Linear Relationship of a Soil Total Water Potential Function and Relative Yield—A Technique to Control Salinity and Water Stress on Golf Courses and Other Irrigated Fields
Abstract
:1. Introduction
- To develop a simple new model describing the effect of total soil water potential Ψt (matric Ψm + osmotic Ψo) (matric + osmotic) on relative crop production.
- To replace the standard models, generally demanding a high number of laboratorial determinations due to a higher number of experimental points, and to be represented by curves not as attractive as the straight line defined only by two experimental points.
2. Theory
3. Materials and Methods
- (1)
- (2)
- (3)
- (4)
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Beltrão, J.; Ben Asher, J.; Magnusson, D. Sweet corn response to combined effects of saline water and nitrogen fertilization. Acta Hortic. 1993, 335, 53–58. [Google Scholar] [CrossRef]
- Gomes, M.P.; Silva, A.A. A curva teórica do pF e a sua importância na economia da água do solo. Garcia Horta 1960, 8, 231–241, (In Portuguese, with an English summary). [Google Scholar]
- Beltrao, J. Le contrôle des doses d’irrigation par le tensiomètre Hommes. Terre Eaux 1982, 12, 103–110. (In French) [Google Scholar]
- Minhas, P.S.; Tiago, B.R.; Ben-Galc, A.; Pereira, L.S. Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues. Agric. Water Manag. 2020, 227, 105832. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper; FAO (Food and Agriculture Organization): Rome, Italy, 1998; Paper 56. [Google Scholar]
- Lamsal, K.; Paudyal, G.N.; Saeed, M. Model for assessing impact of salinity on soil water availability and crop yield. Agric. Water Manag. 1999, 41, 57–70. [Google Scholar] [CrossRef]
- Pourmonammadali, B.; Hosseinfard, S.J.; Salehi, H.; Shirani, H.; Estandiarpour-Boroujani, I. Effect of soil properties, water quality and management practices on pistáchio yield in Rasfsanjan region, Southeast Iran. Agric. Water Manag. 2019, 213, 894–902. [Google Scholar] [CrossRef]
- Ors, S.; Suarez, D.L. Spinach biomass yield and physiological response to interactive salinity and water stress. Agric. Water Manag. 2017, 190, 31–41. [Google Scholar] [CrossRef]
- Rallo, G.; Amel, M.B.; Latrech, B. Effects of saline and deficit irrigation on soil-plant water status and potato crop yield under the semiarid climate of Tunisia. Sustainability 2019, 11, 2706. [Google Scholar]
- Machado, R.M.A.; Serralheiro, R.P. Soil salinity: Effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae 2017, 3, 30. [Google Scholar] [CrossRef]
- Bresler, E.; Hoffman, G.J. Irrigation management for soil salinity control: Theories and tests. Soil Sci. Soc. Am. J. 1986, 50, 1552–1560. [Google Scholar] [CrossRef]
- Pan, T.; Hou, S.; Liu, Y.; Tan, Q. Comparison of three models fitting the soil water retention curves in a degraded alpine meadow region. Sci. Rep. 2019, 9, 18407. [Google Scholar] [CrossRef] [PubMed]
