Nint = 0.375Nf + 289 | 0.89 | ≤0.05 | - | 349.0 | |
2010 | Buszewo, Bu | Nint = −0.0135Nf2 + 2.75Nf + 171 | 0.99 | ≤0.001 | 101.9 | 311.0 |
Wieszczyn, Wi | Nint = −0.006Nf2 + 1.62Nf + 235 | 0.83 | ≤0.05 | 142.4 | 344.6 | |
2011 | Wenecja, Ve | Nint = 0.89Nf + 240 | 0.99 | ≤0.001 | - | 382.4 |
Donatowo, Do | Nint = 0.619Nf + 258.3 | 0.95 | ≤0.05 | - | 357.3 |
Year | Site | Equation | R2 | p | Ninop/Ninmax | Nsemax | NE 1 |
---|---|---|---|---|---|---|---|
kg ha−1 | kg ha−1 | % | |||||
N input, Nin, kg ha−1 as independent variable | NEin | ||||||
2009 | Gostyń, Go | Nse = −0.0033Nin2 + 1.36Nin − 42.5 | 0.98 | ≤0.001 | 206.2 | 95.1 | 46 |
Kołaczkowo, Ko | Nse = 0.225Nin + 88.1 | 0.89 | ≤0.05 | 219.7 | 131.2 | 60 | |
2010 | Buszewo, Bu | Nse = −0.0064Nin2 + 2.257Nin − 74.7 | 0.99 | ≤0.001 | 176.3 | 124.2 | 70 |
Wieszczyn, Wi | Nse = 0.37Nin + 47.9 | 0.85 | ≤0.05 | 209.0 | 125.2 | 60 | |
2011 | Wenecja, Ve | Nse = 0.56Nin + 5.89 | 0.95 | ≤0.001 | 265.0 | 154.3 | 58 |
Donatowo, Do | Nse = −0.0022Nin2 + 0.91Nin + 59.1 | 0.99 | ≤0.001 | 206.8 | 153.2 | 74 | |
N input total, Nint, kg ha−1 as independent variable | NEint | ||||||
2009 | Gostyń, Go | Nse = 0.24Nint + 32.7 | 0.79 | ≤0.01 | 246.7 | 91.9 | 37 |
Kołaczkowo, K1 | Nse = 0.52Nint − 51.2 | 0.72 | ≤0.05 | 358.3 | 135.1 | 38 | |
2010 | Buszewo, Bu | Nse = −0.0033Nint2 + 2.14Nint − 224 | 0.99 | ≤0.001 | 342.0 | 123.0 | 36 |
Wieszczyn, Wi | Nse = 0.36Nint − 13.7 | 0.61 | ≤0.05 | 361.3 | 116.4 | 32 | |
2011 | Wenecja, Ve | Nse = 0.61Nint − 79.4 | 0.90 | ≤0.01 | 380.9 | 152.9 | 40 |
Donatowo, Do | Nse = −0.0042Nint2 + 3.11Nint − 413 | 0.99 | ≤0.001 | 370.2 | 162.7 | 44 |
References
- Abbadi, A.; Leckband, G. Rapessed breeding for oil content, quality, and sustainability. Eur. J. Lipid Sci. Technol. 2011, 113, 1198–1206. [Google Scholar] [CrossRef]
- Vinnichek, L.; Pogorelova, E.; Dergunov, A. Oilseed market: Global trends. IOP Conf. Ser. Earth Environ. Sci. 2019, 274, 0112030. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agriculture Organization of the United Nations. Available online: http://faostat.fao.org/site/567/default.aspx#ancor (accessed on 25 June 2020).
