Maize Hybrid Response to Sustained Moderate Drought Stress Reveals Clues for Improved Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description, Experimental Design, and Cultural Practices
2.2. Soil Water Content Measurement and Irrigation Management
2.3. Volumetric Soil Water Content Calculation
2.4. Crop Coefficient, Soil Water Balance, and Evapotranspiration
2.5. Maize Grain Yield Measurement
2.6. Statistical Analysis
3. Results
3.1. Growing Conditions and Water Supply
3.2. Actual Crop Evapotranspiration
3.3. Water Productivity
3.4. Basal Crop Coefficient
4. Discussion
4.1. Maize Evapotranspiration
4.2. Maize Water Productivity
4.3. Basal Crop Coefficient
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Chang. 2013, 3, 52–58. [Google Scholar] [CrossRef]
- DeLucia, E.H.; Chen, S.; Guan, K.; Peng, B.; Li, Y.; Gomez-Casanovas, N.; Kantola, I.B.; Bernacchi, C.J.; Huang, Y.; Long, S.P.; et al. Are we approaching a water ceiling to maize yields in the United States? Ecosphere 2019, 10, e02773. [Google Scholar] [CrossRef]
- Daryanto, S.; Wang, L.; Jacinthe, P.A. Global synthesis of drought effects on food legume production. PLoS ONE 2015, 10, e0127401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daryanto, S.; Wang, L.; Jacinthe, P.A. Global synthesis of drought effects on maize and wheat production. PLoS ONE 2016, 11, e0156362. [Google Scholar] [CrossRef] [PubMed]
- Nair, S.; Johnson, J.; Wang, C. Efficiency of irrigation water use: A review from the perspectives of multiple disciplines. Agron. J. 2013, 105, 351–363. [Google Scholar] [CrossRef]
- Irmak, S.; Djaman, K.; Sharma, V. Winter wheat (Triticum aestivum L.) evapotranspiration and single (normal) and basal crop coefficients. Trans. Am. Soc. Agric. Eng. 2015, 58, 1047–1066. [Google Scholar]
- Kumar, V.; Udeigwe, T.K.; Clawson, E.L.; Rohli, R.V.; Miller, D.K. Crop water use and stage-specific crop coefficients for irrigated cotton in the mid-south, United States. Agric. Water Manag. 2015, 156, 63–69. [Google Scholar] [CrossRef] [Green Version]
- Dietzel, R.; Liebman, M.; Ewing, R.; Helmers, M.; Horton, R.; Jarchow, M.; Archontoulis, S. How efficiently do corn-and soybean-based cropping systems use water? A systems modeling analysis. Glob. Change Biol. 2016, 22, 666–681. [Google Scholar] [CrossRef]
- Molden, D.; Murray-Rust, H.; Sakthivadivel, R.; Makin, I. A Water-Productivity Framework for Understanding and Action. In Water Productivity in Agriculture: Limits and Opportunities for Improvement; Kijne, J.W., Barker, R., Molden, D., Eds.; International Water Management Institute: Colombo, Sri Lanka, 2003; pp. 1–18. [Google Scholar]
- Geerts, S.; Raes, D. Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agric. Water Manag. 2009, 96, 1275–1284. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhang, X.; Niu, J.; Tong, L.; Kang, S.; Du, T.; Li, S.; Ding, R. Irrigation water productivity is more influenced by agronomic practice factors than by climatic factors in Hexi Corridor, Northwest China. Sci. Rep. 2016, 6, 37971. [Google Scholar] [CrossRef]
- Sadler, E.J.; Bauer, P.J.; Busscher, W.J.; Millen, J.A. Site-specific analysis of a droughted corn crop: II. Water use and stress. Agron. J. 2000, 92, 403–410. [Google Scholar] [CrossRef] [Green Version]
- Hao, B.; Xue, Q.; Marek, T.H.; Jessup, K.E.; Becker, J.; Hou, X.; Xu, W.; Bynum, E.D.; Bean, B.W.; Colaizzi, P.D.; et al. Water use and grain yield in drought-tolerant corn in the Texas High Plains. Agron. J. 2015, 107, 1922–1930. [Google Scholar] [CrossRef]