- Ket, P.; Oeurng, C.; Degré, A. Estimating soil water retention curve by inverse modelling from combination of in situ dynamic soil water content and soil potential data. Soil Syst. 2018, 2, 55. [Google Scholar] [CrossRef] [Green Version]
- Bitelli, M. Measuring soil water potential for water management in agriculture: A review. Sustainability 2010, 2, 1226–1251. [Google Scholar] [CrossRef] [Green Version]
- D’Emilio, A.; Aiello, R.; Consoli, S.; Vanella, D.; Iovino, M.O. Artificial neural networks for predicting the water retention curve of sicilian agricultural soils. Water 2018, 10, 1431. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y. Soil-water retention curves derived as a function of soil dry density. GeoHazards 2020, 1, 2. [Google Scholar] [CrossRef] [Green Version]
- Capparelli, G.; Spolverino, G. An empirical approach for modeling hysteresis behavior of pyroclastic soils. Hydrology 2020, 7, 14. [Google Scholar] [CrossRef] [Green Version]
- Ben-Gal1, A.; Karlberg, L.; Jansson, P.; Uri Shani, U. Temporal robustness of linear relationships between production and transpiration. Plant Soil 2003, 251, 211–218. [Google Scholar] [CrossRef]
- Khataar, M.; Mohammadi, M.; Shabani, F. Soil salinity and matric potential interaction on water use, water use efficiency and yield response factor of bean and wheat. Sci. Rep. 2018, 8, 2679. [Google Scholar] [CrossRef]
- Duarte, H.; Souza, E. Soil water potentials and Capsicum annuum L. under salinity. Rev. Bras. Ciênc. Solo 2016, 40, e0150220. [Google Scholar]
- Ben Asher, J. Combined processes of ions and water uptake: A mathematical model and its implications. Isr. Agrisearch 1988, 335, 53–56. [Google Scholar]
- Beltrão, J.; Ben Asher, J. The effect of salinity on corn yield using CERES-Maize model. Irrig. Drain. Syst. 1997, 11, 15–28. [Google Scholar] [CrossRef]
- Beltrão, J.; Brito, J.; Neves, M.A.; Seita, J. Salt removal potential of turfgrasses in golf courses in the Mediterranean basin. WSEAS Trans. Environ. Dev. 2009, 5, 394–403. [Google Scholar]
- Maas, E.V. Crop tolerance to saline sprinkling water. Plant Soil 1985, 89, 273–284. [Google Scholar] [CrossRef]
- Beltrão, J.; Trindade, D.; Correia, P.J. Lettuce yield response to salinity of irrigation water. Acta Hortic. 1997, 449, 623–628. [Google Scholar] [CrossRef] [Green Version]
- Van Genuchten, M.T.; Hoffman, G.C. Analysis of salt tolerance data. In Soil Salinity Under Irrigation—Process and Management. Ecological Studies; Shainberg, I., Shalhevet, J., Eds.; Springer: New York, NY, USA, 1984; pp. 258–271. [Google Scholar]
- Van Genuchten, M.T.; Gupta, S.K. A reassessment of the crop tolerance response function. J. Indian Soc. Soil Sci. 1993, 41, 730–737. [Google Scholar]
- Ben Asher, J.; Beltrão, J.; Aksoy, U.; Anaç, D.; Anaç, S. Modeling the effect of salt removing species in crop rotation. Int. J. Energy Environ. 2012, 3, 350–359. [Google Scholar]
