A Possible Role of Copernicus Sentinel-2 Data to Support Common Agricultural Policy Controls in Agriculture
Abstract
:1. Introduction
1.1. CAP and Contributions to Agriculture in the EU
1.2. Types of CAP Controls
1.3. Remote Sensing and CAP Controls
1.4. Study Goals
2. Materials and Methods
2.1. Study Area
2.2. Monitored Crops and Related Agronomic Calendar
2.3. Available Data
2.3.1. Satellite Data
2.3.2. Farmers’ Geospatial Data Applications
2.3.3. Ground Surveys
2.4. Data Processing
2.4.1. NDVI and Multi-Temporal Stack Generation
2.4.2. Selection of Controllable Fields
2.5. ROI Selection and Assessment
2.6. Crop Type Classification
2.6.1. Minimum Distance Classification
2.6.2. Random Forest Classification
2.7. Classifications Accuracy Assessment
2.8. Service Prototype Development
3. Results and Discussions
3.1. Selection of Controllable Fields
3.2. ROI Selection and Assessment
3.3. ROI Selection and Assessment
3.4. Classification Accuracy Assessment
3.5. Service Prototype Development
3.6. Future Developments
3.7. Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geiger, R.; Kotzur, M.; Khan, D.E. European Union Treaties; Hart Publishing: Oxford, UK, 2015. [Google Scholar]
- Fennell, R. The common agricultural policy: Continuity and change. In OUP Cat; Oxford University Press: Hong Kong, China, 1997. [Google Scholar]
- Shucksmith, M.; Thomson, K.J.; Roberts, D. The CAP and the Regions: The Territorial Impact of the Common Agricultural Policy; CABI Publishing: Wallingford, UK, 2005. [Google Scholar]
- Regulation, C. No 1257/1999 on Rural Development Support by Means of the European Agricultural Guarantee Fund (EAGGF). J. Rural Stud. 1999, 23, 416–429. [Google Scholar]
- Häring, A.; Dabbert, S.; Aurbacher, J.; Bichler, B.; Eichert, C.; Gambelli, D.; Zanoli, R. Organic Farming and Measures for European Agricultural Policy; Universität Hohenheim: Stuttgart, Germany, 2004. [Google Scholar]
- Cafiero, C.; Capitanio, F.; Cioffi, A.; Coppola, A. Risk and Crisis Management in the Reformed European Agricultural Policy. Can. J. Agric. Econ. Can. Agroecon. 2007, 55, 419–441. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Hubbard, N.; Loudjani, P. Precision agriculture: An opportunity for EU farmers—Potential support with the CAP 2014-2020. Joint Res. Centre Eur. Comm. 2014, 9, 1339. [Google Scholar]
- Bonfiglio, A.; Henke, R.; Pierangeli, F.; D’Andrea, M.R.P. Direct Payments and Competitiveness. Assessing Redistributive Effects of Internal Convergence in Italy. Agric. Food Policy 2018. [Google Scholar] [CrossRef]
- Reg. EU No. 809/2014 of the European Parliament and Council with Regard to the Integrated Administration and Control System, Rural Development Measures and Cross Compliance, EU. Int. J. Remote Sens. 2014, 40, 7272–7286. [Google Scholar]
- Campinas, M.; Rosa, M.J. Assessing PAC contribution to the NOM fouling control in PAC/UF systems. Water Res. 2010, 44, 1636–1644. [Google Scholar] [CrossRef] [PubMed]
- Defries, R.S.; Townshend, J.R.G. Global land cover characterization from satellite data: From research to operational imple-mentation? GCTE/LUCC Research Review. Glob. Ecol. Biogeogr. 1999, 8, 367–379. [Google Scholar] [CrossRef]
- Justice, C.O.; Townshend, J.R.G.; Holben, B.N.; Tucker, E.C. Analysis of the phenology of global vegetation using meteor-ological satellite data. Int. J. Remote Sens. 1985, 6, 1271–1318. [Google Scholar] [CrossRef]