- Zając, T.; Klimek-Kopyra, A.; Oleksy, A.; Lorenc-Kozik, A.; Ratajczak, K. Analysis of yield and plant traits of oilseed rape (Brassica napus L.) cultivated in temperate region in light of the possibilities of sowing in arid areas. Acta Agrobotanica 2016, 69, 1696. [Google Scholar] [CrossRef] [Green Version]
- Carre, P.; Pouzet, A. Rapeseed market, worldwide and in Europe. Ocl 2014, 21, D102. [Google Scholar] [CrossRef]
- Pullens, J.W.M.; Sharif, B.; Trnka, M.; Balek, J.; Semenov, M.A.; Olesen, J.E. Risk factors for European winter oilseed rape production under climate change. Agric. For. Meteorol. 2019, 272, 30–39. [Google Scholar] [CrossRef]
- Brown, J.K.; Beeby, R.; Penfield, S. Yield instability of winter oilseed rape modulated by early winter temperature. Sci. Rep. 2019, 9, 6953. [Google Scholar] [CrossRef] [Green Version]
- Sieling, K.; Böttcher, U.; Kage, H. Effect of sowing method and N application on seed yield and N use efficiency of winter oilseed rape. Agronomy 2017, 7, 21. [Google Scholar] [CrossRef] [Green Version]
- Diepenbrock, W. Yield analysis of winter oilseed rape (Brassica napus L.): A review. Field Crops Res. 2000, 67, 35–49. [Google Scholar] [CrossRef]
- Habekotté, B. Quantitative analysis of pod formation, seed set and seed filling in winter oilseed rape (Brassica napus L.) under field conditions. Field Crops Res. 1993, 35, 21–33. [Google Scholar] [CrossRef]
- Grzebisz, W.; Szczepaniak, W.; Grześ, S. Sources of nutrients for high-yielding winter oilseed rape (Brassica napus L.) during post-flowering growth. Agronomy 2020, 10, 626. [Google Scholar] [CrossRef]
- Berry, P.M.; Spink, J.H. A physiological basis of oilseed rape yields: Past and future. J. Agric. Sci. 2006, 144, 381–392. [Google Scholar] [CrossRef]
- Hoffmann, M.P.; Jacobs, A.; Whitbread, A.M. Crop modeling based analysis of site-specific production limitations of winter oilseed rape in northern Germany. Field Crops Res. 2015, 178, 49–62. [Google Scholar] [CrossRef]
- Weymann, W.; Böttcher, U.; Sieling, K.; Kage, H. Effects of weather conditions during different growth phases on yield formation of winter oilseed rape. Field Crops Res. 2015, 173, 41–48. [Google Scholar] [CrossRef]
- Barłóg, P.; Grzebisz, W. Effect of timing and nitrogen fertilizer application on winter oilseed rape (Brassica napus L.). II. Nitrogen uptake dynamics and fertilizer efficiency. J. Agron. Crop. Sci. 2004, 190, 314–323. [Google Scholar] [CrossRef]
- Sieling, K.; Kage, H. Efficient N management using winter oilseed rape. A review. Agron. Sustain. Dev. 2010, 30, 271–279. [Google Scholar] [CrossRef] [Green Version]
- Barraclough, P.B. Root growth, macro-nutrient uptake dynamics and soil fertility requirements of a high-yielding winter oilseed rape crop. Plant Soil 1989, 119, 59–70. [Google Scholar] [CrossRef]
- Li, H.; Cong, R.; Ren, T.; Li, X.; Ma, C.; Zheng, L.; Zhang, Z.; Lu, J. Yield response to n fertilizer and optimum N rate of winter oilseed rape under different soil indigenous N supplies. Field Crops Res. 2015, 181, 52–59. [Google Scholar] [CrossRef]
