Changes of Soil Organic Carbon after Wildfire in a Boreal Forest, Northeast CHINA
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Soil Sampling
2.3. Soil Analysis
2.3.1. Water Stable Aggregates (WSA) Associated SOC (WSA-SOC)
2.3.2. Density Fractionation of SOC
2.3.3. Chemical and SOC Sample Analysis
2.4. Statistical Analysis
3. Results
3.1. The Soil Properties
3.2. Soil Total Organic Carbon (TOC) Concentration of Mineral Horizons
3.3. Water Stable Aggregates (WSA) and Associated SOC (WSA-SOC) Concentrations and Stocks
3.4. The Heavy Fraction Soil Organic Carbon (HF-SOC) Concentration and Stocks
4. Discussion
4.1. Variability of Basic Soil Properties after Wildfire
4.2. Variability of TOC after Wildfire
4.3. Variability of Water Stable Soil Aggregates (WSA) and Associated SOC (WSA-SOC) after Wildfire
4.4. Variability of Soil Heavy Fractions (HF) and Associated SOC (HF-SOC) after Wildfire
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Christensen, S. Decomposability of recalcitrant soil carbon assessed by denitrification. FEMS Microbiol. Lett. 1992, 86, 267–274. [Google Scholar] [CrossRef]
- Hassink, J.; Whitmore, A.P.; Kubát, J. Size and density fractionation of soil organic matter and the physical capacity of soils to protect organic matter. Eur. J. Agron. 1997, 7, 189–199. [Google Scholar] [CrossRef]
- Amundson, R. The carbon budget in soils. Annu. Rev. Earth Planet. Sci. 2001, 29, 535–562. [Google Scholar] [CrossRef]
- Pregitzer, K.S.; Euskirchen, E.S. Carbon cycling and storage in world forests: Biome patterns related to forest age. Glob. Chang. Biol. 2004, 10, 2052–2077. [Google Scholar] [CrossRef]
- Ziegler, S.E.; Sharon, A.; Billings, S.A.; Chad, S.; Lane, C.S.; Li, J.W.; Fogel, M.L. Warming alters routing of labile and slower-turnover carbon through distinct microbial groups in boreal forest organic soils. Soil Biol. Biochem. 2013, 60, 23–32. [Google Scholar] [CrossRef]
- Rein, G. Smouldering fires and natural fuels. In Fire Phenomena in the Earth System—An Interdisciplinary Approach to Fire Science; Belcher, C., Ed.; Wiley and Sons: Hoboken, NJ, USA, 2013; Chapter 2; Available online: http://onlinelibrary.wiley.com/doi/10.1002/9781118529539.ch2 (accessed on 7 September 2021).
- Rein, G.; Huang, X. Smouldering wildfires in peatlands, forests and the arctic: Challenges and perspectives. Curr. Opin. Environ. Sci. Health 2021, 24, 100296. [Google Scholar] [CrossRef]
- Bouchard, M.; Pothier, D. Long-term influence of fire and harvesting on boreal forest age structure and forest composition in eastern Québec. For. Ecol. Manag. 2011, 261, 811–820. [Google Scholar] [CrossRef]
- Chen, H.Y.H.; Vasiliauskas, S.; Kayahara, G.J.; Ilisson, T. Wildfire promotes broadleaves and species mixture in boreal forest. For. Ecol. Manag. 2009, 257, 343–350. [Google Scholar] [CrossRef]
- Wang, X.; He, H.S.; Li, X. The long-term effects of fire suppression and reforestation on a forest landscape in Northeastern China after a catastrophic wildfire. Landsc. Urban Plan. 2007, 79, 84–95. [Google Scholar] [CrossRef]
- Kawahigashi, H.; Kasuga, S.; Ando, T.; Kanamori, H.; Wu, J.; Yonemaru, J.I.; Sazuka, T.; Matsumoto, T. Positional cloning of ds1, the target leaf spot resistance gene against Bipolaris sorghicola in sorghum. Theor. Appl. Genet. 2011, 123, 131–142. [Google Scholar] [CrossRef]
