Spatial Variability of Soil Phosphorus Indices under Two Contrasting Grassland Fields in Eastern Canada
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Soil Sampling
2.2. Statistical and Geostatistical Analyses
3. Results
3.1. Descriptive Statistics of Soil Phosphorus Indices and Other Chemical Properties
3.2. Geostatistical Parameters of Soil Phosphorus Indices and Other Chemical Properties
3.3. Spatial Distribution of Soil Phosphorus Indices and Other Chemical Properties
3.4. Relationships Between Soil Phosphorus Indices and Other Chemical Properties
4. Discussion
4.1. Soil Phosphorus Stratification and Its Environmental Implications
4.2. Variability of Soil Phosphorus Indices and Other Soil Chemical Properties
4.3. Spatial Dependence of Soil Phosphorus Indices and Other Soil Chemical Properties
4.4. Spatial Distribution of Soil Phosphorus Indices and Other Soil Chemical Properties
4.5. Relationships Between Soil Phosphorus Indices and Other Soil Chemical Properties
4.6. Agronomic and Environmental Implications
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stroia, C.; Morel, C.; Jouany, C. Dynamics of diffusive soil phosphorus in two grassland experiments determined both in field and laboratory conditions. Agric. Ecosys. Environ. 2007, 119, 60–74. [Google Scholar] [CrossRef]
- Jordan, C.; McGuckin, S.; Smith, R. Increased predicted losses of phosphorus to surface waters from soils with high Olsen-P concentrations. Soil Use Manag. 2000, 16, 27–35. [Google Scholar] [CrossRef]
- Sun, W.-X.; Huang, B.; Qu, M.-K.; Tian, K.; Yao, L.-P.; Fu, M.-M.; Yin, L.-P. Effect of Farming Practices on the Variability of Phosphorus Status in Intensively Managed Soils. Pedosphere 2015, 25, 438–449. [Google Scholar] [CrossRef]
- Maguire, R.O.; Sims, J.T. Measuring agronomic and environmental soil phosphorus saturation and predicting phosphorus leaching with Mehlich 3. Soil Sci. Soc. Am. J. 2002, 66, 2033–2039. [Google Scholar] [CrossRef]
- Breeuwsma, A.; Silva, S. Phosphorus Fertilisation and Environmental Effects in The Netherlands and the Po Region (Italy); DLO The Winand Staring Centre: Wageningen, The Netherlands, 1992. [Google Scholar]
- Obermeier, W.; Lehnert, L.; Kammann, C.; Müller, C.; Grünhage, L.; Luterbacher, J.; Erbs, M.; Moser, G.; Seibert, R.; Yuan, N. Reduced CO2 fertilization effect in temperate C3 grasslands under more extreme weather conditions. Nat. Clim. Chang. 2017, 7, 137–141. [Google Scholar] [CrossRef]
- Zhou, Q.; Daryanto, S.; Xin, Z.; Liu, Z.; Liu, M.; Cui, X.; Wang, L. Soil phosphorus budget in global grasslands and implications for management. J. Arid Environ. 2017, 144, 224–235. [Google Scholar] [CrossRef] [Green Version]
- Higgins, S.; Schellberg, J.; Bailey, J. A review of Precision Agriculture as an aid to Nutrient Management in Intensive Grassland Areas in North West Europe. Adv. Anim. Biosci. 2017, 8, 782–786. [Google Scholar] [CrossRef]
- Statistics Canada. Farm and Farm Operator Data; Statistics Canada: Ottawa, ON, Canada, 2016. [Google Scholar]
- MAPAQ. Portrait-Diagnostic Sectoriel de L’industrie des Plantes Fourragères du Québec; Ministère de l’Agriculture de l’Alimentation et des Pêcheries du Québec: Québec, QC, Canada, 2018; p. 27. [Google Scholar]
- CRAAQ. Guide de Référence en Fertilisation, 2nd ed.; Centre de Référence en Agriculture et Agroalimentaire du Québec: Québec, QC, Canada, 2010; p. 473. [Google Scholar]
- Hébert, M.; Busset, G.; Groeneveld, E. Bilan 2007 de la Valorisation des Matières Résiduelles Fertilisantes; Ministère du Développement durable, de l’Environnement et des Parcs: Québec, QC, Canada, 2008; p. 14.