- Fordoński, G.; Pszczółkowska, A.; Okorski, A.; Olszewski, J.; Załuski, D.; Gorzkowska, A. The yield and chemical composition of winter oilseed rape seeds depending on different nitrogen fertilization rates and preceding crop. J. Elem. 2016, 21, 1225–1234. [Google Scholar]
- Olfs, H.-W.; Blankenau, K.; Brentrup, F.; Jasper, J.; Link, A.; Lammel, J. Soil- and plant-based nitrogen-fertilizer recommendations in arable farming. J. Plant Nutr. Soil Sci. 2005, 168, 414–431. [Google Scholar] [CrossRef]
- Barłóg, P.; Łukowiak, R.; Grzebisz, W. Predicting the content of soil mineral nitrogen based on the content of calcium chloride-extractable nutrients. J. Plant Nutr. Soil Sci. 2017, 180, 624–635. [Google Scholar] [CrossRef]
- Li, H.; Lu, J.; Ren, T.; Li, X.; Cong, R. Nutrient efficiency of winter oilseed rape in an intensive cropping system: A regional analysis. Pedosphere 2017, 27, 364–370. [Google Scholar] [CrossRef]
- Łukowiak, R.; Barłóg, P.; Grzebisz, W. Soil mineral nitrogen and the rating of CaCl2 extractable nutrients. Plant Soil Environ. 2017, 63, 177–183. [Google Scholar]
- Grzebisz, W.; Szczepaniak, W.; Barłóg, P.; Przygocka-Cyna, K.; Potarzycki, J. Phosphorus sources for winter oilseed rape (Brassica napus L.)—Magnesium sulfate management impact on P use efficiency. Arch. Agron. Soil Sci. 2018, 12, 1646–1662. [Google Scholar] [CrossRef]
- Szczepaniak, W.; Grzebisz, W.; Potarzycki, J.; Łukowiak, R.; Przygocka-Cyna, K. Nutritional status of winter oilseed rape in cardinal stages of growth as yield indicator. Plant Soil Environ. 2015, 61, 291–296. [Google Scholar] [CrossRef] [Green Version]
- Grzebisz, W.; Łukowiak, R.; Sassenrath, G. Virtual nitrogen as a tool for assessment of nitrogen at the field scale. Field Crops Res. 2018, 218, 182–184. [Google Scholar] [CrossRef]
- Bardsley, C.E.; Lancaster, J.D. Determination of reserve sulfur and soluble sulfates in soils. Soil Sci. Soc. Am. Proc. 1980, 24, 265–268. [Google Scholar] [CrossRef]
- Fotyma, E.; Fotyma, M.; Pietruch, C. The content of mineral N in arable soils in Poland. Fertil. Fertil. 2004, VI, 11–54. [Google Scholar]
- Cassman, G.; Dobermann, A.; Walters, D. Agro-ecosystems, nitrogen-use efficiency, and nitrogen Management. AMBIO 2002, 31, 132–140. [Google Scholar] [CrossRef]
- Rathke, G.W.; Christen, O.; Diepenbrock, W. Effects of nitrogen source and rate on productivity and quality of winter oilseed rape (Brassica napus L.) grown in different crop rotations. Field Crops Res. 2005, 94, 103–113. [Google Scholar] [CrossRef]
- Wang, X.; Mathieu, A.; Cournede, P.-H.; Allirand, J.-M.; Jullien, A.; de Reffye, P.; Zhang, B.G. Variability and regulation of the number of ovules, seeds, and pods according to assimilate availability in winter oilseed rape (Brassica napus L.). Field Crops Res. 2011, 122, 60–69. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, T.; Li, X.; Ren, T.; Cong, R.; Lu, J. Nutrient deficiency limits population development, yield formation and nutrient uptake of direct sown winter oilseed rape. J. Integr. Agric. 2015, 14, 670–680. [Google Scholar] [CrossRef] [Green Version]