- Cai, W.; Yang, J.; Liu, Z.; Hu, Y.; Weisberg, P.J. Post-fire tree recruitment of a boreal larch forest in Northeast China. For. Ecol. Manag. 2013, 307, 20–29. [Google Scholar] [CrossRef]
- Certini, G. Effects of fire on properties of forest soils: A review. Oecologia 2005, 143, 1–10. [Google Scholar] [CrossRef]
- Chen, F.S.; Zeng, D.H.; Fahey, T.J.; Liao, P.F. Organic carbon in soil physical fractions under different-aged plantations of Mongolian pine in semi-arid region of Northeast China. Appl. Soil Ecol. 2010, 44, 42–48. [Google Scholar] [CrossRef]
- Magnani, F.; Mencuccini, M.; Borghetti, M.; Berbigier, P.; Berninger, F.; Delzon, S.; Grelle, A.; Hari, P.; Jarvis, P.G.; Kolari, P.; et al. The human footprint in the carbon cycle of temperate and boreal forests. Nature 2007, 447, 849–851. [Google Scholar] [CrossRef]
- Amiro, B.D.; Orchansky, A.L.; Barr, A.G.; Black, T.A.; Chambers, S.D.; Chapin Lii, F.S.; Goulden, M.L.; Litvak, M.; Liu, H.P.; McCaughey, J.H.; et al. The effect of post-fire stand age on the boreal forest energy balance. Agric. For. Meteorol. 2006, 140, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.Y.H.; Shrestha, B.M. Stand age, fire and clearcutting affect soil organic carbon and aggregation of mineral soils in boreal forests. Soil Biol. Biochem. 2012, 50, 149–157. [Google Scholar] [CrossRef]
- Elliott, E.T. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. Soil Sci. Soc. Am. J. 1986, 50, 627–633. [Google Scholar] [CrossRef]
- Jastrow, J.D. Soil aggregate formation and the accrual of particulate and mineral-associated organic matter. Soil Biol. Biochem. 1996, 28, 665–676. [Google Scholar] [CrossRef]
- Vance, E.D. Agricultural site productivity: Principles derived from long-term experiments and their implications for intensively managed forests. For. Ecol. Manag. 2000, 138, 369–396. [Google Scholar] [CrossRef]
- Shrestha, B.M.; Singh, B.R.; Sitaula, B.K.; Lal, R.; Bajracharya, R.M. Soil aggregate- and particle-associated organic carbon under different land uses in Nepal. Soil Sci. Soc. Am. J. 2007, 71, 1194–1203. [Google Scholar] [CrossRef]
- Burri, K.; Graf, F.; Böll, A. Revegetation measures improve soil aggregate stability: A case study of a landslide area in Central Switzerland. For. Snow Landsc. Res. 2009, 82, 45–60. [Google Scholar]
- Wilson, G.W.T.; Rice, C.W.; Rillig, M.C.; Springer, A.; Hartnett, D.C. Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: Results from long-term field experiments. Ecol. Lett. 2009, 12, 452–461. [Google Scholar] [CrossRef]
- Mataix-Solera, J.; Cerdà, A.; Arcenegui, V.; Jordán, A.; Zavala, L.M. Fire effects on soil aggregation: A review. Earth-Sci. Rev. 2011, 109, 44–60. [Google Scholar] [CrossRef]
- Varela, M.E.; Benito, E.; Keizer, J.J. Effects of wildfire and laboratory heating on soil aggregate stability of pine forests in Galicia: The role of lithology, soil organic matter content and water repellency. Catena 2010, 83, 127–134. [Google Scholar] [CrossRef]
- Cambardella, C.A.; Elliott, E.T. Carbon and nitrogen distribution in aggregates from cultivated and native grassland soils. Soil Sci. Soc. Am. J. 1993, 57, 1071–1076. [Google Scholar] [CrossRef] [Green Version]
- Nascente, A.S.; Li, Y.C.; Crusciol, C.A.C. Cover crops and no-till effects on physical fractions of soil organic matter. Soil Tillage Res. 2013, 130, 52–57. [Google Scholar] [CrossRef]