- MDDELCC. Guide de Référence du Règlement sur les Exploitations Agricoles; Ministère du Développement durable, de l’Environnement et de la Lutte contre les changements climatiques: Québec, QC, Canada, 2017; p. 185.
- Patoine, M.; Hébert, S.; Simoneau, M.; d’Auteuil-Potvin, F. Charges de Phosphore, D’azote et de Matières en Suspension à L’embouchure des Rivières du Québec, 2009 à 2012; Ministère du Développement durable, de l’Environnement et de la Lutte contre les changements climatiques, Direction générale du suivi de l’état de l’environnement: Québec, QC, Canada, 2017; p. 25.
- Frossard, E.; Julien, P.; Neyroud, J.-A.; Sinaj, S. Le Phosphore Dans les sols: État de la Situation en Suisse: Le Phosphore Dans les Sols, les Engrais, les Cultures et L’environnement; Office fédéral de l’environnement, des forêts et du paysage OFEFP: Berne, Switzerland, 2004; p. 180. [Google Scholar]
- Mehlich, A. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Cambouris, A.N.; Zebarth, B.J.; Ziadi, N.; Perron, I. Precision agriculture in potato production. Potato Res. 2014, 57, 249–262. [Google Scholar] [CrossRef]
- Jia, S.; Zhou, D.; Xu, D. The temporal and spatial variability of soil properties in an agricultural system as affected by farming practices in the past 25 years. J. Food Agric. Environ. 2011, 9, 669–676. [Google Scholar]
- Roger, A.; Libohova, Z.; Rossier, N.; Joost, S.; Maltas, A.; Frossard, E.; Sinaj, S. Spatial variability of soil phosphorus in the Fribourg canton, Switzerland. Geoderma 2014, 217–218, 26–36. [Google Scholar] [CrossRef]
- Vasu, D.; Singh, S.; Sahu, N.; Tiwary, P.; Chandran, P.; Duraisami, V.; Ramamurthy, V.; Lalitha, M.; Kalaiselvi, B. Assessment of spatial variability of soil properties using geospatial techniques for farm level nutrient management. Soil Till. Res. 2017, 169, 25–34. [Google Scholar] [CrossRef]
- Nolan, S.; Little, J.; Casson, J.; Hecker, F.; Olson, B. Field-scale variation of soil phosphorus within small Alberta watersheds. J. Soil Water Conserv. 2007, 62, 414–422. [Google Scholar]
- Yuan, Y.; Locke, M.A.; Gaston, L.A. Tillage effects on soil properties and spatial variability in two Mississippi Delta watersheds. Soil Sci. 2009, 174, 385–394. [Google Scholar] [CrossRef] [Green Version]
- Wilson, H.F.; Satchithanantham, S.; Moulin, A.P.; Glenn, A.J. Soil phosphorus spatial variability due to landform, tillage, and input management: A case study of small watersheds in southwestern Manitoba. Geoderma 2016, 280, 14–21. [Google Scholar] [CrossRef]
- Lamontagne, L.; Martin, A.; Nolin, M.C. Étude Pédologique du Bassin Versant du Bras d’Henri (Québec); Laboratoires de pédologie et d’agriculture de précision, Centre de recherche et de développement sur les sols et les grandes cultures, Service national d’information sur les terres et les eaux, Direction générale de la recherche, Agriculture et Agroalimentaire Canada: Québec, QC, Canada, 2010; p. 188. [Google Scholar]
- Environnement Canada Canadian Climate Normals or Averages 1971–2000. Available online: http://www.climat.meteo.ec.gc.ca/climate_normals/index_e.html (accessed on 27 November 2016).