- Szczepaniak, W. A mineral profile of winter oilseed rape in critical stages of growth—Nitrogen. J. Elem. 2014, 19, 759–778. [Google Scholar] [CrossRef]
- Gomez, N.; Miralles, D.J. Factors that modify early and late reproductive phases in oilseed rape (Brassica napus L.): Its impact on seed yield and oil content. Ind. Crops Prod. 2011, 34, 1277–1285. [Google Scholar] [CrossRef]
- Jankowski, K.J.; Hulanicki, P.S.; Krzebietke, S.; Żarczyński, P.; Hulanicki, P.; Sokólski, M. Yield and quality of winter oilseed rape in response to different systems of foliar fertilization. J. Elem. 2016, 21, 1017–1027. [Google Scholar] [CrossRef]
- Pan, Y.; Lu, Z.; Lu, J.; Li, X.; Cong, R. Effects of low sink demand on leaf photosynthesis under potassium deficiency. Plant Physiol. Biochem. 2017, 113, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Dreccer, M.F.; Schapendonk, A.H.; Slafer, G.A.; Rabbinge, R. Comparative response of wheat and oilseed rape to nitrogen supply: Absorption and utilization efficiency of radiation and nitrogen during the reproductive stages of growth. Plant Soil 2000, 220, 189–205. [Google Scholar] [CrossRef]
- Grzebisz, W.; Łukowiak, R.; Biber, M.; Przygocka-Cyna, K. Effect of multi-micronutrient fertilizers applied to foliage on nutritional status of winter oilseed rape and development of yield forming elements. J. Elem. 2010, 15, 477–491. [Google Scholar] [CrossRef] [Green Version]
- Körner, C. Paradigm shift in plant growth control. Curr. Opin. Plant Biol. 2015, 25, 107–114. [Google Scholar] [CrossRef]
- Bouchet, A.-S.; Laperche, A.; Bissuel-Belaygue, C.; Snowdon, R.; Nesi, N.; Stahl, A. Nitrogen use eficiency in rapeseed. A review. Agron. Sustain. Dev. 2016, 36, 38. [Google Scholar] [CrossRef]
- Szczepaniak, W.; Grzebisz, W.; Barłóg, P.; Przygocka-Cyna, K. Mineral composition of winter oilseed rape (Brassica napus L.) seeds as a tool for oil seed prognosis. J. Cen. Eur. Agric. 2017, 18, 196–213. [Google Scholar] [CrossRef]
Year | Site/Location (Acronym) | Variety | Soil Textural Class/ Agronomy Class | pH (1 M KCl) | Organic Matter 1, g kg−1 Soil | P2O5 2 | K2O 2 | Mg 3 | S-SO4 4 | Nmin 5 |
---|---|---|---|---|---|---|---|---|---|---|
mg kg−1 Soil | kg ha−1 | |||||||||
2009 | Gostyń (Go) 51°52′06′′ N 16°51′55′′ E | Californium | Loamy sand Light 7 | 6.0/5.7 6 | 11/7 | 149/124 M/M 8 | 249/123 VH/M | 46/60 M/H | 5.6/7.5 L/M | 58.4/50.8 |
Kołaczkowo (Ko) 52° 13′00′′ N 17°37′33′′ E | Nelson | Sand/ loamy sand/ Very light/light | 6.2/6.4 | 9/6 | 127/68 M/L | 154/175 H/H | 86/80 VH/VH | 8.1/7.7 M/M | 32.4/27.3 | |
2010 | Buszewo (Bu) 51°32′41′′ N 16°22′11′′ E | Californium | Sand clay loam Medium | 6.6/6.4 | 13/5 | 264/262 VH/VH | 138/86 M/L | 95/83 VH/H | 9.5/8.6 M/M | 40.3/25.7 |
Wieszczyczyn (Wi) 51°02′03′′ N 17°05′38′′ E | Nemax | Loamy sand/ sandy loam Light | 5.8/6.0 | 12/7 | 265/227 VH/VH | 138/65 M/L | 57/42 H/M | 8.5/7.6 M/M | 34.8/14.2 | |
2011 | Wenecja (Ve) 51°48′45′′ N 17°45′51′′ E | Californium | Sandy loam/ loam Medium | 5.6/5.6 | 16/12 | 121/103 M/M | 116/82 L/L | 85/74 H/H | 12.3/12.2 H/H | 64.8/40.2 |