- Van Dam, J.C.; Huygen, J.; Wesselimg, J.G.; Feddes, R.A.; Kabat, P.; Van Walsum, P.E.V.; Groenendijk, P.; Van Diepen, C.A. Theory of SWAP Version 2.0 Simulation of Water Flow, Solute Transport, and Plant Growth in the Soil Water Atmosphere Plant Environment; Report 71 Department of Water Resources Wageningen Agricultural University: Wageningen, The Netherlands; DLO Winand Staring Centre: Wageningen, The Netherlands, 1997; p. 167. [Google Scholar]
- Ben Asher, J.; Beltrao, J.; Aksoy, U.; Anaç, D.; Anaç, S. Controlling and simulating the use of salt removing species. Int. J. Energy Environ. 2012, 3, 360–369. [Google Scholar]
- Yan, C.; Feng, S.; Huo, Z.; Ji, Q. Simulation of saline water irrigation for seed maize in arid China based on SWAP model. Sustainability 2019, 11, 4264. [Google Scholar] [CrossRef] [Green Version]
- Zan, Y.; Man, X.; Shukla, M.K.; Li, S. Modeling soil water-heat dynamic changes in seed-maize fields under film mulching and deficit irrigation conditions. Water 2020, 12, 1330. [Google Scholar]
- Simunek, J.; van Genuchten, M.T.; Sejna, M. The HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media Version 4; CSIRO: Canberra, Australia, 2007. [Google Scholar]
- Ragab, R.; Battilani, A.; Matovic, G.; Chartzoulakis, K. SALTMED model as an integrated management tool for water, crop, soil and N-fertilizer water management strategies and productivity: Field and simulation study. Irrig. Drain. 2015, 64, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Zheng, W.; Shen, C.; Wang, L.P.; Jin, Y. An empirical soil water retention model based on probability laws for pore-size distribution. Vadose Zine J. 2020, 19, e20065. [Google Scholar]
- SSSA. Glossary of Soil Science Terms; Soil Science Society of America: Madison, WI, USA, 1979; p. 37. [Google Scholar]
- Or, D.; Tuller, M. Cavitation during desaturation of porous media under tension. Water Resour. Res. 2002, 38, 19. [Google Scholar] [CrossRef]
- Gomes, M.P. Characteristic soil water retention curves approach by exponentials and by the irrigation point. Pedon 1986, 6, 93–99, (In Portuguese, with an English summary). [Google Scholar]
- Veihmeyer, F.J.; Hendrickson, A.H. The relation of soil moisture to cultivation and plant growth. Proc. Intern. Congr. Soil Sci. 1931, 3, 498–513. [Google Scholar]
- Richards, L.A.; Weaver, L.R. Moisture retention by some irrigated soils as related to soil moisture tension. J. Agric. Res. 1944, 69, 215–235. [Google Scholar]
- Colman, E.A. A laboratory procedure for determining the field capacity of soils. Soil Sci. 1947, 63, 277–283. [Google Scholar] [CrossRef]
- Nachabe, M.H. Refining the definition of field capacity in the literature. J. Irrig. Drain. Eng. 1998, 124, 230–232. [Google Scholar] [CrossRef]
- Kirkham, M.B. Principles of Soil and Plant Water Relations; Elsevier: Amsterdam, The Netherlands; Academic Press: San Diego, CA, USA, 2005; p. 500. [Google Scholar]