- Sentinel, E.S.A. User Handbook; ESA Standard Document; European Space Agency: Paris, France, 2015; p. 64. [Google Scholar]
- Hodgson, M.E. On the accuracy of low-cost dual-frequency GNSS network receivers and reference data. GIScience Remote Sens. 2020, 57, 907–923. [Google Scholar] [CrossRef]
- Leprieur, C.; Verstraete, M.M.; Pinty, B. Evaluation of the performance of various vegetation indices to retrieve vegetation cover from AVHRR data. Remote Sens. Rev. 1994, 10, 265–284. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.; Chen, J.; Chen, Y.; Li, J.; Yan, G.; Zhang, X. Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction. Remote Sens. Environ. 2006, 101, 366–378. [Google Scholar] [CrossRef]
- Jönsson, P.; Eklundh, L. Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1824–1832. [Google Scholar] [CrossRef]
- Johnson, L.F.; Trout, T.J. Satellite NDVI Assisted Monitoring of Vegetable Crop Evapotranspiration in California’s San Joaquin Valley. Remote Sens. 2012, 4, 439–455. [Google Scholar] [CrossRef] [Green Version]
- Borgogno-Mondino, E.; Lessio, A.; Gomarasca, M.A. A fast operative method for NDVI uncertainty estimation and its role in vegetation analysis. Eur. J. Remote Sens. 2016, 49, 137–156. [Google Scholar] [CrossRef]
- Usman, M.; Liedl, R.; Shahid, M.A.; Abbas, A. Land use/land cover classification and its change detection using multi-temporal MODIS NDVI data. J. Geogr. Sci. 2015, 25, 1479–1506. [Google Scholar] [CrossRef]
- Pan, Z.; Huang, J.; Zhou, Q.; Wang, L.; Cheng, Y.; Zhang, H.; Blackburn, G.A.; Yan, J.; Liu, J. Mapping crop phenology using NDVI time-series derived from HJ-1 A/B data. Int. J. Appl. Earth Obs. Geoinform. 2015, 34, 188–197. [Google Scholar] [CrossRef] [Green Version]
- Wardlow, B.D.; Egbert, S.L. Large-area crop mapping using time-series MODIS 250 m NDVI data: An assessment for the U.S. Central Great Plains. Remote Sens. Environ. 2008, 112, 1096–1116. [Google Scholar] [CrossRef]
- Orusa, T.; Orusa, R.; Viani, A.; Carella, E.; Borgogno-Mondino, E. Geomatics and EO Data to Support Wildlife Diseases As-sessment at Landscape Level: A Pilot Experience to Map Infectious Keratoconjunctivitis in Chamois and Phenological Trends in Aosta Valley (NW Italy). Remote Sens. 2020, 12, 3542. [Google Scholar] [CrossRef]
- Zambrano, F.; Vrieling, A.; Nelson, A.; Meroni, M.; Tadesse, T. Prediction of drought-induced reduction of agricultural productivity in Chile from MODIS, rainfall estimates, and climate oscillation indices. Remote Sens. Environ. 2018, 219, 15–30. [Google Scholar] [CrossRef]
- Haghverdi, A.; Washington-Allen, R.A.; Leib, B.G. Prediction of cotton lint yield from phenology of crop indices using artificial neural networks. Comput. Electron. Agric. 2018, 152, 186–197. [Google Scholar] [CrossRef]
- De Petris, S.; Berretti, R.; Sarvia, F.; Mondino, E.C.B. Precision arboriculture: A new approach to tree risk management based on geomatics tools. Remote Sens. Agric. Ecosyst. Hydrol. XXI 2019, 11149, 111491G. [Google Scholar] [CrossRef]
- Orusa, T.; Mondino, E.B. Landsat 8 thermal data to support urban management and planning in the climate change era: A case study in Torino area, NW Italy. In Remote Sensing Technologies and Applications in Urban Environments IV; SPIE-Intl Soc Optical Eng.: Bellingham, WA, USA, 2019; Volume 11157, p. 111570O. [Google Scholar]