- Djaman, K.; Irmak, S. Soil water extraction patterns and crop, irrigation, and evapotranspiration water use efficiency of maize under full and limited irrigation and rainfed settings. Trans. Am. Soc. Agric. Eng. 2012, 55, 1223–1238. [Google Scholar] [CrossRef]
- Panda, R.K.; Behera, S.K.; Kashyap, P.S. Effective management of irrigation water for maize under stressed conditions. Agric. Water Manag. 2004, 66, 181–203. [Google Scholar] [CrossRef]
- Hernández, M.; Echarte, L.; Della Maggiora, A.; Cambareri, M.; Barbieri, P.; Cerrudo, D. Maize water use efficiency and evapotranspiration response to N supply under contrasting soil water availability. Field Crops Res. 2015, 178, 8–15. [Google Scholar] [CrossRef]
- Tolk, J.A.; Evett, S.R.; Xu, W.; Schwartz, R.C. Constraints on water use efficiency of drought tolerant maize grown in a semi-arid environment. Field Crops Res. 2016, 186, 66–77. [Google Scholar] [CrossRef]
- Blum, A. Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Res. 2009, 112, 119–123. [Google Scholar] [CrossRef]
- Payero, J.O.; Tarkalson, D.D.; Irmak, S.; Davison, D.; Petersen, J.L. Effect of timing of a deficit-irrigation allocation on corn evapotranspiration, yield, water use efficiency and dry mass. Agric. Water Manag. 2009, 96, 1387–1397. [Google Scholar] [CrossRef] [Green Version]
- Bausch, W.; Trout, T.; Buchleiter, G. Evapotranspiration adjustments for deficit irrigated corn using canopy temperature: A concept. Irrig. Drain. 2011, 60, 682–693. [Google Scholar] [CrossRef]
- Rudnick, D.R.; Irmak, S. Impact of water and nitrogen management strategies on maize yield and water productivity indices under linear-move sprinkler irrigation. Trans. Asabe 2013, 56, 1769–1783. [Google Scholar]
- Ogola, J.B.O.; Wheeler, T.R.; Harris, P.M. Effects of nitrogen and irrigation on water use of maize crops. Field Crops Res. 2002, 78, 105–117. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop. Evapotranspiration Guidelines for Computing Crop Water Requirements. Irrig. Drainage Paper 56; Food Agriculture Organization: Rome, Italy, 1998. [Google Scholar]
- Allen, R.G. Using the FAO-56 dual crop coefficient method over an irrigated region as part of an evapotranspiration intercomparison study. J. Hydrol. 2000, 229, 27–41. [Google Scholar] [CrossRef]
- Piccinni, G.; Ko, J.; Marek, T.; Howell, T. Determination of growth-stage-specific crop coefficients (Kc) of maize and sorghum. Agric. Water Manag. 2009, 96, 1698–1704. [Google Scholar] [CrossRef]
- El-Hendawy, S.E.; El-Lattief, E.A.A.; Ahmed, M.S.; Schmidhalter, U. Irrigation rate and plant density effects on yield and water use efficiency of drip-irrigated corn. Agric. Water Manag. 2008, 95, 836–844. [Google Scholar] [CrossRef]
- Lindsey, A.J. Agronomic and Physiological Responses Modern Drought-Tolerant Maize (Zea mays L.) hybrids to Agronomic Production Practices. Ph.D. Thesis, Ohio State University, Columbus, OH, USA, 2015. [Google Scholar]
- Irmak, S.; Mohammed, A.T.; Kranz, W.L. Grain yield, crop and basal evapotranspiration, production functions, and water productivity response of drought-tolerant and non-drought-tolerant maize hybrids under different irrigation levels, population densities, and environments: Part II. In south-central and northeast Nebraska’s transition zone and sub-humid environments. Appl. Eng. Agric. 2019, 35, 83–102. [Google Scholar]
- Kang, S.; Gu, B.; Du, T.; Zhang, J. Crop coefficient and ratio of transpiration to evapotranspiration of winter wheat and maize in a semi-humid region. Agric. Water Manag. 2003, 59, 239–254. [Google Scholar] [CrossRef]