- Ramos, T.B.; Horta, A.; Gonçalves, M.C.; Martins, J.C.; Pereira, L.S. Development of ternary diagrams for estimating water retention properties using geostatistical approaches. Geoderma 2014, 230–231, 229–242. [Google Scholar] [CrossRef]
- Slayter, R.O. Plant Water Relationships; Academic Press: New York, NY, USA, 1967. [Google Scholar]
- Childs, S.W.; Hanks, R.J. Model of salinity effects on crop growth. Soil Sci. Soc. Am. J. 1975, 39, 617–622. [Google Scholar] [CrossRef]
- Letey, J.; Dinar, A.; Knapp, K.C. Crop-water production function model for saline irrigation waters. Soil Sci. Soc. Am. J. 1985, 49, 1005–1009. [Google Scholar] [CrossRef]
- Hanks, R.J.; Hill, R.W. Modeling Crop Response to Irrigation, in Relation to Soils, Climate and Salinity; IIIC Volcany Center: Bet Dagan, Israel, 1980. [Google Scholar]
- Beltrão, J.; Silva, A.A.; Ben Asher, J. Modeling the effect of capillary water rise in corn yield in Portugal. Irrig. Drain. Syst. 1996, 10, 179–189. [Google Scholar] [CrossRef]
- Tapias, J.C.; Salgot, M. The influence of peat content 0n water retention in the substrata of some golf course greens: Determination from mathematical models. Agrochimica 2003, 47, 28–39. [Google Scholar]
- de Wit, C.T. Transpiration and Crop Yields. Agricultural Research Reports 64.6; PUDOC: Wageningen, The Netherlands, 1958; p. 88. [Google Scholar]
- Bresler, E. Application of a conceptual model to irrigation water requirement and salt tolerance of crops. Soil Sci. Soc. Am. J. 1987, 51, 788–793. [Google Scholar] [CrossRef]
- Hanks, R.J. Model for predicting plant yield as influenced by water use. Agron. J. 1974, 66, 660–665. [Google Scholar] [CrossRef]
- Shani, U.; Dudley, L.M. Field studies of crop response to drought and salt stress. Soil Sci. Soc. Am. J. 2001, 65, 1522–1528. [Google Scholar] [CrossRef]
- Hanks, R.J.; Nimah, M.N. Integrating plant and water status measurements. Irrig. Sci. 1988, 9, 319–332. [Google Scholar] [CrossRef]
- Beltrão, J.; Correia, P.J.; Costa, M.S.; Gamito, P.; Santos, R.; Seita, J. The influence of nutrients on turfgrass response to treated wastewater application, under several saline conditions and irrigation regimes. Environ. Process. 2014, 1, 105–113. [Google Scholar] [CrossRef] [Green Version]
- Beltrão, J. Irrigation experimental designs. Options Mediterr. 1999, 44, 209–227. [Google Scholar]
- Costa, M.; Beltrao, J.; Dionisio, L.P.; Guerrero, C.; Brito, J.; Matos, L.; Rebelo, L.; Gamito, P. Response of fairway grasses of golf courses to potable water irrigation compared to wastewater application. Acta Hortic. 2002, 573, 357–362. [Google Scholar] [CrossRef]
- Magnusson, D.A.; Ben Asher, J.; de Malach, Y.A. continuous two variable design using the line source concept. Agron. J. 1988, 80, 132–133. [Google Scholar] [CrossRef]
- Or, D.; Hanks, R.J. A single point source for the measurement of irrigation production functions. Irrig. Sci. 1992, 13, 55–64. [Google Scholar] [CrossRef]
- Khaydarova, V.; Beltrão, J. Response of lettuce yield to the combined effects of salts, nitrogen and water. Trans. Environ. Dev. 2006, 2, 512–518. [Google Scholar]