Donatowo (Do) 51°04′51′′ N 16°51′37′′ E | ES Mercure F1 | Loamy sand Light | 6.3/6.2 | 12/6 | 172/149 H/M | 204/150 VH/M | 53/44 H/M | 7.2/6.4 M/M | 35.3/19.7 |
Year | Site | Meteorological Characteristics | August | September | October | November | December | January | February | March | April | May | June | July | Total 1/ Average |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2009 | Go | 2 P, mm | 95.5 | 18.0 | 64.2 | 24.2 | 30.0 | 24.5 | 45.3 | 48.5 | 7.7 | 70.0 | 91.0 | 81.0 | 368.0 |
3 T. °C | 18.3 | 13.2 | 9.1 | 5.6 | 1.4 | −3.1 | 0.1 | 4.2 | 11.9 | 13.1 | 15.7 | 19.0 | 8.7 | ||
Ko | P. mm | 60.4 | 20.9 | 67.5 | 22.8 | 16.2 | 20.6 | 25.7 | 50.5 | 2.1 | 85.4 | 101.5 | 105.3 | 391.1 | |
T. °C | 18.9 | 13.3 | 9.0 | 5.3 | 1.1 | −3.4 | −0.1 | 3.4 | 11.0 | 13.4 | 15.7 | 19.6 | 8.5 | ||
2010 | Bu | P. mm | 109.6 | 52.4 | 76.6 | 43.2 | 41.1 | 43.6 | 20.0 | 57.6 | 39.8 | 92.3 | 18.1 | 109.6 | 381.0 |
T. °C | 18.2 | 12.4 | 6.2 | 4.4 | −5.6 | −6.3 | −0.4 | 4.4 | 10.0 | 12.5 | 18.7 | 21.6 | 8.6 | ||
Wi | P. mm | 31.9 | 58.2 | 62.8 | 40.3 | 49.1 | 19.1 | 15.3 | 38.5 | 33.4 | 83.6 | 21.2 | 121.6 | 332.7 | |
T. °C | 19.1 | 16.4 | 7.2 | 6.5 | −1.4 | −7.3 | −1.2 | 4.2 | 9.1 | 11.4 | 16.9 | 22.3 | 7.9 | ||
2011 | Ve | P. mm | 96.8 | 25.5 | 57.3 | 19.4 | 22.6 | 19.0 | 25.7 | 57.1 | 1.2 | 66.2 | 70.6 | 116.5 | 356.3 |
T. °C | 18.1 | 12.6 | 8.6 | 4.7 | 0.6 | −3.8 | −0.6 | 3.0 | 10.6 | 12.8 | 15.1 | 18.8 | 8.0 | ||
Do | P. mm | 109.8 | 88.8 | 9.1 | 86.8 | 36.8 | 27.4 | 18.5 | 22.6 | 10.1 | 29.8 | 67.8 | 109.2 | 285.4 | |
T. °C | 17.4 | 13.1 | 6.3 | 6.1 | 3.4 | 1.1 | −3.5 | 2.4 | 7.9 | 14.8 | 18.8 | 17.6 | 8.4 | ||
Long-term 4 | 2009 | P. mm | 66.7 | 48.8 | 42.0 | 45.3 | 48.4 | 40.1 | 32.6 | 40.1 | 38.1 | 56.7 | 62.7 | 77.2 | 347.5 |
1961 | T. °C | 17.5 | 13.3 | 8.6 | 3.6 | 0 | −1.6 | −0.5 | 2.9 | 7.9 | 13.2 | 16.4 | 18.1 | 8.1 |
Year | Treatments | Treatment Level | Y | TB | HI | PD | SD | Se/Po | TSW |
---|---|---|---|---|---|---|---|---|---|
(Y) | t ha−1 | % | No. m−2 | No. pod−1 | g | ||||
2009 | Site | Go | 2.935a1 | 12.3a | 25.7b | 7878b | 60.062a | 8.1a | 4.88b |
(S) | Ko | 3.329b | 17.2b | 19.4a | 7187a | 74.128b | 10.5b | 4.53a | |
F-value | *** | *** | *** | *** | *** | *** | *** | ||
Fertilizer (F) | N | 3.068 | 14.1a | 23.0b | 7250a | 65.403a | 9.3 | 4.73 | |
NS | 3.195 | 15.4b | 22.0a | 7815b | 68.787b | 9.2 | 4.68 | ||
F-value | n.s. | *** | * | *** | * | n.s. | n.s. | ||
N rate (N) | 0 | 2.506a | 10.8a | 25.9c | 5259a | 52.328 | 10.0b | 4.78 | |
kg ha−1 | 80 | 3.360b | 15.4b | 22.6b | 7569b | 72.697 | 10.0b | 4.66 | |
120 | 3.347b | 16.8c | 20.1a | 9374d | 70.929 | 7.8a | 4.73 | ||
160 | 3.314b | 15.9b | 21.3ab | 7929c | 72.426 | 9.3b | 4.65 | ||
F-value | *** | *** | *** | *** | *** | *** | n.s. | ||
2010 | Site | Bu | 2.823 | 11.4a | 24.8b | 6217b | 48.511 | 8.3a | 5.76a |
(S) | Wi | 2.921 | 15.1b | 21.4a | 5054a | 46.635 | 9.4b | 6.25b | |
F-value | n.s. | *** | *** | *** | n.s. | ** | *** | ||
Fertilizer (F) | N | 2.729a | 13.6b | 21.3a | 5985b | 46.028 | 8.3a | 5.92a | |
NS | 3.016b | 12.9a | 24.9b | 5286a | 49.119 | 9.4b | 6.09b | ||
F-value | ** | ** | *** | *** | n.s. | ** | ** | ||
