1-Methylcyclopropene on Fruit Quality of Se-Enriched Grape (Vitis vinifera L.) during Shelf Life Period
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Design
2.2. Measurement Methods of Samples
2.2.1. Sampling of Grape Berries
2.2.2. Grape Physical Property
2.2.3. Grape Chemical Composition
2.3. Statistical Analysis
3. Results
3.1. Se Content in Grape Berries
3.2. Fruit Quality of Grape Berries at Maturity
3.3. The Dynamic Changes of Fruit Quality during Postharvest Period
3.3.1. The Decay Number of Grapes during Shelf Life Period
3.3.2. Dynamic Changes in Se Content of Grape Berries
3.3.3. Dynamic Changes of TSS and Titratable Acidity
3.3.4. Dynamic Changes in Soluble Sugars and Vc
3.3.5. Dynamic Changes of RES and OPC
3.3.6. The Two-Factor Interaction Analysis between Se Fertilizer and 1-MCP of Fruit Quality in 2016
4. Discussion
4.1. Effect of Se Fertilizer Application on Se Content in Grape Berries
4.2. Effect of Foliar Se Fertilizer on Fruit Quality at Maturity
4.3. Effect of 1-MCP on Fruit Quality During Shelf Life Stages
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Locatelli, M.; Travaglia, F.; Coisson, J.D.; Bordiga, M.; Arlorio, M. Phenolic composition of Nebbiolo grape (Vitis vinifera L.) from Piedmont: Characterization during ripening of grapes selected in different geographic areas and comparison with Uva Rara and Vespolina cv. Eur. Food Res. Technol. 2016, 242, 1–12. [Google Scholar] [CrossRef]
- Toaldo, I.M.; Fogolari, O.; Pimentel, G.C.; De Gois, J.S.; Borges, D.L.G.; Caliari, V.; Bordignon-Luiz, M.T. Effect of grape seeds on the polyphenol bioactive content and elemental composition by ICP-MS of grape juices from Vitis labrusca L. LWT Food Sci. Technol. 2013, 53, 1–8. [Google Scholar] [CrossRef]
- Kisková, T.; Jendželovský, R.; Rentsen, E.; Maier-Salamon, A.; Kokošová, N.; Papčová, Z.; Mikes, J.; Orendáš, P.; Bojkova, B.; Kubatka, P.; et al. Resveratrol enhances the chemopreventive effect of celecoxib in chemically induced breast cancer in rats. Eur. J. Cancer Prev. 2014, 23, 506–513. [Google Scholar] [CrossRef] [PubMed]
- Broadley, M.R.; Alcock, J.; Alford, J.; Cartwright, P.; Foot, I.; Fairweather-Tait, S.J.; Hart, D.J.; Hurst, R.; Knott, P.; McGrath, S.P.; et al. Selenium biofortification of high-yielding winter wheat (Triticum aestivum L.) by liquid or granular Se fertilisation. Plant Soil 2010, 332, 5–18. [Google Scholar] [CrossRef]
- Fordyce, F.M. Selenium Deficiency and Toxicity in the Environment. In Essentials of Medical Geology; Elsevier: London, UK, 2005. [Google Scholar]
- Kuldeep, V.; Yadav, A.L.; Singh, H.K.; Yadav, D.K. Effect of foliar spray of nutrients on fruit drop, yield and quality attributes of mango fruit (Mangifera indica L.) cv—Amrapali. Plant Arch. 2010, 10, 359–360. [Google Scholar]
- Zhu, S.M.; Liang, Y.; Gao, D.; An, X.; Kong, F. Spraying foliar selenium fertilizer on quality of table grape (Vitis vinifera L.) from different source varieties. Sci. Hortic. 2017, 218, 87–94. [Google Scholar] [CrossRef]
- Crisosto, C.H.; Smilanick, J.L.; Dokoozlian, N.K. Table grapes suffer water loss, stem browning during cooling delays. Calif. Agric. 2001, 55, 39–42. [Google Scholar] [CrossRef] [Green Version]
- Watkins, C.B. The use of 1-methylcyclopropene (1-MCP) on fruits and vegetables. Biotechnol. Adv. 2006, 24, 389–409. [Google Scholar] [CrossRef]
- DeEll, J.; Moghaddam, B.E. Timing of postharvest 1-methylcyclopropene treatment affects Bartlett pear quality after storage. Can. J. Plant Sci. 2011, 91, 853–858. [Google Scholar] [CrossRef]
- Sisler, E.C.; Serek, M. Inhibitors of ethylene responses in plants at the receptor level: Recent developments. Physiol. Plant. 1997, 100, 577–582. [Google Scholar] [CrossRef]