- Christiansen, J. Irrigation by Sprinkling; Bulletin 670; University of California: Berkeley, CA, USA, 1942. [Google Scholar]
- Mahmoudi-Eshkaftaki, M.; Rafiee, M. Optimization of irrigation management. A multi-objective approach based on crop yield, growth, evapotranspiration, water use efficiency and soil salinity. J. Clean. Prod. 2020, 252, 119901. [Google Scholar] [CrossRef]
- Beltrão, J.; Jesus, S.B.; Sousa, P.B.; Carvalho, I.; Trindade, D.; Rodrigues, M.H.; Machado, A. Efficiency of triple emitter source (TES) for irrigation experiments of horticultural crops, Turkey. Acta Hortic. 2002, 573, 183–188. [Google Scholar] [CrossRef] [Green Version]
- Costa, M.; Beltrão, J.; Brito, J.M.; Guerrero, C. Turfgrass plant quality response to different water regimes. WSEAS Trans. Environ. Dev. 2011, 7, 167–176. [Google Scholar]
- Beltrão, J.; Jesus, S.B.; Trindade, D.; Miguel, M.G.; Neves, M.A.; Panagopoulus, T.; Ben Asher, J. Combined effects of salts and nitrogen on the yield function of Lettuce. Acta Hortic. 2002, 573, 363–368. [Google Scholar] [CrossRef]
- Panagopoulos, T.; Jesus, J.; Antunes, M.D.C.; Beltrão, J. Analysis of spatial interpolation for optimising management of a salinized field cultivated with lettuce. Eur. J. Agron. 2006, 24, 1–10. [Google Scholar] [CrossRef]
Turfgrass Field | Symbol | Turfgrass | Water Source |
---|---|---|---|
Salgados golf course | SGW | Cynodon dactylon [L.] Pers | wastewater |
Vale de Lobo golf course | VLW | Festuca rubra, L.; Lolium perene, L.; Poa pratensis, L. | wastewater |
Vale de Lobo golf | VLG | ground water | |
University of Algarve | UAW | Cynodon dactylon [L.] Pers Paspalum dilatatum, Poiret | Wastewater |
University of Algarve | UAP | Potable water |
Turfgrass Field | Turfgrass Field | Texture | pH (H2O) | Depth (m) | ϴfc m3 m−3 | ϴwp m3 m−3 | ECw dS m−1 |
---|---|---|---|---|---|---|---|
Salgados golf course | SGW | Sandy soil | 8.5 | 0.30 | 0.09 | 0.02 | 1.5 |
Vale de Lobo golf course | VLW | Loamy sand soil | 7.2 | 0.30 | 0.16 | 0.07 | 2.1 |
VLG | 7.3 | 0.30 | 0.16 | 0.07 | 1.2 | ||
University of Algarve | UAW | Clay soil | 7.2 | 0.30 | 0.43 | 0.30 | 2.2 |
UAP | 0.3 | 0.30 | 0.43 | 0.30 | 0.3 |
Crop Name | Crop Symbol | Irrigation Method | Soil Texture | Soil pH (H2O) | Soil Depth (m) | ϴfc m3 m−3 | ϴwp m3 m−3 |
---|---|---|---|---|---|---|---|
Corn grain | CgS | Sprinkle | silty clay loam | 7.6 | 0.00–0.30 | 0.26 | 0.11 |
Corn forage | CfS | Sprinkle | clay loam | 8.0 | 0.00–0.30 | 0.31 | 0.17 |
Sunflower | SfS | Sprinkle | clay loam | 7.0 | 0.00–0.30 | 0.27 | 0.16 |
Lettuce | LD | Drip | loamy sand | 6.3 | 0.0–0.20 | 0.05 | 0.03 |
Cabbage | CaS | Sprinkle | loamy sand | 6.3 | 0.00–0.20 | 0.12 | 0.05 |
Cabbage | CaD | Drip | loamy sand | 6.3 | 0.00–0.20 | 0.12 | 0.05 |
Turfgrass Fields | ϴv m3 m−3 | ECw dS m−1 | |Ψm| kPa | |Ψo| kPa | |Ψt| kPa | Log (10|Ψt|) | [log (10 |Ψt|)]2 | [log (10|ΨtYrM|)]2 | f(Ψt) |