N rate | 0 | 1.806a | 6.82a | 26.2b | 2618a | 31.610a | 10.3b | 5.65a | |
kg ha−1 | 80 | 3.117b | 15.97c | 21.2a | 7096c | 51.258b | 7.2a | 6.11b | |
120 | 3.211b | 15.75c | 21.9a | 7004c | 53.108b | 8.2a | 6.08b | ||
180 | 3.355b | 14.49b | 23.1a | 5823b | 54.318b | 9.6b | 6.19b | ||
F-value | *** | *** | *** | *** | *** | *** | *** | ||
2011 | Site | Ve | 3.366a | 12.2 | 28.4a | 7494b | 60.478 | 8.9a | 5.51a |
(S) | Do | 3.685b | 12.0 | 31.1b | 5658a | 62.289 | 11.4b | 5.93b | |
F-value | 23.9 *** | 0.94 | 13.7 *** | 271 *** | 1.84 | 49.4 *** | 54.0 *** | ||
Fertilizer (F) | N | 3.415a | 12.1 | 28.9a | 6585 | 59.015a | 9.4a | 5.77 | |
NS | 3.636b | 12.0 | 30.6b | 6567 | 63.753b | 10.8b | 5.67 | ||
F-value | ** | n.s. | * | n.s. | ** | *** | n.s. | ||
N rate | 0 | 2.447a | 9.5a | 27.5a | 4319a | 44.552 | 10.9b | 5.45a | |
kg ha−1 | 80 | 3.609b | 12.3b | 29.5ab | 7130b | 62.724 | 9.3a | 5.77b | |
120 | 3.858c | 12.8b | 30.5b | 6971b | 65.904 | 10.1ab | 5.86b | ||
160 | 4.189d | 13.7c | 31.5b | 7884c | 72.355 | 10.2ab | 5.80b | ||
F-value | *** | *** | ** | *** | *** | * | ** | ||
F-values for selected interactions | |||||||||
Year × Site × Fertilizer | n.s. | *** | *** | *** | n.s. | *** | n.s. | ||
Year × Site × N rate | *** | *** | *** | *** | *** | *** | n.s. | ||
Year × Fertilizer × N rate | *** | *** | *** | *** | *** | *** | n.s. | ||
Site × Fertilizer × N rate | n.s. | * | ** | *** | n.s. | * | n.s. | ||
Year × Site × Fertilizer × N rate | n.s. | *** | *** | *** | n.s. | *** | n.s. |
Year | Treatments | Level of Treatment | Nc | Nse | Nres | TN | NHI | UNA | UNP |
---|---|---|---|---|---|---|---|---|---|
% | kg ha−1 | kg ha−1 | % | kg N t−1 | kg Seeds kg−1 N | ||||
2009 | Site | Go | 2.91a1 | 85.5a | 55.1a | 140.7a | 64.3b | 47.4a | 22.1b |
(S) | Ko | 3.47b | 115.5b | 113.1b | 228.6b | 50.6a | 69.2b | 14.6a | |
F-value | *** | *** | *** | *** | *** | *** | *** | ||
Fertilizer (F) | N | 3.18 | 97.9a | 80.4a | 178.3a | 57.6 | 57.4 | 18.5 | |
NS | 3.21 | 103.2b | 87.9b | 191.0b | 57.3 | 59.1 | 18.2 | ||
F-value | n.s. | * | * | *** | n.s. | n.s. | n.s. | ||
N rate (N) | 0 | 3.22 | 81.2a | 55.7a | 136.8a | 66.9b | 53.9a | 21.5b | |
kg ha−1 | 80 | 3.18 | 107.5b | 86.9b | 194.4b | 56.4a | 57.4ab | 17.9a | |
120 | 3.18 | 106.4b | 93.5bc | 199.9bc | 54.4a | 59.8b | 17.3a | ||
160 | 3.19 | 107.1b | 100.5c | 207.5c | 52.1a | 62.1b | 16.7a | ||
F-value | n.s. | *** | *** | *** | *** | ** | *** | ||
2010 | Site | Bu | 3.49b | 99.1 | 58.2a | 157.3a | 63.0b | 56.2a | 18.2b |
(S) | Wi | 3.37a | 99.1 | 100.6b | 199.7b | 50.9a | 68.0b | 15.2a | |
F-value | *** | n.s. | *** | *** | *** | *** | *** | ||
Fertilizer (F) | N | 3.43 | 94.6a | 77.1a | 171.8a | 56.0a | 62.4 | 16.4a | |
NS | 3.42 | 103.6b | 81.7b | 185.3b | 57.9b | 61.7 | 16.9b | ||
F-value | n.s. | * | ** | *** | * | n.s. | * | ||
N rate (N) | 0 | 3.25a | 58.5a | 39.1a | 97.6a | 60.4c | 53.9a | 18.6c | |
kg ha−1 | 80 | 3.39b | 105.8b | 105.5d | 211.3b | 51.4a | 70.2c | 15.2a | |
120 | 3.40b | 109.4b | 90.3c | 199.8b | 55.3b | 63.4b | 16.3b | ||