- Aydinsakir, K.; Erdal, S.; Buyuktas, D.; Bastug, R.; Toker, R. The influence of regular deficit irrigation applications on water use, yield, and quality components of two corn (Zea mays L.) genotypes. Agric. Water Manag. 2013, 128, 65–71. [Google Scholar] [CrossRef]
- Cairns, J.E.; Hellin, J.; Sonder, K.; Araus, J.L.; MacRobert, J.F.; Thierfelder, C.; Prasanna, B.M. Adapting maize production to climate change in sub-Saharan Africa. Food Secur. 2013, 5, 345–360. [Google Scholar] [CrossRef] [Green Version]
- Lobell, D.B.; Roberts, M.J.; Schlenker, W.; Braun, N.; Little, B.B.; Rejesus, R.M.; Hammer, G.L. Greater sensitivity to drought accompanies maize yield increase in the US Midwest. Science 2014, 344, 516–519. [Google Scholar] [CrossRef]
- National Drought Mitigation Center. U.S. Drought Monitor Map Archive. Univ. of Nebraska, Lincoln. Available online: https://droughtmonitor.unl.edu/maps/maparchive.aspx (accessed on 10 September 2020).
- Çakir, R. Effect of water stress at different development stages on vegetative and reproductive growth of corn. Field Crops Res. 2004, 89, 1–16. [Google Scholar] [CrossRef]
- Kranz, W.L.; Irmak, S.; Van Donk, S.J.; Yonts, C.D.; Martin, D.L. Irrigation Management for Corn. Nebguide G1850. Univ. of Nebraska, Lincoln. 2008. Available online: http://extensionpublications.unl.edu/assets/html/g1850/build/g1850.htm (accessed on 10 September 2020).
- Sharma, V.; Irmak, S.; Djaman, K.; Sharma, V. Large-scale spatial and temporal variability in evapotranspiration, crop water-use efficiency, and evapotranspiration water-use efficiency of irrigated and rainfed maize and soybean. J. Irrig. Drain. Eng. 2015, 142, 04015063. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, X.; Chen, S.; Shao, L.; Sun, H. Changes in water use efficiency and water footprint in grain production over the past 35 years: A case study in the North China Plain. J. Clean. Prod. 2016, 116, 71–79. [Google Scholar] [CrossRef]
- Lopes, M.S.; Araus, J.L.; Van Heerden, P.D.; Foyer, C.H. Enhancing drought tolerance in C4 crops. J. Exp. Bot. 2011, 62, 3135–3153. [Google Scholar] [CrossRef] [PubMed]
- Edmeades, G.O. Progress in Achieving and Delivering Drought Tolerance in Maize—An Update; ISAAA: Ithaca, NY, USA, 2013. [Google Scholar]
- Edmeades, G.O.; Chapman, S.C.; Lafitte, H.R. Selection improves drought tolerance in tropical maize populations: I. Gains in biomass, grain yield, and harvest index. Crop. Sci. 1999, 39, 1306–1315. [Google Scholar] [CrossRef]
- Tollenaar, M.; Lee, E.A. Yield potential, yield stability and stress tolerance in maize. Field Crops Res. 2002, 75, 161–169. [Google Scholar] [CrossRef]
- Campos, H.; Cooper, M.; Habben, J.E.; Edmeades, G.O.; Schussler, J.R. Improving drought tolerance in maize: A view from industry. Field Crops Res. 2004, 90, 19–34. [Google Scholar] [CrossRef]
- Campos, H.; Cooper, M.; Edmeades, G.O.; Loffler, C.; Schussler, J.R.; Ibanez, M. Changes in drought tolerance in maize associated with fifty years of breeding for yield in the US Corn Belt. Maydica 2006, 51, 369–381. [Google Scholar]
- Roth, J.A.; Ciampitti, I.A.; Vyn, T.J. Physiological evaluations of recent drought-tolerant maize hybrids at varying stress levels. Agron. J. 2013, 105, 1129–1141. [Google Scholar] [CrossRef]
- USDA-Natural Resources Conservation Service. Web Soil Survey. Available online: http://websoilsurvey.nrcs.usda.gov/ (accessed on 10 September 2020).