- CRAAQ. Guide de Référence en Fertilisation, 1st ed.; Centre de référence en agriculture et agroalimentaire du Québec: Québec, QC, Canada, 2003; p. 294. [Google Scholar]
- Hendershot, W.H.; Lalande, H.; Duquette, M. Soil reaction and exchangeable acidity. In Soil Sampling and Methods of Analysis; Carter, R., Gregorich, E.G., Eds.; Taylor & Francis: Boca Raton, FL, USA, 2008; pp. 173–178. [Google Scholar]
- Ziadi, N.; Tran, T. Mehlich 3-Extractable Elements. In Soil Sampling and Methods of Analysis; Carter, R., Gregorich, E.G., Eds.; Taylor & Francis: Boca Raton, FL, USA, 2008; pp. 81–88. [Google Scholar]
- SAS Institute. SAS User’s Guide. Statistics. Version 9.3.; SAS Institute: Cary, NC, USA, 2010. [Google Scholar]
- Nolin, M.; Caillier, M. La variabilité des sols. II-Quantification et amplitude. Agrosol 1992, 5, 21–32. [Google Scholar]
- Webster, R.; Oliver, M.A. Geostatistics for Environmental Scientists, 2nd ed.; John Wiley & Sons: Chichester, UK, 2007. [Google Scholar]
- Wu, C.; Wu, J.; Luo, Y.; Zhang, L.; DeGloria, S.D. Spatial prediction of soil organic matter content using cokriging with remotely sensed data. Soil Sci. Soc. Am. J. 2009, 73, 1202–1208. [Google Scholar] [CrossRef]
- Whelan, B.; McBratney, A. The “null hypothesis” of precision agriculture management. Precis. Agric. 2000, 2, 265–279. [Google Scholar] [CrossRef]
- Kravchenko, A.; Bollero, G.A.; Omonode, R.; Bullock, D. Quantitative mapping of soil drainage classes using topographical data and soil electrical conductivity. Soil Sci. Soc. Am. J. 2002, 66, 235–243. [Google Scholar] [CrossRef]
- Perron, I.; Cambouris, A.N.; Chokmani, K.; Vargas Gutierrez, M.F.; Zebarth, B.J.; Moreau, G.; Biswas, A.; Adamchuk, V. Delineating soil management zones using a proximal soil sensing system in two commercial potato fields in New Brunswick, Canada. Can. J. Soil. Sci. 2018, 98, 724–737. [Google Scholar] [CrossRef]
- Darilek, J.; Huang, B.; De-Cheng, L.; Zhi-Gang, W.; Yong-Cun, Z.; Wei-Xia, S.; Xue-Zheng, S.J.P. Effect of land use conversion from rice paddies to vegetable fields on soil phosphorus fractions. Pedosphere 2010, 20, 137–145. [Google Scholar] [CrossRef]
- Fu, B.; Chen, L.; Ma, K.; Zhou, H.; Wang, J. The relationships between land use and soil conditions in the hilly area of the loess plateau in northern Shaanxi, China. Catena 2000, 39, 69–78. [Google Scholar] [CrossRef]
- Bennett, E.M.; Carpenter, S.R.; Clayton, M.K. Soil phosphorus variability: Scale-dependence in an urbanizing agricultural landscape. Landsc. Ecol. 2005, 20, 389–400. [Google Scholar] [CrossRef]
- Sharpley, A.N.; Smith, S. Wheat tillage and water quality in the Southern Plains. Soil Till. Res. 1994, 30, 33–48. [Google Scholar] [CrossRef]