160 | 3.67c | 122.6c | 82.8b | 205.4b | 60.8c | 60.9b | 16.6b | ||
F-value | *** | *** | *** | *** | *** | *** | *** | ||
2011 | Site | Ve | 3.29a | 114.7a | 58.1a | 172.8a | 65.8 | 49.7a | 20.5b |
(S) | Do | 3.75b | 137.8b | 75.8b | 213.6b | 64.5 | 58.1b | 17.4a | |
F-value | *** | *** | *** | *** | n.s. | *** | *** | ||
Fertilizer (F) | N | 3.56 | 124.1 | 70.3b | 194.4 | 64.3 | 55.4b | 18.5 | |
NS | 3.48 | 128.4 | 63.6a | 192.0 | 65.9 | 52.4a | 19.5 | ||
F-value | n.s. | n.s. | * | n.s. | n.s. | * | n.s. | ||
N rate (N) | 0 | 3.24a | 84.3a | 49.4a | 133.7a | 64.2 | 51.1 | 20.1 | |
kg ha−1 | 80 | 3.52ab | 128.0b | 70.0b | 197.9b | 64.5 | 54.9 | 18.4 | |
120 | 3.53ab | 134.4b | 71.3b | 205.7b | 64.2 | 53.2 | 19.4 | ||
160 | 3.79b | 158.3c | 77.1b | 235.4c | 67.7 | 56.5 | 18.0 | ||
F-value | * | *** | *** | *** | n.s. | n.s. | n.s. | ||
F-value for selected interactions | |||||||||
Year × Site × Fertilizer | n.s. | n.s. | *** | *** | *** | *** | ** | ||
Year × Site × N rate | n.s. | *** | *** | *** | *** | *** | *** | ||
Year × Fertilizer × N rate | n.s. | ** | ** | n.s. | *** | ** | n.s. | ||
Site × Fertilizer × N rate | n.s. | n.s. | *** | *** | ** | *** | *** | ||
Year × Site × Fertilizer × N rate | n.s. | n.s. | *** | *** | *** | *** | *** |
Year | Treatments | Level of Treatment | PFPN | AEN | PEN | RN |
---|---|---|---|---|---|---|
kg kg−1 | % | |||||
2009 | Site | Go | 28.3a1 | 7.3 | 6.3b | 72.6b |
(S) | Ko | 32.1b | 8.3 | 3.5a | 39.8a | |
F-value | *** | n.s. | *** | *** | ||
Fertilizer | N | 29.4a | 7.0a | 3.2a | 46.4a | |
(F) | NS | 31.0b | 8.6b | 6.5b | 66.0b | |
F-value | * | * | ** | *** | ||
N rate | 80 | 42.0c | 11.0b | 8.5b | 71.9b | |
(N) | 120 | 27.9ab | 7.2a | 3.9a | 52.5a | |
kg ha−1 | 160 | 20.7 | 5.2a | 2.3a | 44.2a | |
F-value | *** | *** | *** | *** | ||
2010 | Site | Bu | 30.8b | 18.0b | 21.8b | 103.9b |
(S) | Wi | 27.5a | 7.6a | 7.5a | 94.2a | |
F-value | ** | *** | *** | * | ||
Fertilizer | N | 27.6a | 11.3a | 13.2 | 90.9a | |
(F) | NS | 30.6b | 14.3b | 16.2 | 107.2b | |
F-value | ** | ** | n.s. | *** | ||
N rate | 80 | 39.7c | 17.1b | 25.6b | 144.6c | |
(N) | 120 | 26.8b | 11.7a | 11.7a | 85.1b | |
kg ha−1 | 160 | 21.0a | 9.7a | 6.7a | 67.4a | |
F-value | *** | *** | *** | *** | ||
2011 | Site | Ve | 33.6a | 15.9b | 13.1b | 79.2b |
(S) | Do | 35.4b | 8.8a | 5.2a | 50.0a | |
F-value | * | *** | *** | *** | ||
Fertilizer | N | 32.7a | 10.6a | 7.2a | 61.9 | |
(F) | NS | 36.2b | 14.2b | 11.2b | 67.3 | |
F-value | *** | *** | *** | n.s. | ||
N rate | 80 | 45.1c | 14.5b | 12.7b | 75.7 | |
(N) | 120 | 32.2b | 11.8a | 7.2a | 56.9 | |
kg ha−1 | 160 | 26.2a | 10.9a | 7.7a | 61.2 | |
F-value | *** | *** | *** | n.s. | ||
F-value for selected interactions | ||||||
Year × Site × Fertilizer | n.s. | n.s. | n.s. | *** | ||
Year × Site × N rate | *** | *** | *** | *** | ||
Year × Fertilizer × N rate | *** | **** | **** | n.s. | ||
Site × Fertilizer × N rate | n.s | n.s | n.s | ** | ||
Year × Site × Fertilizer × N rate | n.s | n.s | n.s | ** |
Year | Treatments | Level of Treatments | Nin | Nminr | Nb | Ngain | Nint |
---|---|---|---|---|---|---|---|