---|---|---|---|---|---|---|---|---|---|
Salgados golf course SGW | 0.12 | 2.4 | 10 | 86 | 96 | 2.98 | 8.88 | 8.88 | 0.00 |
0.09 | 2.4 | 33 | 86 | 119 | 3.08 | 9.49 | 8.88 | 0.61 | |
0.06 | 2.4 | 100 | 86 | 186 | 3.27 | 10.69 | 8.88 | 1.81 | |
0.04 | 2.4 | 240 | 86 | 326 | 3.51 | 12.32 | 8.88 | 3.44 | |
0.02 | 2.4 | 1500 | 86 | 1586 | 4.20 | 17.64 | 8.88 | 8.76 | |
Vale de Lobo golf course VLW | 0.19 | 2.1 | 10 | 76 | 86 | 2.93 | 8.58 | 8.58 | 0.00 |
0.16 | 2.1 | 33 | 76 | 109 | 3.04 | 9.24 | 8.58 | 0.66 | |
0.13 | 2.1 | 100 | 76 | 176 | 3.25 | 10.52 | 8.58 | 1.94 | |
0.11 | 2.1 | 240 | 76 | 316 | 3.50 | 12.25 | 8.58 | 3.67 | |
0.07 | 2.1 | 1500 | 76 | 1576 | 4.20 | 17.64 | 8.58 | 9.06 | |
Vale de Lobo golf course VLG | 0.19 | 1.2. | 10 | 43 | 53 | 2.72 | 7.40 | 7.40 | 0.00 |
0.16 | 1.2 | 33 | 43 | 76 | 2.88 | 8.29 | 7.40 | 0.89 | |
0.13 | 1.2 | 100 | 43 | 143 | 3.16 | 9.99 | 7.40 | 2.59 | |
0.11 | 1.2 | 240 | 43 | 283 | 3.45 | 11.90 | 7.40 | 4.53 | |
0.07 | 1.2 | 1500 | 43 | 1543 | 4.19 | 17.56 | 7.40 | 10.16 | |
University of Algarve UAW | 0.45 | 1.6 | 10 | 58 | 68 | 2.83 | 8.01 | 8.01 | 0.00 |
0.43 | 1.6 | 33 | 58 | 91 | 2.96 | 8.76 | 8.01 | 0.75 | |
0.37 | 1.6 | 100 | 58 | 158 | 3.20 | 10.24 | 8.01 | 2.23 | |
0.29 | 1.6 | 240 | 58 | 298 | 3.47 | 12.04 | 8.01 | 4.03 | |
0.30 | 1.6 | 1500 | 58 | 1558 | 4.19 | 17.56 | 8.01 | 9.55 | |
University of Algarve UAP | 0.45 | 0.3 | 10 | 11 | 21 | 2.32 | 5.38 | 5.38 | 0.00 |
0.43 | 0.3 | 33 | 11 | 44 | 2.64 | 6.97 | 5.38 | 0.59 | |
0.37 | 0.3 | 100 | 11 | 111 | 3.05 | 9.30 | 5.38 | 3.92 | |
0.29 | 0.3 | 240 | 11 | 251 | 3.40 | 11.56 | 5.38 | 6.18 | |
0.30 | 0.3 | 1500 | 11 | 1511 | 4.18 | 17.47 | 5.38 | 12.09 |
Irrigated Crop | ϴv m3 m−3 | ECw dS m−1 | Ψm kPa | Ψo kPa | Ψt kPa | Log (10|Ψt|) | [log (10 |Ψt|)]2 | [log (10|ΨtYrM|)]2 | f(Ψt) |
---|---|---|---|---|---|---|---|---|---|
Corn grain CgS | 0.23 | 1.1 | 33 | 40 | 73 | 2.86 | 8.18 | 8.18 | 0.00 |
0.23 | 2.0 | 33 | 72 | 105 | 3.02 | 9.12 | 8.18 | 0.94 | |
0.23 | 3.7 | 33 | 133 | 166 | 3.22 | 10.37 | 8.18 | 2.19 | |
0.23 | 5.3 | 33 | 191 | 224 | 3.35 | 11.22 | 8.18 | 3.04 | |
0.23 | 6.2 | 33 | 223 | 253 | 3.40 | 11.56 | 8.18 | 3.38 | |
Corn forage CfS | 0.29 | 0.5 | 79 | 18 | 97 | 2.99 | 8.94 | 8.94 | 0.00 |
0.27 | 0.5 | 126 | 18 | 144 | 3.16 | 9.99 | 8.94 | 1.05 | |
0.26 | 0.5 | 158 | 18 | 176 | 3.25 | 10.56 | 8.94 | 1.62 | |
0.24 | 0.5 | 251 | 18 | 269 | 3.43 | 11.76 | 8.94 | 2.82 | |
0.23 | 0.5 | 398 | 18 | 416 | 3.62 | 13.10 | 8.94 | 4.16 | |
0.22 | 0.5 | 501 | 18 | 519 | 3.72 | 13.84 | 8.94 | 4.90 | |
Sunflower SfS | 0.27 | 0.6 | 33 | 22 | 55 | 2.74 | 7.51 | 7.51 | 0.00 |
0.24 | 0.6 | 89 | 22 | 111 | 3.05 | 9.30 | 7.51 | 1.79 | |
0.22 | 0.6 | 182 | 22 | 204 | 3.31 | 10.96 | 7.51 | 3.45 | |
0.20 | 0.6 | 363 | 22 | 385 | 3.59 | 12.86 | 7.51 | 5.35 | |
0.18 | 0.6 | 741 | 22 | 763 | 3.88 | 15.07 | 7.51 | 7.56 | |
0.16 | 0.6 | 1586 | 22 | 1607 | 4.21 | 17.69 | 7.51 | 10.18 | |