- Rehm, G.W.; Malzer, G.L.; Wright, J.A. Managing Nitrogen for Corn Production on Iirrigated Sandy Soils; University of Minnesota Extension: St. Paul, MN, USA, 1989; Available online: http://www.wadenaswcd.org/AG-FO-2392-1.pdf (accessed on 10 September 2020).
- Rehm, G.W.; Lamb, J.; Rosen, C.; Randall, G. Best Management Pracrtices for Nitrogen on Coarse Textured Soils; University of Minnesota Extension: St. Paul, MN, USA, 2008; Available online: https://conservancy.umn.edu/handle/11299/198230 (accessed on 10 September 2020).
- Kaiser, D.E.; Lamb, J.A.; Eliason, R. Fertilizer Guidelines for Agronomic Crops in Minnesota; BU-06240-S; University of Minnesota Extension: St. Paul, MN, USA, 2011; Available online: https://conservancy.umn.edu/bitstream/handle/11299/198924/Fertilizer%20Guidelines%20for%20Agronomic%20Crops%20in%20Minnesota.pdf?sequence=1&isAllowed=y (accessed on 10 September 2020).
- Ao, S.; Russelle, M.P.; Varga, T.; Feyereisen, G.W.; Coulter, J.A. Drought tolerance in maize is influenced by timing of drought stress initiation. Crop. Sci 2020, 60, 1591–1606. [Google Scholar] [CrossRef]
- Cresswell, H.P.; Hamilton, J.G. Bulk density and pore space relations. In Soil Physical Measurement and Interpretation for Land Evaluation; McKenzie, N.J., Coughlan, K.L., Cresswell, H.P., Eds.; CSIRO Publishing: Collingwood, Australia, 2002; pp. 35–58. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Smith, M.; Raes, D.; Wright, J.L. FAO-56 dual crop coefficient method for estimating evaporation from soil and application extensions. Irrig. Drain. Eng. 2005, 131, 2–13. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, J.P.; Sripada, R.P.; Beegle, D.B.; Rotz, C.A.; Hong, N. Within-field variability in optimum nitrogen rate for corn linked to soil moisture availability. Soil Sci. Soc. Am. J. 2011, 75, 306–316. [Google Scholar] [CrossRef]
- Varga, T.; Feyereisen, G.W.; Russelle, M.P.; Ao, S.; Coulter, J.A. Versatile, precise drip irrigation system for agronomic small-plot research. In Proceedings of the ASABE 2018 Annual International Meeting, Detroit, MI, USA, 19 July–1 August 2018; Available online: https://doi.org/10.13031/aim.201801700 (accessed on 10 September 2020).
- Wright, J. Irrigation Scheduling Checkbook Method; University of Minnesota Extension: St. Paul, MN, USA, 2002; Available online: https://extension.umn.edu/irrigation/irrigation-scheduling-checkbook-method (accessed on 10 September 2020).
- Schaefer, G.L.; Cosh, M.H.; Jackson, T.J. The USDA Natural Resources Conservation Service Soil Climate Analysis Network (SCAN). J. Atmos. Ocean. Technol. 2007, 24, 2073–2077. [Google Scholar] [CrossRef]
- USDA-Natural Resources Conservation Service National Water and Climate Center. Soil Climate Analysis Network (SCAN). Available online: https://www.wcc.nrcs.usda.gov/scan/scan_brochure.pdf (accessed on 10 September 2020).
- USDA-Natural Resources Conservation Service National Water and Climate Center. Scan Site: Crescent Lake #1. Available online: https://wcc.sc.egov.usda.gov/nwcc/site?sitenum=2002 (accessed on 10 September 2020).