- De Petris, S.; Sarvia, F.; Borgogno-Mondino, E. RPAS-based photogrammetry to support tree stability assessment: Longing for precision arboriculture. Urban For. Urban Green. 2020, 55, 126862. [Google Scholar] [CrossRef]
- De Petris, S.; Sarvia, F.; Borgogno-Mondino, E. A New Index for Assessing Tree Vigour Decline Based on Sentinel-2 Mul-titemporal Data. Appl. Tree Failure Risk Manag. Remote Sens. Letters 2020. [Google Scholar] [CrossRef]
- Sarvia, F.; de Petris, S.; Borgogno-Mondino, E. Multi-scale remote sensing to support insurance policies in agriculture: From mid-term to instantaneous deductions. GISci. Remote Sens. 2020, 57, 770–784. [Google Scholar]
- Borgogno-Mondino, E.; Sarvia, F.; Gomarasca, M.A. Supporting Insurance Strategies in Agriculture by Remote Sensing: A Possible Approach at Regional Level. In Proceedings of the Lecture Notes in Computer Science; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2019; pp. 186–199. [Google Scholar]
- Sarvia, F.; de Petris, S.; Mondino, E.C.B. Remotely sensed data to support insurance strategies in agriculture. In Remote Sensing for Agriculture, Ecosystems, and Hydrology XXI; SPIE-Intl Soc Optical Eng.: Bellingham, WA, USA, 2019; Volume 11149, p. 111491H. [Google Scholar]
- Sarvia, F.; de Petris, S.; Borgogno-Mondino, E. A Methodological Proposal to Support Estimation of Damages from Hailstorms Based on Copernicus Sentinel 2 Data Times Series. In Proceedings of the Lecture Notes in Computer Science; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2020; pp. 737–751. [Google Scholar]
- Chen, J.; Jönsson, P.; Tamura, M.; Gu, Z.; Matsushita, B.; Eklundh, L. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter. Remote Sens. Environ. 2004, 91, 332–344. [Google Scholar] [CrossRef]
- Corvino, G.; Lessio, A.; Borgogno-Mondino, E. Monitoring Rice Crops in Piemonte (Italy): Towards an Operational Service Based on Free Satellite Data. In Proceedings of the IGARSS 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2018; pp. 9070–9073. [Google Scholar]
- Mishra, A.; Lu, Y.; Meng, J.; Anderson, A.W.; Ding, Z. Unified framework for anisotropic interpolation and smoothing of diffusion tensor images. NeuroImage 2006, 31, 1525–1535. [Google Scholar] [CrossRef] [PubMed]
- Pageot, Y.; Baup, F.; Inglada, J.; Baghdadi, N.; Demarez, V. Detection of Irrigated and Rainfed Crops in Temperate Areas Using Sentinel-1 and Sentinel-2 Time Series. Remote Sens. 2020, 12, 3044. [Google Scholar] [CrossRef]
- Schreier, J.; Ghazaryan, G.; Dubovyk, O. Crop-specific phenomapping by fusing Landsat and Sentinel data with MODIS time series. Eur. J. Remote Sens. 2020, 1–12. [Google Scholar] [CrossRef]
- Gómez-Giráldez, P.J.; Pérez-Palazón, M.J.; Polo, M.J.; Gonzalez-Dugo, M. Monitoring Grass Phenology and Hydrological Dynamics of an Oak–Grass Savanna Ecosystem Using Sentinel-2 and Terrestrial Photography. Remote Sens. 2020, 12, 600. [Google Scholar] [CrossRef] [Green Version]
- Veloso, A.; Mermoz, S.; Bouvet, A.; Le Toan, T.; Planells, M.; Dejoux, J.-F.; Ceschia, E. Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sens. Environ. 2017, 199, 415–426. [Google Scholar] [CrossRef]