- Sisler, E.C.; Serek, M. Compounds Interacting with the Ethylene Receptor in Plants. Plant Biol. 2003, 5, 473–480. [Google Scholar] [CrossRef]
- Guan, J.; Hu, M.; Shen, C.; Zhou, S.; Cheng, Y.; He, J. Effects of 1-Methylcyclopropene on Active Composition in Fruits. In Processing and Impact on Active Components in Food; Academic Press: Cambridge, MA, USA, 2015; pp. 133–137, Printed and bound in United States of America. [Google Scholar]
- Blankenship, S.M.; Dole, J.M. 1-Methylcyclopropene: A review. Postharvest Biol. Technol. 2003, 28, 1–25. [Google Scholar] [CrossRef]
- Kolniak-Ostek, J.; Oszmiański, J.; Rutkowski, K.P.; Wojdyło, A. Effect of 1-methylcyclopropene postharvest treatment apple and storage on the cloudy juices properties. LWT Food Sci. Technol. 2014, 59, 1166–1174. [Google Scholar] [CrossRef]
- Zheng, W.-W.; Chun, I.-J.; Hong, S.-B.; Zang, Y.-X. Quality characteristics of fresh-cut ‘Fuji’ apple slices from 1-methylcyclopropene-, calcium chloride-, and rare earth-treated intact fruits. Sci. Hortic. 2014, 173, 100–105. [Google Scholar] [CrossRef]
- Ergun, M.; Jeong, J.; Huber, D.J.; Cantliffe, D.J. Physiology of fresh-cut ‘Galia’ (Cucumis melo var. reticulatus) from ripe fruit treated with 1-methylcyclopropene. Postharvest Biol. Technol. 2007, 44, 286–292. [Google Scholar] [CrossRef]
- Pelayo, C.; Vilas-Boas, E.V.B.; Benichou, M.; Kader, A.A. Variability in responses of partially ripe bananas to 1-methylcyclopropene. Postharvest Biol. Technol. 2003, 28, 75–85. [Google Scholar] [CrossRef]
- Vilas-Boas, E.V.D.B.; Kader, A.A. Effect of 1-methylcyclopropene (1-MCP) on softening of fresh-cut kiwifruit, mango and persimmon slices. Postharvest Biol. Technol. 2007, 43, 238–244. [Google Scholar] [CrossRef]
- Budu, A.S.; Joyce, D.C. Effect of 1-methylcyclopropene on the quality of minimally processed pineapple fruit. Aust. J. Exp. Agric. 2003, 43, 177–184. [Google Scholar] [CrossRef]
- Gago, C.M.; Guerreiro, A.C.; Miguel, G.; Panagopoulos, T.; Sánchez, C.; Antunes, M.D. Effect of harvest date and 1-MCP (SmartfreshTM) treatment on ‘Golden Delicious’ apple cold storage physiological disorders. Postharvest Biol. Technol. 2015, 110, 77–85. [Google Scholar] [CrossRef]
- Premarathna, L.; McLaughlin, M.J.; Kirby, J.K.; Hettiarachchi, G.M.; Stacey, S.; Chittleborough, D.J. Selenate-Enriched Urea Granules Are a Highly Effective Fertilizer for Selenium Biofortification of Paddy Rice Grain. J. Agric. Food Chem. 2012, 60, 6037–6044. [Google Scholar] [CrossRef] [Green Version]
- Kochert, G. Carbohydrate determination by the phenol-sulfuric acid method. Handb. Phycol. Methods 1978, 2, 95–97. [Google Scholar]
- Gao, J.F. Experimental Guidance for Plant Physiology; Higer Education Press: Beijing, China, 2006. [Google Scholar]
- Bradford, M.M. A rapid method for the quantitation of miicrogram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Porter, L.J.; Hrstich, L.N.; Chan, B.G. The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry 1985, 25, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.S.; Liu, Z.F.; Wu, S.P. Fading spectrophotometric determination of resveratrol with potassium permanganate. J. Southwest Univ. 2009, 31, 67–70. [Google Scholar]