- USDA-Natural Resources Conservation Service. Chapter 10: Hydrology. National English Handbook; USDA: Washington, DC, USA, 2004. [Google Scholar]
- Djaman, K.; Irmak, S. Actual crop evapotranspiration and alfalfa- and grass-reference crop coefficients of maize under full and limited irrigation and rainfed conditions. J. Irrig. Drain. Eng. 2013, 139, 433–446. [Google Scholar] [CrossRef]
- Suleiman, A.A.; Soler, C.M.T.; Hoogenboom, G. Evaluation of FAO-56 crop coefficient procedures for deficit irrigation management of cotton in a humid climate. Agric. Water Manag. 2007, 91, 33–42. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Howell, T.A.; Jensen, M.E. Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agric. Water Manag. 2011, 98, 899–920. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Pereira, L.S.; Howell, T.A.; Jensen, M.E. Evapotranspiration information reporting: II. Recommended documentation. Agric. Water Manag. 2011, 98, 921–929. [Google Scholar] [CrossRef]
- SAS Institute. The SAS system for Windows; Version 9.3; SAS Institute: Cary, NC, USA, 2011. [Google Scholar]
- Kutner, M.H.; Nachtsheim, C.J.; Neter, J. Applied Linear Regression Models, 4th ed.; McGraw-Hill: New York, NY, USA, 2004; pp. 107–152. [Google Scholar]
- Crafts-Brandner, S.J.; Salvucci, M.E. Sensitivity of photosynthesis in a C4 plant, maize, to heat stress. Plant. Physiol. 2002, 129, 1773–1780. [Google Scholar] [CrossRef] [Green Version]
- Trout, T.J.; DeJonge, K.C. Water productivity of maize in the US high plains. Irrig. Sci. 2017, 35, 251–266. [Google Scholar] [CrossRef] [Green Version]
- Ao, S. Morpho-Physiological Traits Associated with Drought Tolerance of Maize Hybrids Subjected to Different Water and Nitrogen Supply. Ph.D. Thesis, University of Minnesota, Twin Cities, MN, USA, 2016. Available online: http://hdl.handle.net/11299/185203 (accessed on 10 September 2020).
- Trout, T.J.; DeJonge, K.C. Crop water use and crop coefficients of maize in the Great Plains. J. Irrig. Drain. Eng. 2018, 144, 04018009. [Google Scholar] [CrossRef]
- Wang, K.; Xu, Q.; Li, T. Does recent climate warming drive spatiotemporal shifts in functioning of high-elevation hydrological systems? Sci. Total Environ. 2020, 719, 137507. [Google Scholar] [CrossRef]
- Kresović, B.; Tapanarova, A.; Tomić, Z.; Životić, L.; Vujović, D.; Sredojević, Z.; Gajić, B. Grain yield and water use efficiency of maize as influenced by different irrigation regimes through sprinkler irrigation under temperate climate. Agric. Water Manag. 2016, 169, 34–43. [Google Scholar] [CrossRef]
- Igbadun, H.E.; Salim, B.A.; Tarimo, A.K.P.R.; Mahoo, H.F. Effects of deficit irrigation scheduling on yields and soil water balance of irrigated maize. Irrig. Sci. 2008, 27, 11–23. [Google Scholar] [CrossRef]
- Howell, T.A.; Schneider, A.D.; Evett, S.R. Subsurface and surface microirrigation of corn —Southern High Plains. Trans. Am. Soc. Agric. Eng. 1997, 40, 635–641. [Google Scholar] [CrossRef]
- Couto, A.; Padín, A.R.; Reinoso, B. Comparative yield and water use efficiency of two maize hybrids differing in maturity under solid set sprinkler and two different lateral spacing drip irrigation systems in León, Spain. Agric. Water Manag. 2013, 124, 77–84. [Google Scholar] [CrossRef]