- Vajsová, B.; Fasbender, D.; Wirnhardt, C.; Lemajic, S.; Devos, W. Assessing Spatial Limits of Sentinel-2 Data on Arable Crops in the Context of Checks by Monitoring. Remote Sens. 2020, 12, 2195. [Google Scholar] [CrossRef]
- Gomarasca, M.A.; Tornato, A.; Spizzichino, D.; Valentini, E.; Taramelli, A.; Satalino, G.; Vincini, M.; Boschetti, M.; Colombo, R.; Rossi, L.; et al. Sentinel for Applications in Agriculture. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for au-tomated geoscientific analyses (SAGA) v. 2.1. 4. Geosci. Model Dev. Discuss. 2015, 8. [Google Scholar] [CrossRef] [Green Version]
- Forman, R.T.T. Some general principles of landscape and regional ecology. Landsc. Ecol. 1995, 10, 133–142. [Google Scholar] [CrossRef]
- Jog, S.; Dixit, M. Supervised classification of satellite images. In Proceedings of the 2016 Conference on Advances in Signal Processing (CASP), Pune, India, 9–11 June 2016; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2016; pp. 93–98. [Google Scholar]
- Perumal, K.; Bhaskaran, R. Supervised classification performance of multispectral images. arXiv 2010, arXiv:1002.4046. [Google Scholar]
- Keuchel, J.; Naumann, S.; Heiler, M.; Siegmund, A. Automatic land cover analysis for Tenerife by supervised classification using remotely sensed data. Remote Sens. Environ. 2003, 86, 530–541. [Google Scholar] [CrossRef]
- Fischer, R.A.; Santiveri, F.; Vidal, I.R. Crop rotation, tillage and crop residue management for wheat and maize in the sub-humid tropical highlands: I. Wheat and legume performance. Field Crops Res. 2002, 79, 107–122. [Google Scholar] [CrossRef]
- Reeves, T.; Ellington, A.; Brooke, H. Effects of lupin-wheat rotations on soil fertility, crop disease and crop yields. Aust. J. Exp. Agric. 1984, 24, 595–600. [Google Scholar] [CrossRef]
- Richards, J.A.; Richards, J.A. Remote Sensing Digital Image Analysis; Springer: Berlin, Germany, 1999; Volume 3, pp. 10–38. [Google Scholar]
- Hasmadi, M.; Pakhriazad, H.Z.; Shahrin, M.F. Evaluating supervised and unsupervised techniques for land cover mapping using remote sensing data. Geogr. Malays. J. Soc. Space 2009, 5, 1–10. [Google Scholar]
- South, S.; Qi, J.; Lusch, D.P. Optimal classification methods for mapping agricultural tillage practices. Remote Sens. Environ. 2004, 91, 90–97. [Google Scholar] [CrossRef]
- Wacker, A.G.; Landgrebe, D.A. Minimum Distance Classification in Remote Sensing; LARS Technical Reports for Purdue University: West Lafayette, IN, USA, 1972; p. 25. [Google Scholar]
- Hodgson, M.E. Reducing the computational requirements of the minimum-distance classifier. Remote Sens. Environ. 1988, 25, 117–128. [Google Scholar] [CrossRef]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Liaw, A.; Wiener, M. Classification and regression by Random Forest. R News 2002, 2, 18–22. [Google Scholar]
- Ok, A.O.; Akar, O.; Gungor, O. Evaluation of random forest method for agricultural crop classification. Eur. J. Remote Sens. 2012, 45, 421–432. [Google Scholar] [CrossRef]
- Sonobe, R.; Tani, H.; Wang, X.; Kobayashi, N.; Shimamura, H. Random forest classification of crop type using multi-temporal TerraSAR-X dual-polarimetric data. Remote Sens. Lett. 2014, 5, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Hay, A. The derivation of global estimates from a confusion matrix. Int. J. Remote Sens. 1988, 9, 1395–1398. [Google Scholar] [CrossRef]