kg ha−1 | |||||||
2009 | Site | Go | 199.2 | 74.1a1 | 56.6b | 17.5a | 216.7a |
(S) | Ko | 149.7 | 94.4b | −78.9a | 173.3b | 323.0b | |
F-value | n.a. | *** | *** | *** | *** | ||
Fertilizer (F) | N | 174.5 | 82.3 | −4.8b | 87.1a | 261.5a | |
NS | 174.5 | 86.2 | −17.5a | 103.7b | 278.2b | ||
F-value | n.a. | n.s. | *** | *** | *** | ||
N rate (N) | 0 | 84.5 | 77.3a | −56.1a | 133.4d | 217.9a | |
80 | 164.5 | 80.0a | −29.9b | 109.9c | 274.3b | ||
120 | 204.5 | 87.8ab | 4.6c | 83.3b | 287.7bc | ||
180 | 244.5 | 92.0b | 36.9d | 55.1a | 299.5c | ||
F-value | n.a. | ** | *** | *** | *** | ||
2010 | Site | Bu | 156.0 | 104.9a | −1.3b | 106.2a | 262.2a |
(S) | Wi | 139.0 | 115.6b | −60.7a | 176.3b | 315.3b | |
F-value | n.a. | ** | *** | *** | *** | ||
Fertilizer (F) | N | 147.5 | 116.8b | −24.3 | 141.1 | 288.6 | |
NS | 147.5 | 103.6a | −37.8 | 141.3 | 288.8 | ||
F-value | n.a. | *** | n.s. | n.s. | n.s. | ||
N rate (N) | 0 | 147.5 | 104.0a | 49.9b | 54.1a | 201.6a | |
80 | 147.5 | 113.4ab | −63.8a | 177.2b | 324.7b | ||
120 | 147.5 | 117.1b | −52.3a | 169.4b | 316.9ab | ||
180 | 147.5 | 106.4ab | −57.9a | 164.2b | 311.7ab | ||
F-value | n.a. | * | *** | *** | *** | ||
2011 | Site | Ve | 275.0 | 147.2b | 102.2b | 45.0a | 320.0 |
(S) | Do | 145.0 | 100.4a | −68.6a | 169.0b | 314.0 | |
F-value | n.a. | *** | *** | *** | n.s. | ||
Fertilizer (F) | N | 210.0 | 122.2 | 15.6 | 106.6 | 316.6 | |
NS | 210.0 | 125.4 | 18.0 | 107.4 | 317.4 | ||
F-value | n.a. | n.s. | n.s. | n.s. | n.s. | ||
N rate (N) | 0 | 210.0 | 114.8ab | 76.3b | 38.5a | 248.5a | |
80 | 210.0 | 113.1a | 12.1ab | 101.0ab | 311.0b | ||
120 | 210.0 | 133.2ab | 4.3a | 128.9b | 338.9c | ||
180 | 210.0 | 134.1b | −25.4a | 159.5b | 369.5d | ||
F-value | n.a. | ** | ** | ** | *** | ||
F-values for selected interactions | |||||||
Year × Site × Fertilizer | n.a. | *** | *** | n.s. | n.s. | ||
Year × Site × N rate | n.a. | *** | *** | *** | *** | ||
Year × Fertilizer × N rate | n.a. | ** | n.e. | ** | ** | ||
Site × Fertilizer × N rate | n.a. | ** | *** | ** | ** | ||
Year × Site × Fertilizer × N rate | n.a. | n.s. | *** | * | * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łukowiak, R.; Grzebisz, W. Effect of Site Specific Nitrogen Management on Seed Nitrogen—A Driving Factor of Winter Oilseed Rape (Brassica napus L.) Yield. Agronomy 2020, 10, 1364. https://doi.org/10.3390/agronomy10091364
Łukowiak R, Grzebisz W. Effect of Site Specific Nitrogen Management on Seed Nitrogen—A Driving Factor of Winter Oilseed Rape (Brassica napus L.) Yield. Agronomy. 2020; 10(9):1364. https://doi.org/10.3390/agronomy10091364
Chicago/Turabian StyleŁukowiak, Remigiusz, and Witold Grzebisz. 2020. "Effect of Site Specific Nitrogen Management on Seed Nitrogen—A Driving Factor of Winter Oilseed Rape (Brassica napus L.) Yield" Agronomy 10, no. 9: 1364. https://doi.org/10.3390/agronomy10091364
APA StyleŁukowiak, R., & Grzebisz, W. (2020). Effect of Site Specific Nitrogen Management on Seed Nitrogen—A Driving Factor of Winter Oilseed Rape (Brassica napus L.) Yield. Agronomy, 10(9), 1364. https://doi.org/10.3390/agronomy10091364