- Otegui, M.E.; Andrade, F.H.; Suero, E.E. Growth, water use, and kernel abortion of maize subjected to drought at silking. Field Crop. Res. 1995, 40, 87–94. [Google Scholar] [CrossRef]
- Mansouri-Far, C.; Sanavy, S.A.M.M.; Saberali, S.F. Maize yield response to deficit irrigation during low-sensitive growth stages and nitrogen rate under semi-arid climatic conditions. Agric. Water Manag. 2010, 97, 12–22. [Google Scholar] [CrossRef]
- Facchi, A.; Gharsallah, O.; Corbari, C.; Masseroni, D.; Mancini, M.; Gandolfi, C. Determination of maize crop coefficients in humid climate regime using the eddy covariance technique. Agric. Water Manag. 2013, 130, 131–141. [Google Scholar] [CrossRef]
- Lee, E.A.; Tollenaar, M. Physiological basis of successful breeding strategies for maize grain yield. Crop. Sci. 2007, 47, S-202–S-215. [Google Scholar] [CrossRef]
- Escobar-Gutiérrez, A.J.; Combe, L. Senescence in field-grown maize: From flowering to harvest. Field Crops Res. 2012, 134, 47–58. [Google Scholar] [CrossRef]
- Harb, A.; Krishnan, A.; Ambavaram, M.M.R.; Pereira, A. Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth. Plant. Physiol. 2010, 154, 1254–1271. [Google Scholar] [CrossRef] [Green Version]
- Osakabe, Y.; Osakabe, K.; Shinozaki, K.; Tran, L.S. Response of plants to water stress. Front. Plant. Sci. 2014, 5, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Month | Tmax | Tmin | RHmax | RHmin | Wind Speed | Solar Radiation | Vapor Pressure Deficit | ETo | Total Precipitation |
---|---|---|---|---|---|---|---|---|---|
°C | °C | % | % | m s−1 | MJ m−2 d−1 | kPa | mm d−1 | mm | |
June | 28.8 | 14.3 | 94.3 | 44.1 | 2.3 | 18 | 0.9 | 4.2 | 111 |
July | 27.6 | 13.3 | 97.5 | 48.0 | 1.9 | 21 | 1.1 | 4.5 | 61 |
August | 29.9 | 14.4 | 93.8 | 47.2 | 1.3 | 20 | 1.1 | 4.1 | 23 |
September | 23.0 | 8.1 | 95.0 | 44.3 | 1.7 | 14 | 0.9 | 3.0 | 62 |
Previous Crop | Drought Stress 2 | ETo 3 | ETc 4 | Precipitation | Irrigation | Surface Runoff | ΔS 5 | Deep Percolation 6 | Evaporation 7 |
---|---|---|---|---|---|---|---|---|---|
mm | |||||||||
Alfalfa | None | 469 | 494 | 258 | 345 | 8 | −26 (7) | 158 (9) | 91 |
R2-R6 | 469 | 448 | 258 | 224 | 6 | −28 (2) | 100 (3) | 98 | |
V14-R6 | 469 | 409 | 258 | 177 | 4 | −35 (2) | 101 (1) | 98 | |
Soybean | None | 469 | 494 | 258 | 348 | 8 | −8 (2) | 144 (2) | 91 |
R2-R6 | 469 | 448 | 258 | 221 | 5 | −38 (3) | 104 (2) | 98 | |
V14-R6 | 469 | 411 | 258 | 184 | 4 | −35 (3) | 100 (2) | 98 | |
Winter rye | None | 469 | 494 | 258 | 346 | 8 | −19 (9) | 149 (7) | 91 |
R2-R6 | 469 | 449 | 258 | 224 | 6 | −33 (5) | 108 (7) | 98 | |
V14-R6 | 469 | 409 | 258 | 177 | 4 | −25 (2) | 93 (1) | 98 |
Month | Alfalfa | Soybean | Winter Rye | ||||||
---|---|---|---|---|---|---|---|---|---|
None | R2-R6 | V14-R6 | None | R2-R6 | V14-R6 | None | R2-R6 | V14-R6 | |
June | 33 | 33 | 33 | 33 | 33 | 33 | 33 | 33 | 33 |
July | 115 | 118 | 61 | 118 | 115 | 68 | 116 | 118 | 62 |
August | 138 | 50 | 61 | 139 | 50 | 60 | 138 | 50 | 60 |
September | 58 | 23 | 23 | 59 | 22 | 23 | 58 | 23 | 22 |