- Lupwayi, N.; Clayton, G.; O’Donovan, J.; Harker, K.; Turkington, T.; Soon, Y. Soil nutrient stratification and uptake by wheat after seven years of conventional and zero tillage in the Northern Grain belt of Canada. Can. J. Soil. Sci. 2006, 86, 767–778. [Google Scholar] [CrossRef]
- Di Virgilio, N.; Monti, A.; Venturi, G. Spatial variability of switchgrass (Panicum virgatum L.) yield as related to soil parameters in a small field. Field Crops Res. 2007, 101, 232–239. [Google Scholar] [CrossRef] [Green Version]
- Cambouris, A.; Nolin, M.; Zebarth, B.; Laverdière, M. Soil management zones delineated by electrical conductivity to characterize spatial and temporal variations in potato yield and in soil properties. Am. J. Potato Res. 2006, 83, 381–395. [Google Scholar] [CrossRef]
- Bélanger, G.; Cambouris, A.N.; Parent, G.; Mongrain, D.; Ziadi, N.; Perron, I. Biomass yield from an old grass field as affected by sources of nitrogen fertilization and management zones in northern areas. Can. J. Plant Sci. 2016, 97, 53–64. [Google Scholar] [CrossRef]
- Arrouays, D.; Vion, I.; Jolivet, C.; Guyon, D.; Couturier, A.; Wilbert, J. Variabilité intraparcellaire de quelques propriétés des sols sableux des Landes de Gascogne (France): Conséquences sur la stratégie d’echantillonnage agronomique. EGS 1997, 4, 5–16. [Google Scholar]
- Farooque, A.A.; Zaman, Q.U.; Schumann, A.W.; Madani, A.; Percival, D.C. Delineating management zones for site specific fertilization in wild blueberry fields. App. Eng. Agric. 2012, 28, 57–70. [Google Scholar] [CrossRef]
- Nolin, M.; Caillier, M.; Wang, C. Variabilité des sols et stratégie d’échantillonnage dans les études pédologiques détaillées de la plaine de Montréal. Can. J. Soil. Sci. 1991, 71, 439–451. [Google Scholar] [CrossRef] [Green Version]
- West, C.; Mallarino, A.; Wedin, W.; Marx, D. Spatial variability of soil chemical properties in grazed pastures. Soil Sci. Soc. Am. J. 1989, 53, 784–789. [Google Scholar] [CrossRef]
- Fu, W.; Zhao, K.; Jiang, P.; Ye, Z.; Tunney, H.; Zhang, C. Field-scale variability of soil test phosphorus and other nutrients in grasslands under long-term agricultural managements. Soil Res. 2013, 51, 503–512. [Google Scholar] [CrossRef]
- Fu, W.; Zhao, K.; Tunney, H.; Zhang, C. Using GIS and geostatistics to optimize soil phosphorus and magnesium sampling in temperate grassland. Soil Sci. 2013, 178, 240–247. [Google Scholar] [CrossRef]
- McCormick, S.; Jordan, C.; Bailey, J. Within and between-field spatial variation in soil phosphorus in permanent grassland. Precis. Agric. 2009, 10, 262–276. [Google Scholar] [CrossRef]
- Quenum, M.; Nolin, M.; Bernier, M. Cartographie numérique de la capacité maximale de sorption du phosphore des sols à l’échelle de la parcelle agricole à l’aide de variables auxiliaires. Can. J. Soil. Sci. 2012, 92, 733–750. [Google Scholar] [CrossRef]