- Konduri, V.S.; Kumar, J.; Hargrove, W.W.; Hoffman, F.M.; Ganguly, A.R. Mapping crops within the growing season across the United States. Remote Sens. Environ. 2020, 251, 112048. [Google Scholar] [CrossRef]
- Belgiu, M.; Csillik, O. Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sens. Environ. 2018, 204, 509–523. [Google Scholar] [CrossRef]
- Palchowdhuri, Y.; Valcarce-Diñeiro, R.; King, P.; Sanabria-Soto, M. Classification of multi-temporal spectral indices for crop type mapping: A case study in Coalville, UK. J. Agric. Sci. 2018, 156, 24–36. [Google Scholar] [CrossRef]
- Jiang, Y.; Lu, Z.; Li, S.; Lei, Y.; Chu, Q.; Yin, X.; Chen, F. Large-Scale and High-Resolution Crop Mapping in China Using Sentinel-2 Satellite Imagery. Agriculture 2020, 10, 433. [Google Scholar] [CrossRef]
Fund | European Union Funds | National Funds | Total | Annual Average |
---|---|---|---|---|
Direct Payments | 27 | 0 | 27 | 3.8 |
Common Organization of Markets (CMO) wine, fruit, and vegetables | 4 | 0 | 4 | 0.6 |
Rural development | 10.5 | 10.5 | 21 | 3 |
Total | 41.5 | 10.5 | 52 | 7.4 |
Bands (nm) | Geometric Resolution (m) |
---|---|
B1: 433–453 | 60 |
B2: 458–523 | 10 |
B3: 543–578 | 10 |
B4: 650–680 | 10 |
B5: 698–713 | 20 |
B6: 733–748 | 20 |
B7: 773–793 | 20 |
B8: 785–900 | 10 |
B8a: 855–875 | 20 |
B9: 935–955 | 60 |
B10: 1360–1390 | 60 |
B11: 1565–1655 | 20 |
B12: 2100–2280 | 20 |
Radiometric resolution: 12 bit | |
Temporal resolution: 5 (10) days |
Code | Description |
---|---|
0 | No data |
1 | Saturated or Defective |
2 | Dark area pixels |
3 | Cloud shadows |
4 | Vegetation |
5 | Not vegetated |
6 | Water |
7 | Unclassified |
8 | Cloud Medium Probability |
9 | Cloud High Probability |
10 | Thin Cirrus |
11 | Snow |
ID GSAA | Municipality | Field Area (ha) | Declared Cultivation | Products | ID of Farm Company |
---|---|---|---|---|---|
10115784 | Vercelli | 0.5 | Rice | Beans, seeds, grains | 1467 |
13248425 | Vercelli | 0.72 | Meadow | Forage | 1462 |
27757591 | Vercelli | 2.49 | Rice | Beans, seeds, grains | 1191 |
25860265 | Vercelli | 1.39 | Corn | Beans, seeds, grains | 1712 |
24675625 | Vercelli | 0.18 | Soybean | Beans, seeds, grains | 1560 |
22426581 | Vercelli | 4.43 | Barley | Beans, seeds, grains | 763 |
Crops | Number of Fields Surveyed | Total Area of Fields Surveyed (ha) |
---|---|---|
Soy | 89 | 120.74 |
Corn | 187 | 77.11 |
Wheat | 105 | 847.78 |
Rice | 159 | 108.25 |
Meadows | 101 | 257.32 |
Crop Class | ID ROI | ID Crop | #Plots | Area (ha) | Description |
---|---|---|---|---|---|
Soybean | 100 | 1 | 16 | 26.57 | Soya as the only crop for the entire agronomic year |
101 | 12 | 6.11 | Soya in succession to a second crop | ||
Corn | 200 | 2 | 32 | 69.09 | Corn as the only crop for the entire agronomic year |
Wheat | 300 | 3 | 14 | 11.54 | Wheat as the only crop for the whole agronomic year |
301 | 21 | 32.22 | Wheat grown on a second crop | ||
Rice | 400 | 4 | 40 | 289.37 | Rice as the only crop for the whole agronomic year |
Meadow | 500 | 5 | 16 | 15.38 | Meadow not alternated, as the only crop for the entire agronomic year, with some mowings |
Total | - | - | 151 | 450.29 | - |
Assigned CM Code | Tested Condition | Action |
---|---|---|