Lettuce LD | 0.05 | 2.5 | 33 | 89 | 122 | 3.09 | 9.53 | 9.53 | 0.00 |
0.05 | 3.9 | 33 | 140 | 173 | 3.24 | 10.48 | 9.53 | 0.95 | |
0.05 | 6.2 | 33 | 223 | 256 | 3.41 | 11.62 | 9.53 | 2.09 | |
0.05 | 8.3 | 33 | 299 | 332 | 3.52 | 12.40 | 9.53 | 2.87 | |
0.05 | 11.3 | 33 | 407 | 440 | 3.64 | 13.27 | 9.53 | 3.74 | |
Cabbage CaS | 0.11 | 5.5 | 79 | 198 | 277 | 3.44 | 11.85 | 11.85 | 0.00 |
0.107 | 5.5 | 100 | 198 | 298 | 3.47 | 12.07 | 11.85 | 0.27 | |
0.095 | 5.5 | 158 | 198 | 356 | 3.55 | 12.61 | 11.85 | 0.76 | |
0.09 | 5.5 | 200 | 198 | 398 | 3.60 | 12.96 | 11.85 | 1.11 | |
0.08 | 5.5 | 316 | 198 | 514 | 3.71 | 13.77 | 11.85 | 1.92 | |
0..07 | 5.5 | 501 | 198 | 699 | 3.84 | 14.78 | 11.85 | 2.93 | |
Cabbage CaD | 0.05 | 0.89 | 33 | 32 | 65 | 2.81 | 7.91 | 7.91 | 0.00 |
0.05 | 3.64 | 33 | 131 | 164 | 3.21 | 10.34 | 7.91 | 2.43 | |
0.05 | 5.76 | 33 | 207 | 240 | 3.38 | 11.43 | 7.91 | 3.52 | |
0.05 | 7.60 | 33 | 274 | 310 | 3.49 | 12.19 | 7.91 | 4.28 | |
0.05 | 9.64 | 33 | 347 | 380 | 3.58 | 12.81 | 7.91 | 4.90 | |
0.05 | 10.98 | 33 | 395 | 428 | 3.63 | 13.19 | 7.91 | 5.28 |
Turfgrass Field | f(Ψt) | Yr (%) Obs. | Log Yr (%) Obs. | logYr (%) Calcul. | Yr (%) Calcul. |
---|---|---|---|---|---|
Salgados golf course SGW | 0.00 | 100 | 2.00 | 2.024 | 105.682 |
0.61 | 96 | 1.98 | 1.977 | 94.842 | |
1.81 | 78 | 1.89 | 1.895 | 78.524 | |
3.44 | 61 | 1.79 | 1.760 | 57.544 | |
8.76 | 22 | 1.34 | 1.353 | 22.542 | |
Vale de Lobo golf course VLW | 0.00 | 100 | 2.00 | 1.968 | 92.897 |
0.66 | 83 | 1.92 | 1.900 | 79.430 | |
1.94 | 54 | 1.73 | 1.766 | 58.345 | |
3.67 | 30 | 1.48 | 1.586 | 38.548 | |
9.06 | 12 | 1.08 | 1.026 | 10.617 | |
Vale de Lobo golf course VLG | 0.00 | 100 | 2.00 | 1.945 | 88.105 |
0.89 | 76 | 1.89 | 1.886 | 76.913 | |
2.59 | 54 | 1.73 | 1.773 | 59.293 | |
4.53 | 40 | 1.60 | 1.645 | 44.157 | |
10.2 | 20 | 1.30 | 1.269 | 18.578 | |
University of Algarve UAW | 0.00 | 100 | 2.00 | 1.941 | 87.297 |
0.75 | 81 | 1.91 | 1.906 | 80.538 | |
2.23 | 58 | 1.76 | 1.838 | 68.865 | |
4.03 | 56 | 1.75 | 1.755 | 56.885 | |
9.55 | 32 | 1.51 | 1.500 | 31.623 | |
University of Algarve UAP | 0.00 | 100 | 2.00 | 1.978 | 95.060 |
0.59 | 87 | 1.94 | 1.959 | 90.991 | |
3.92 | 73 | 1.86 | 1.852 | 71.121 | |
6.18 | 57 | 1.76 | 1.780 | 60.256 | |
12.1 | 40 | 1.60 | 1.591 | 38.994 |
Irrigated Crop | F(Ψt) | Yr (%) Obs. | Log Yr (%) Obs. | logYr (%) Calcul. | Yr (%) Calcul. |
---|---|---|---|---|---|
Corn grain CgS | 0.00 | 100 | 2.00 | 1.9934 | 98.60 |
0.94 | 90 | 1.95 | 1.9661 | 92.49 | |
2.19 | 87 | 1.94 | 1.9299 | 85.11 | |
3.04 | 84 | 1.92 | 1.9052 | 80.35 | |
3.38 | 76 | 1.88 | 1.8954 | 78.52 | |
Corn forage CfS | 0.00 | 100 | 2.00 | 2.0161 | 103.75 |
1.05 | 95 | 1.98 | 1.9702 | 93.37 | |
1.62 | 90 | 1.95 | 1.9452 | 88.10 | |
2.82 | 82 | 1.91 | 1.8927 | 78.29 | |
4.16 | 66 | 1.82 | 1.8341 | 68.23 | |
4.90 | 63 | 1.80 | 1.8017 | 63.39 | |
Sunflower SfS | 0.00 | 100 | 2.00 | 2.1442 | 139.31 |
1.79 | 86 | 1.93 | 1.9227 | 83.890 | |