- Wang, Y.-D.; Wang, X.; Wong, Y.-S. Generation of selenium-enriched rice with enhanced grain yield, selenium content and bioavailability through fertilisation with selenite. Food Chem. 2013, 141, 2385–2393. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Z.; Mao, H.; Zhao, H.; Huang, D. Increasing Se concentration in maize grain with soil- or foliar-applied selenite on the Loess Plateau in China. Field Crops Res. 2013, 150, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Longchamp, M.; Castrec-Rouelle, M.; Biron, P.; Bariac, T. Variations in the accumulation, localization and rate of metabolization of selenium in mature Zea mays plants supplied with selenite or selenate. Food Chem. 2015, 182, 128–135. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Man, N.; Wang, S.; Liang, D.-L.; Liu, J. Selenite adsorption and desorption in main Chinese soils with their characteristics and physicochemical properties. J. Soils Sediments 2015, 15, 1150–1158. [Google Scholar] [CrossRef]
- Carey, A.-M.; Scheckel, K.G.; Lombi, E.; Newville, M.; Choi, Y.; Norton, G.J.; Price, A.H.; Meharg, A. Grain Accumulation of Selenium Species in Rice (Oryza sativa L.). Environ. Sci. Technol. 2012, 46, 5557–5564. [Google Scholar] [CrossRef]
- Keskinen, R.; Räty, M.; Yli-Halla, M. Selenium fractions in selenate-fertilized field soils of Finland. Nutr. Cycl. Agroecosyst. 2011, 91, 17–29. [Google Scholar] [CrossRef]
- Premarathna, H.L.; McLaughlin, M.J.; Kirby, J.; Hettiarachchi, G.M.; Beak, D.; Stacey, S.; Chittleborough, D. Potential Availability of Fertilizer Selenium in Field Capacity and Submerged Soils. Soil Sci. Soc. Am. J. 2010, 74, 1589–1596. [Google Scholar] [CrossRef]
- Pezzarossa, B.; Remorini, D.; Piccotino, D.; Malagoli, M.; Massai, R. Effects of selenate addition on selenium accumulation and plant growth of two Prunus rootstock genotypes. J. Plant Nutr. Soil Sci. 2009, 172, 261–269. [Google Scholar] [CrossRef]
- Fang, Y.; Zhang, Y.; Catron, B.; Chan, Q.; Hu, Q.; Caruso, J.A. Identification of selenium compounds using HPLC-ICPMS and nano-ESI-MS in selenium-enriched rice via foliar application. J. Anal. At. Spectrom. 2009, 24, 1657–1664. [Google Scholar] [CrossRef]
- Marzouk, H.; Kassem, H.A. Improving fruit quality, nutritional value and yield of Zaghloul dates by the application of organic and/or mineral fertilizers. Sci. Hortic. 2011, 127, 249–254. [Google Scholar] [CrossRef]
- Hu, Q.; Xu, J.; Pang, G. Effect of Selenium on the Yield and Quality of Green Tea Leaves Harvested in Early Spring. J. Agric. Food Chem. 2003, 51, 3379–3381. [Google Scholar] [CrossRef] [PubMed]
- Kopsell, D.A.; Randle, W.M. Selenate Concentration Affects Selenium and Sulfur Uptake and Accumulation by ‘Granex 33’ Onions. J. Am. Soc. Hortic. Sci. 1997, 122, 721–726. [Google Scholar] [CrossRef] [Green Version]
- Munshi, C.B.; Combs, G.F.; Mondy, N.I. Effect of selenium on the nitrogenous constituents of the potato. J. Agric. Food Chem. 1990, 38, 2000–2002. [Google Scholar] [CrossRef]
- Dhillon, K.S.; Dhillon, S.K. Selenium concentrations of common weeds and agricultural crops grown in the seleniferous soils of northwestern India. Sci. Total Environ. 2009, 407, 6150–6156. [Google Scholar] [CrossRef]
- Luo, X.Y.; Wu, B.; Peng, P.; Ren, L.L.; Xia, M.L.; Chen, J.H. Determining and analyzing content of invert sugar and reducing sugar and total sugar and vitamin C to ganzhou selenium-rich navel oranges. China Food Addit. 2011, 4, 203–208. [Google Scholar]
- Zhu, S.M.; Liang, Y.; An, X.; Kong, F.; Gao, D.; Yin, H. Changes in sugar content and related enzyme activities in table grape (Vitis viniferaL.) in response to foliar selenium fertilizer. J. Sci. Food Agric. 2017, 97, 4094–4102. [Google Scholar] [CrossRef]
- Yin, N.; Mu, L.; Liang, Y.L.; Hao, W.L.; Yin, H.F.; Zhu, S.M.; An, X.J. Effects of foliar selenium fertilizer on fruit yield, quality and selenium content of three varieties of Vitis vinifera. Chin. J. Appl. Ecol. 2020, 31, 953–958. [Google Scholar]
- Özkaya, O.; Yildirim, D.; Dündar, Ö.; Tükel, S.S. Effects of 1-methylcyclopropene (1-MCP) and modified atmosphere packaging on postharvest storage quality of nectarine fruit. Sci. Hortic. 2016, 198, 454–461. [Google Scholar] [CrossRef]