1 | Class assignation from MD and RF are both concordant to GSAA | No ground survey is needed |
2 | GSAA is equal to at least one classification | No ground survey is needed |
3 | Class assignation from MD and RF are different and both discordant with GSAA | A ground survey is suggested |
4 | Class assignation from MD and RF are equal but discordant with GSAA | A ground survey is needed |
ROI ID 2019 | 100 | 101 | 200 | 300 | 301 | 400 | 500 |
---|---|---|---|---|---|---|---|
100 | 0.33 | 0.10 | 0.29 | 0.52 | 0.10 | 0.85 | |
101 | 0.30 | 0.09 | 0.24 | 0.36 | 0.61 | ||
200 | 0.29 | 0.51 | 0.06 | 0.82 | |||
300 | 0.25 | 0.34 | 0.64 | ||||
301 | 0.56 | 0.43 | |||||
400 | 0.86 | ||||||
500 |
Crop Classes | MD Classification | RF Classification | ||
---|---|---|---|---|
Number of Plots | Class Area (ha) | Number of Plots | Class Area (ha) | |
1 | 4180 | 7840.55 | 12,934 | 23,181.91 |
2 | 7683 | 11,337.21 | 11,004 | 17,418.45 |
3 | 655 | 786.39 | 1687 | 2086.42 |
4 | 21,446 | 44,441.33 | 19,063 | 40,444.23 |
5 | 2251 | 1768.32 | 2888 | 2552.56 |
MD Classification | |||||||
---|---|---|---|---|---|---|---|
Crop Codes | Reference | Total | |||||
1 | 2 | 3 | 4 | 5 | |||
Classification | 1 | 5961 | 591 | 837 | 5766 | 60 | 13,215 |
2 | 2542 | 20,665 | 2101 | 15 | 527 | 25,850 | |
3 | 11 | 48 | 695 | 0 | 174 | 928 | |
4 | 1625 | 4041 | 1040 | 75,516 | 1596 | 83,818 | |
5 | 213 | 285 | 2468 | 30 | 9043 | 12,039 | |
Total | 10,352 | 25,630 | 7141 | 81,327 | 11,400 | 135,850 |
RF Classification | |||||||
---|---|---|---|---|---|---|---|
Crop Codes | Reference | Total | |||||
1 | 2 | 3 | 4 | 5 | |||
Classification | 1 | 6362 | 108 | 1406 | 6658 | 60 | 14,594 |
2 | 1394 | 22,763 | 694 | 4922 | 1463 | 31,236 | |
3 | 50 | 83 | 4878 | 5 | 596 | 5612 | |
4 | 2436 | 1636 | 47 | 71,191 | 16 | 75,326 | |
5 | 199 | 167 | 283 | 24 | 9292 | 9965 | |
Total | 10,441 | 24,757 | 7308 | 82,800 | 11,427 | 136,733 |
Crop Codes | MD Classification | RF Classification | ||
---|---|---|---|---|
UA | PA | UA | PA | |
1 | 45.11 | 57.58 | 43.59 | 60.93 |
2 | 79.94 | 80.63 | 72.87 | 91.95 |
3 | 74.89 | 9.73 | 86.92 | 66.75 |
4 | 90.10 | 92.85 | 94.51 | 85.98 |
5 | 75.11 | 79.32 | 93.25 | 81.32 |
OA | 82.36 | 83.73 | ||
K | 0.70 | 0.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarvia, F.; Xausa, E.; De Petris, S.; Cantamessa, G.; Borgogno-Mondino, E. A Possible Role of Copernicus Sentinel-2 Data to Support Common Agricultural Policy Controls in Agriculture. Agronomy 2021, 11, 110. https://doi.org/10.3390/agronomy11010110
Sarvia F, Xausa E, De Petris S, Cantamessa G, Borgogno-Mondino E. A Possible Role of Copernicus Sentinel-2 Data to Support Common Agricultural Policy Controls in Agriculture. Agronomy. 2021; 11(1):110. https://doi.org/10.3390/agronomy11010110
Chicago/Turabian StyleSarvia, Filippo, Elena Xausa, Samuele De Petris, Gianluca Cantamessa, and Enrico Borgogno-Mondino. 2021. "A Possible Role of Copernicus Sentinel-2 Data to Support Common Agricultural Policy Controls in Agriculture" Agronomy 11, no. 1: 110. https://doi.org/10.3390/agronomy11010110
APA StyleSarvia, F., Xausa, E., De Petris, S., Cantamessa, G., & Borgogno-Mondino, E. (2021). A Possible Role of Copernicus Sentinel-2 Data to Support Common Agricultural Policy Controls in Agriculture. Agronomy, 11(1), 110. https://doi.org/10.3390/agronomy11010110