Components of Dataset | Treatment 1 | ETa | Grain Yield | CWP | IWP | Kab mid |
---|---|---|---|---|---|---|
mm | kg m−2 | kg m−3 | kg m−3 | |||
Experiment where maize followed soybean, with four replications of both hybrids subjected to three drought stress treatments | None | 462 a 2 | 1.374 a | 2.97 a | 3.94 b | 1.08 a |
R2-R6 | 406 b | 0.932 b | 2.29 b | 4.22 b | 0.89 b | |
V14-R6 | 372 c | 0.920 b | 2.47 b | 5.01 a | 0.73 c | |
Three experiments, with four replications of the drought-tolerant hybrid subjected to three drought stress treatments | None | 464 a | 1.459 a | 3.14 a | 4.22 b | 1.08 a |
R2-R6 | 404 b | 0.981 b | 2.43 c | 4.40 b | 0.87 b | |
V14-R6 | 367 c | 0.954 b | 2.60 b | 5.32 a | 0.72 c | |
Three experiments, with four replications of both hybrids subjected to drought stress from V14 to R6 | ST | 365 | 0.885 b | 2.43 b | 4.94 b | |
DT | 367 | 0.954 a | 2.60 a | 5.32 a |
Components of Dataset | Source of Variation | Dependent Variable | ||||
---|---|---|---|---|---|---|
ETa | Grain Yield | CWP | IWP | Kab mid | ||
Experiment where maize followed soybean, with four replications of both hybrids subjected to three drought stress treatments | D | <0.001 | <0.001 | 0.001 | <0.001 | <0.001 |
H | 0.386 | 0.509 | 0.440 | 0.163 | 0.897 | |
D × H | 0.802 | 0.152 | 0.121 | 0.079 | 0. 986 | |
Three experiments, with four replications of the drought-tolerant hybrid subjected to three drought stress treatments | D | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Three experiments, with four replications of both hybrids subjected to drought stress from V14 to R6 | H | 0.216 | 0.010 | 0.0171 | 0.010 | 0.087 |
Maize Phenological Stage 1 | None | R2-R6 | V14-R6 |
---|---|---|---|
V10 | 0.93 dA 2 | 0.93 cA | 0.93 bA |
V12 | 1.13 abA | 1.13 aA | 1.02 aB |
V16 | 1.13 abA | 1.13 aA | 1.06 aB |
VT | 1.12 abA | 1.07 bB | 0.81 cC |
R1 | 1.10 bA | 1.13 aA | 0.74 dB |
R2 | 1.13 abA | 0.75 dB | 0.61 efC |
R3 | 1.12 abA | 0.72 dB | 0.44 hC |
R4 | 1.11 bA | 0.63 eB | 0.57 gC |
Early R5 | 0.84 eA | 0.60 fB | 0.60 efB |
Mid-R5 | 1.15 aA | 0.65 eB | 0.59 fgC |
Late R5/R6 3 | 0.99 cA | 0.57 gC | 0.63 eB |
R6 4 | 0.64 5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ao, S.; Russelle, M.P.; Feyereisen, G.W.; Varga, T.; Coulter, J.A. Maize Hybrid Response to Sustained Moderate Drought Stress Reveals Clues for Improved Management. Agronomy 2020, 10, 1374. https://doi.org/10.3390/agronomy10091374
Ao S, Russelle MP, Feyereisen GW, Varga T, Coulter JA. Maize Hybrid Response to Sustained Moderate Drought Stress Reveals Clues for Improved Management. Agronomy. 2020; 10(9):1374. https://doi.org/10.3390/agronomy10091374
Chicago/Turabian StyleAo, Samadangla, Michael P. Russelle, Gary W. Feyereisen, Tamás Varga, and Jeffrey A. Coulter. 2020. "Maize Hybrid Response to Sustained Moderate Drought Stress Reveals Clues for Improved Management" Agronomy 10, no. 9: 1374. https://doi.org/10.3390/agronomy10091374
APA StyleAo, S., Russelle, M. P., Feyereisen, G. W., Varga, T., & Coulter, J. A. (2020). Maize Hybrid Response to Sustained Moderate Drought Stress Reveals Clues for Improved Management. Agronomy, 10(9), 1374. https://doi.org/10.3390/agronomy10091374