- Cambardella, C.; Moorman, T.; Parkin, T.; Karlen, D.; Novak, J.; Turco, R.; Konopka, A. Field-scale variability of soil properties in central Iowa soils. Soil Sci. Soc. Am. J. 1994, 58, 1501–1511. [Google Scholar] [CrossRef]
- Goovaerts, P. Geostatistical tools for characterizing the spatial variability of microbiological and physico-chemical soil properties. Biol. Fertil. Soils 1998, 27, 315–334. [Google Scholar] [CrossRef] [Green Version]
- Chien, Y.-J.; Lee, D.-Y.; Guo, H.-Y.; Houng, K.-H. Geostatistical analysis of soil properties of mid-west Taiwan soils. Soil Sci. 1997, 162, 291–298. [Google Scholar] [CrossRef]
- Chang, J.; Clay, D.E.; Carlson, C.G.; Malo, D.; Clay, S.A.; Lee, J.; Ellsbury, M. Precision farming protocols: Part 1. Grid distance and soil nutrient impact on the reproducibility of spatial variability measurements. Precis. Agric. 1999, 1, 277–289. [Google Scholar] [CrossRef]
- Shi, Z.; Wang, K.; Bailey, J.; Jordan, C.; Higgins, A. Sampling strategies for mapping soil phosphorus and soil potassium distributions in cool temperate grassland. Precis. Agric. 2000, 2, 347–357. [Google Scholar] [CrossRef]
- Guo-Shun, L.; Xin-Zhong, W.; Zheng-Yang, Z.; Chun-Hua, Z. Spatial variability of soil properties in a tobacco field of central China. Soil Sci. 2008, 173, 659–667. [Google Scholar] [CrossRef]
- Cambouris, A.; Messiga, A.; Ziadi, N.; Perron, I.; Morel, C. Decimetric-Scale Two-Dimensional Distribution of Soil Phosphorus after 20 Years of Tillage Management and Maintenance Phosphorus Fertilization. Soil Sci. Soc. Am. J. 2017, 81, 1606–1614. [Google Scholar] [CrossRef] [Green Version]
- Kokulan, V.; Akinremi, O.; Moulin, A.P.; Kumaragamage, D. Importance of terrain attributes in relation to the spatial distribution of soil properties at the micro scale: A case study. Can. J. Soil. Sci. 2018, 98, 292–305. [Google Scholar] [CrossRef] [Green Version]
- Zebarth, B.; Drury, C.; Tremblay, N.; Cambouris, A. Opportunities for improved fertilizer nitrogen management in production of arable crops in eastern Canada: A review. Can. J. Soil. Sci. 2009, 89, 113–132. [Google Scholar] [CrossRef]
- Kravchenko, A. Influence of spatial structure on accuracy of interpolation methods. Soil Sci. Soc. Am. J. 2003, 67, 1564–1571. [Google Scholar] [CrossRef]
- Tran, T.; Giroux, M.; Guilbeault, J.; Audesse, P. Evaluation of Mehlich-III extractant to estimate the available P in Quebec soils. Commun. Soil Sci. Plant Anal. 1990, 21, 1–28. [Google Scholar] [CrossRef]
- Wang, H.-J.; Huang, B.; Shi, X.-Z.; Darilek, J.L.; Yu, D.-S.; Sun, W.-X.; Zhao, Y.-C.; Chang, Q.; Öborn, I. Major nutrient balances in small-scale vegetable farming systems in peri-urban areas in China. Nutr. Cycl. Agroecosyst. 2008, 81, 203–218. [Google Scholar] [CrossRef]