3.45 | 65 | 1.81 | 1.7173 | 52.12 | |
5.35 | 46 | 1.66 | 1.4823 | 30.34 | |
7.56 | 15 | 1.18 | 1.2088 | 16.18 | |
10.18 | 6 | 0.78 | 0.8846 | 7.68 | |
Lettuce LD | 0.00 | 100 | 2.00 | 1.9536 | 90.07 |
0.95 | 61 | 1.79 | 1.8357 | 68.55 | |
2.09 | 47 | 1.67 | 1.6941 | 49.43 | |
2.87 | 39 | 1.59 | 1.5973 | 39.54 | |
3.74 | 33 | 1.52 | 1.4893 | 30.83 | |
Cabbage CS | 0.00 | 100 | 2.00 | 2.0294 | 107.00 |
0.27 | 96 | 1.98 | 1.9658 | 92.64 | |
0.76 | 84 | 1.92 | 1.8504 | 70.80 | |
1.11 | 58 | 1.76 | 1.7680 | 58.61 | |
1.92 | 31 | 1.49 | 1.5772 | 37.76 | |
2.93 | 24 | 1.38 | 1.3392 | 21.83 | |
Cabbage CD | 0.00 | 100 | 2.00 | 2.0080 | 101.86 |
2.43 | 61 | 1.79 | 1.8023 | 63.39 | |
3.52 | 54 | 1.73 | 1.7010 | 50.23 | |
4.28 | 47 | 1.67 | 1.6456 | 44.26 | |
4.90 | 44 | 1.64 | 1.5931 | 39.17 | |
5.28 | 31 | 1.49 | 1.5610 | 36.39 |
Turfgrass Field | Regression Equation | R2 |
---|---|---|
Salgados SGW | log Yr = log 105.68 − 0.077 f(Ψt) | 0.994 |
Vale de Lobo VLW | log Yr = log 92.90 − 0.104 f(Ψt) | 0.972 |
Vale de Lobo VLG | log Yr = log 88.11 − 0.066 f(Ψt) | 0.974 |
Un. Algarve UAW | log Yr = log 87.30 − 0.046 f(Ψt) | 0.953 |
Un. Algarve UAP | log Yr = log 95.06 − 0.032 f(Ψt) | 0.986 |
Crop | Regression Equation | R2 |
---|---|---|
Corn grain CgS | log Yr = log 98.60 − 0.02090 f(Ψt) | 0.888 |
Corn forage CfS | log Yr = log 103.75 − 0.04376 f(Ψt) | 0.925 |
Sunflower SfS | log Yr = log 139.31 − 0.124 f(Ψt) | 0.937 |
Lettuce LD | log Yr = log 90.07 − 0.1244 f(Ψt) | 0.959 |
Cabbage CS | log Yr = log 107.00 − 0.0236 f(Ψt) | 0.959 |
Cabbage CD | log Yr = log 101.86 − 0.08468 f(Ψt) | 0.942 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beltrao, J.; Bekmirzaev, G.; Ben Asher, J.; Costa, M.; Panagopoulos, T. Linear Relationship of a Soil Total Water Potential Function and Relative Yield—A Technique to Control Salinity and Water Stress on Golf Courses and Other Irrigated Fields. Agronomy 2021, 11, 1916. https://doi.org/10.3390/agronomy11101916
Beltrao J, Bekmirzaev G, Ben Asher J, Costa M, Panagopoulos T. Linear Relationship of a Soil Total Water Potential Function and Relative Yield—A Technique to Control Salinity and Water Stress on Golf Courses and Other Irrigated Fields. Agronomy. 2021; 11(10):1916. https://doi.org/10.3390/agronomy11101916
Chicago/Turabian StyleBeltrao, Jose, Gulom Bekmirzaev, Jiftah Ben Asher, Manuel Costa, and Thomas Panagopoulos. 2021. "Linear Relationship of a Soil Total Water Potential Function and Relative Yield—A Technique to Control Salinity and Water Stress on Golf Courses and Other Irrigated Fields" Agronomy 11, no. 10: 1916. https://doi.org/10.3390/agronomy11101916
APA StyleBeltrao, J., Bekmirzaev, G., Ben Asher, J., Costa, M., & Panagopoulos, T. (2021). Linear Relationship of a Soil Total Water Potential Function and Relative Yield—A Technique to Control Salinity and Water Stress on Golf Courses and Other Irrigated Fields. Agronomy, 11(10), 1916. https://doi.org/10.3390/agronomy11101916