- Dong, L.; Zhou, H.-W.; Sonego, L.; Lers, A.; Lurie, S. Ethylene involvement in the cold storage disorder of ‘Flavortop’ nectarine. Postharvest Biol. Technol. 2001, 23, 105–115. [Google Scholar] [CrossRef]
- Liu, H.; Jiang, W.; Zhou, L.; Wang, B.; Luo, Y. The effects of 1-methylcyclopropene on peach fruit (Prunus persica L. cv. Jiubao) ripening and disease resistance. Int. J. Food Sci. Technol. 2005, 40, 1–7. [Google Scholar] [CrossRef]
- Xu, X.; Lei, H.; Ma, X.; Lai, T.; Song, H.; Shi, X.; Li, J. Antifungal activity of 1-methylcyclopropene (1-MCP) against anthracnose (Colletotrichum gloeosporioides) in postharvest mango fruit and its possible mechanisms of action. Int. J. Food Microbiol. 2017, 241, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.M.; Spotts, R.A. Changes in Ripening Behaviors of 1-MCP-Treated ‘d’Anjou’ Pears after Storage. Int. J. Fruit Sci. 2005, 5, 3–18. [Google Scholar] [CrossRef]
- Tiwari, K.; Paliyath, G. Microarray analysis of ripening-regulated gene expression and its modulation by 1-MCP and hexanal. Plant Physiol. Biochem. 2011, 49, 329–340. [Google Scholar] [CrossRef]
- Valero, D.; Díaz-Mula, H.M.; Zapata, P.J.; Guillen, F.; Martínez-Romero, D.; Castillo, S.; Serrano, M. Effects of alginate edible coating on preserving fruit quality in four plum cultivars during postharvest storage. Postharvest Biol. Technol. 2013, 77, 1–6. [Google Scholar] [CrossRef]
- Valero, D.; Serrano, M. Postharvest Biology and Technology for Preserving Fruit Quality; CRC Press: Boca Raton, FL, USA, 2010; pp. 45–52. [Google Scholar]
- Puccinelli, M.; Malorgio, F.; Pezzarossa, B. Selenium Enrichment of Horticultural Crops. Molecules 2017, 22, 933. [Google Scholar] [CrossRef]
Preharvest Treatments | Postharvest Treatments |
---|---|
CK | CK + CK |
CK + 1-MCP | |
SE | SE + CK |
SE + 1-MCP |
Fruit Quality Attributes | 2016 | 2017 | ||
---|---|---|---|---|
CK | SE | CK | SE | |
Soluble sugars (g/kg) | 160.88 | 174.20 * | 125.03 | 141.76 * |
Soluble proteins (g/kg) | 1.37 | 1.68 * | 1.37 | 1.58 * |
Vitamin C (g/kg) | 0.11 | 0.12 * | 0.10 | 0.12 * |
Total soluble solids (%) | 19.27 | 20.60 * | 18.97 | 19.97 * |
Titratable acidity (g/kg) | 0.38 * | 0.33 | 0.44 * | 0.41 |
Resveratrol (mg/kg) | 0.24 ns | 0.25 ns | 0.23 ns | 0.23 ns |
Proanthocyanidin (g/kg) | 4.27 | 6.95 * | 5.73 | 10.70 * |
Soluble Sugars | Soluble Proteins | Vitamin C | Total Soluble Solids | Titratable Acidity | Resveratrol | Proanthocyanidin | Selenium Content | |
---|---|---|---|---|---|---|---|---|
A | *** | *** | *** | *** | *** | *** | *** | *** |
B | ** | *** | *** | *** | *** | NS | ** | * |
A × B | *** | *** | *** | *** | *** | *** | *** | *** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, S.; Liang, Y.; Mu, L.; An, X.; Yin, H. 1-Methylcyclopropene on Fruit Quality of Se-Enriched Grape (Vitis vinifera L.) during Shelf Life Period. Agronomy 2020, 10, 1411. https://doi.org/10.3390/agronomy10091411
Zhu S, Liang Y, Mu L, An X, Yin H. 1-Methylcyclopropene on Fruit Quality of Se-Enriched Grape (Vitis vinifera L.) during Shelf Life Period. Agronomy. 2020; 10(9):1411. https://doi.org/10.3390/agronomy10091411
Chicago/Turabian StyleZhu, Shuaimeng, Yinli Liang, Lan Mu, Xiaojuan An, and Hongfei Yin. 2020. "1-Methylcyclopropene on Fruit Quality of Se-Enriched Grape (Vitis vinifera L.) during Shelf Life Period" Agronomy 10, no. 9: 1411. https://doi.org/10.3390/agronomy10091411
APA StyleZhu, S., Liang, Y., Mu, L., An, X., & Yin, H. (2020). 1-Methylcyclopropene on Fruit Quality of Se-Enriched Grape (Vitis vinifera L.) during Shelf Life Period. Agronomy, 10(9), 1411. https://doi.org/10.3390/agronomy10091411