- Darilek, J.L.; Huang, B.; Wang, Z.; Qi, Y.; Zhao, Y.; Sun, W.; Gu, Z.; Shi, X.J.A. Changes in soil fertility parameters and the environmental effects in a rapidly developing region of China. Agric. Ecosys. Environ. 2009, 129, 286–292. [Google Scholar] [CrossRef]
- Havlin, J.L.; Beaton, J.D.; Tisdale, S.L.; Nelson, W. Soil Fertility and Fertilizers: An Introduction to Nutrient Management; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2005. [Google Scholar]
- Devau, N.; Le Cadre, E.; Hinsinger, P.; Gérard, F. A mechanistic model for understanding root-induced chemical changes controlling phosphorus availability. Ann. Bot. 2010, 105, 1183–1197. [Google Scholar] [CrossRef] [Green Version]
- Sharpley, A.; Smith, S. Fractionation of Inorganic and Organic Phosphorus in Virgin and Cultivated Soils. Soil Sci. Soc. Am. J. 1985, 49, 127–130. [Google Scholar] [CrossRef]
- Guo, F.; Yost, R.; Hue, N.; Evensen, C.; Silva, J. Changes in phosphorus fractions in soils under intensive plant growth. Soil Sci. Soc. Am. J. 2000, 64, 1681–1689. [Google Scholar] [CrossRef]
- Motavalli, P.; Miles, R. Soil phosphorus fractions after 111 years of animal manure and fertilizer applications. Biol. Fertil. Soils 2002, 36, 35–42. [Google Scholar]
- Kuo, S.; Huang, B.; Bembenek, R. Effects of long-term phosphorus fertilization and winter cover cropping on soil phosphorus transformations in less weathered soils. Biol. Fertil. Soils 2005, 41, 116–123. [Google Scholar] [CrossRef]
- Devau, N.; Hinsinger, P.; Le Cadre, E.; Gérard, F. Root-induced processes controlling phosphate availability in soils with contrasted P-fertilized treatments. Plant Soil 2011, 348, 203–218. [Google Scholar] [CrossRef]
- Eriksson, A.K.; Hesterberg, D.; Klysubun, W.; Gustafsson, J.P. Phosphorus dynamics in Swedish agricultural soils as influenced by fertilization and mineralogical properties: Insights gained from batch experiments and XANES spectroscopy. Sci. Total. Environ. 2016, 566, 1410–1419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cade-Menun, B.J.; Carter, M.R.; James, D.C.; Liu, C.W. Phosphorus forms and chemistry in the soil profile under long-term conservation tillage: A phosphorus-31 nuclear magnetic resonance study. J. Environ. Qual. 2010, 39, 1647–1656. [Google Scholar] [CrossRef]
- Abdi, D.; Cade-Menun, B.J.; Ziadi, N.; Parent, L.E. Long-term impact of tillage practices and phosphorus fertilization on soil phosphorus forms as determined by 31 P nuclear magnetic resonance spectroscopy. J. Environ. Qual. 2014, 43, 1431–1441. [Google Scholar] [CrossRef]
- Haygarth, P.; Hepworth, L.; Jarvis, S. Forms of phosphorus transfer in hydrological pathways from soil under grazed grassland. Eur. J Soil Sci. 1998, 49, 65–72. [Google Scholar] [CrossRef]
- Watson, C.; Matthews, D. A 10-year study of phosphorus balances and the impact of grazed grassland on total P redistribution within the soil profile. Eur. J Soil Sci. 2008, 59, 1171–1176. [Google Scholar] [CrossRef]
- Watson, C.; Jordan, C.; Kilpatrick, D.; McCarney, B.; Stewart, R. Impact of grazed grassland management on total N accumulation in soil receiving different levels of N inputs. Soil Use Manag. 2007, 23, 121–128. [Google Scholar] [CrossRef]
- Stroia, C.; Morel, C.; Jouany, C. Nitrogen fertilization effects on grassland soil acidification: Consequences on diffusive phosphorus ions. Soil Sci. Soc. Am. J. 2011, 75, 112–120. [Google Scholar] [CrossRef]
0–5 cm | 5–20 cm | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Unit | n | Mean | Min | Max | STD | CV1 (%) | n | Mean | Min | Max | STD | CV(%) | |
Young grassland | |||||||||||||
Soil pHwater | 151 | 6.7 | 5.8 | 7.4 | 0.4 | 5 | 151 | 6.8 | 5.9 | 7.5 | 0.4 | 6 | |
Total carbon | g kg−1 | 151 | 14 | 5 | 28 | 5 | 38 | 151 | 14 | 5 | 28 | 6 | 40 |
PM3 | mg kg−1 | 151 | 52 | 10 | 161 | 33 | 63 | 151 | 55 | 10 | 203 | 36 | 65 |
AlM3 | mg kg−1 | 151 | 1875 | 1153 | 2252 | 196 | 10 | 151 | 1971 | 1360 | 2381 | 215 | 11 |
FeM3 | mg kg−1 | 151 | 104 | 60 | 196 | 24 | 23 | 151 | 111 | 69 | 226 | 27 | 25 |
CaM3 | mg kg−1 | 151 | 1180 | 390 | 3156 | 497 | 42 | 151 | 1532 | 483 | 3395 | 605 | 39 |
(P/Al)M3 2 | (%) | 151 | 3.0 | 0.5 | 13 | 0.02 | 79 | 151 | 3.0 | 0.5 | 15 | 0.02 | 81 |
Old grassland | |||||||||||||
Soil pHwater | 149 | 5.5 | 4.7 | 6.4 | 0.4 | 6.5 | 149 | 5.3 | 4.7 | 6.1 | 0.3 | 6 | |
Total carbon | g kg−1 | 149 | 41 | 11 | 61 | 9 | 23 | 149 | 30 | 10 | 47 | 6 | 20 |
PM3 | mg kg−1 | 149 | 125 | 29 | 327 | 58 | 46 | 149 | 75 | 8 | 226 | 45 | 60 |
AlM3 | mg kg−1 | 149 | 1831 | 1494 | 2225 | 158 | 9 | 149 | 1891 | 1540 | 2186 | 121 | 6 |
FeM3 | mg kg−1 | 149 | 187 | 107 | 355 | 32 | 17 | 149 | 169 | 94 | 360 | 36 | 21 |
CaM3 | mg kg−1 | 149 | 1101 | 325 | 2457 | 413 | 37 | 149 | 583 | 155 | 1472 | 263 | 45 |
(P/Al)M3 | (%) | 149 | 7.0 | 1.4 | 21 | 0.04 | 52 | 149 | 4.0 | 0.4 | 13 | 0.03 | 64 |
0–5 cm | 5–20 cm | |||||||
---|---|---|---|---|---|---|---|---|
Model 1 | Sill Ratio 2 (%) | Range 3 (m) | R2CV 4 | Model | Sill Ratio (%) | Range (m) | R2CV | |
Young grassland | ||||||||
Soil pHwater | Sph | 65 | 81 | 0.54 | Sph | 74 | 62 | 0.54 |
Total carbon | Sph | 100 | 29 | 0.43 | Sph | 98 | 28 | 0.34 |
PM3 | Sph | 63 | 64 | 0.31 | Sph | 70 | 67 | 0.40 |
AlM3 | Sph | 76 | 40 | 0.32 | Sph | 86 | 40 | 0.38 |
FeM3 | Sph | 58 | 64 | 0.31 | Sph | 69 | 39 | 0.39 |
CaM3 | PN | - | - | - | PN | - | - | - |
(P/Al)M3 | Sph | 69 | 62 | 0.32 | Sph | 71 | 66 | 0.35 |
Old grassland | ||||||||
Soil pHwater | Sph | 41 | 37 | 0.15 | Sph | 42 | 39 | 0.22 |
Total carbon | Sph | 68 | 31 | 0.07 | Sph | 62 | 62 | 0.23 |
PM3 | Sph | 45 | 51 | 0.36 | Sph | 51 | 67 | 0.21 |
AlM3 | PN | - | - | - | Sph | 26 | 32 | 0.10 |
FeM3 | Sph | 69 | 27 | 0.32 | Sph | 43 | 28 | 0.26 |
CaM3 | PN | - | - | - | Sph | 48 | 20 | 0.09 |
(P/Al)M3 | Sph | 31 | 47 | 0.32 | Sph | 52 | 76 | 0.20 |
0–5 cm | 5–20 cm | |||||||
---|---|---|---|---|---|---|---|---|
PM3 | (P/Al)M3 | PM3 | (P/Al)M3 | |||||
Young grassland | ||||||||
Soil pHwater | 0.38 | *** | 0.37 | *** | 0.48 | *** | 0.44 | *** |
Total carbon | −0.67 | *** | −0.64 | *** | −0.67 | *** | −0.63 | *** |
AlM3 | −0.86 | *** | na | −0.87 | *** | na | ||
FeM3 | 0.04 | ns | 0.10 | ns | −0.01 | ns | 0.02 | ns |
CaM3 | −0.29 | ** | -0.28 | ** | −0.13 | ns | −0.13 | ns |
Old grassland | ||||||||
Soil pHwater | 0.43 | *** | 0.46 | *** | 0.26 | ** | 0.28 | ** |
Total carbon | 0.02 | ns | 0.06 | ns | −0.08 | ns | −0.09 | ns |
AlM3 | −0.68 | *** | na | −0.64 | *** | na | ||
FeM3 | 0.26 | ** | 0.23 | ** | 0.39 | *** | 0.41 | *** |
CaM3 | 0.40 | *** | 0.43 | *** | 0.44 | *** | 0.46 | *** |
0–5 cm | 5–20 cm |
---|---|
Young grassland | |
PM3 = −0.135 1 AlM3 − 0.52 2 TC + 9.513 3 soil pHwater +248.6 (R2 = 0.818 ***) | PM3 = −0.123AlM3 − 1.049 TC + 0.773 soil pHwater + 307.5(R2 = 0.789 ***) |
(P/Al)M3 =−2.573 x 10−4AlM3 − 0.003 TC + 0.022 soil pHwater + 0.8 (R2 = 0.893 ***) | (P/Al)M3= −2.156x10−4AlM3 − 0.0025 TC + 0.011 pHwater + 0.96(R2 = 0.868 ***) |
Old grassland | |
PM3 = −0.227 AlM3 + 0.377 4FeM3 − 0.015 5CaM3 + 16.792 soil pHwater + 391.9 (R2 = 0.532 ***) | PM3 = − 0.235 AlM3 +0.23 FeM3 + 0.011 CaM3 − 4.662 soil pHwater+499.97 (R2 = 0.547 ***) |
(P/Al)M3 = −3.2 x10−4 AlM3 + 4.1 x 10−5 FeM3– 1.3 x 10−5 CaM3 + 0.012 soil pHwater + 0.99 (R2 = 0.659 ***) | (P/Al)M3 = −4.3 × 10−4 AlM3 − 3.3 × 10−4 FeM3 + 2 ×10−5 CaM3 − 0.008 soil pHwater + 1.2 (R2 = 0.629 ***) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nze Memiaghe, J.D.; Cambouris, A.N.; Ziadi, N.; Karam, A.; Perron, I. Spatial Variability of Soil Phosphorus Indices under Two Contrasting Grassland Fields in Eastern Canada. Agronomy 2021, 11, 24. https://doi.org/10.3390/agronomy11010024
Nze Memiaghe JD, Cambouris AN, Ziadi N, Karam A, Perron I. Spatial Variability of Soil Phosphorus Indices under Two Contrasting Grassland Fields in Eastern Canada. Agronomy. 2021; 11(1):24. https://doi.org/10.3390/agronomy11010024
Chicago/Turabian StyleNze Memiaghe, Jeff D., Athyna N. Cambouris, Noura Ziadi, Antoine Karam, and Isabelle Perron. 2021. "Spatial Variability of Soil Phosphorus Indices under Two Contrasting Grassland Fields in Eastern Canada" Agronomy 11, no. 1: 24. https://doi.org/10.3390/agronomy11010024
APA StyleNze Memiaghe, J. D., Cambouris, A. N., Ziadi, N., Karam, A., & Perron, I. (2021). Spatial Variability of Soil Phosphorus Indices under Two Contrasting Grassland Fields in Eastern Canada. Agronomy, 11(1), 24. https://doi.org/10.3390/agronomy11010024