- Hassink, J. Density fractions of soil macroorganic matter and microbial biomass as predictors of C and N mineralization. Soil Biol. Biochem. 1995, 27, 1099–1108. [Google Scholar] [CrossRef]
- Wander, M.M.; Traina, S.J. Organic matter fractions from organically and conventionally managed soils: I. Carbon and nitrogen distribution. Soil Sci. Soc. Am. J. 1996, 60, 1081–1087. [Google Scholar] [CrossRef]
- Golchin, A.; Clarke, P.; Oades, J.M.; Skjemstad, J.O. The effects of cultivation on the composition of organic matter and structural stability of soils. Aust. J. Soil Res. 1995, 33, 975–993. [Google Scholar] [CrossRef]
- Barrios, E.; Buresh, R.J.; Sprent, J.I. Nitrogen mineralization in density fractions of soil organic matter from maize and legume cropping systems. Soil Biol. Biochem. 1996, 28, 1459–1465. [Google Scholar] [CrossRef]
- Alvarez, R.; Alvarez, C.R. Soil organic matter pools and their associations with carbon mineralization kinetics. Soil Sci. Soc. Am. J. 2000, 64, 184–189. [Google Scholar] [CrossRef]
- Yu, C.L.; Zhang, H.; Yang, X.Q. Analysis of characteristics of forest fires in the Great Xing’an mountains, China. Heilongjiang Meteorol. 2007, 4, 28–29, 34. [Google Scholar]
- Chinese Soil Taxonomy Research Group, Institute of Soil Science Chinese Academy of Sciences, and Cooperative Research Group on Chinese Soil Taxonomy. Keys to Chinese Soil Taxonomy; University of Science and Technology of China Press: Hefei, China, 2001. [Google Scholar]
- IUSS Working Group WRB. World reference base for soil resources 2014, update 2015 international soil classification system for naming soils and creating legends for soil maps. In World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; NRCS U.S. Gov. Print. Office: Washington, DC, USA, 2014.
- Yu, W.Y.; Zhou, G.S.; Zhao, X.L.; Xie, Y.B.; Jia, Q.Y. Forest fire characteristics and impact factors in the Great Xing’an mountains, China. J. Meteorol. Environ. 2009, 4, 1–5. [Google Scholar]
- Meira Castro, A.C.; Nunes, A.; Sousa, A.; Lourenço, L. Mapping the causes of forest fires in portugal by clustering analysis. Geosciences 2020, 10, 53. [Google Scholar] [CrossRef] [Green Version]
- Veraverbeke, S.; Lhermitte, S.; Verstraeten, W.W.; Goossens, R.A. A time-integrated MODIS burn severity assessment using the multi-temporal differenced normalized burn ratio (dNBRMT). Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 52–58. [Google Scholar] [CrossRef] [Green Version]
- Schoeneberger, P.J.; Wysocki, D.A.; Benham, E.C. Soil-survey-staff. In Field Book for Describing and Sampling Soils Version 3.0; Natural Soil Survey Center: Lincoln, NE, USA, 2012. [Google Scholar]
- Yoder, R.E. A direct method of aggregate analysis of soils and a study of the physical nature of erosion losses. Agron. J. 1936, 28, 337–351. [Google Scholar] [CrossRef]
- Gregorich, E.G.; Ellert, B.H. Light fraction and macro-organic matter in mineral soils. In Soil Sampling and Methods of Analysis Boca Raton; Carter, M.R., Ed.; Lewis Publisher: Boca Raton, FL, USA, 1993; pp. 397–408. [Google Scholar]
- Wang, J.; Song, C.; Wang, X.; Song, Y. Changes in labile soil organic carbon fractions in wetland ecosystems along a latitudinal gradient in Northeast China. Catena 2012, 96, 83–89. [Google Scholar] [CrossRef]
- DeBano, L.F.; Raymond, M.R.; Conrad, C.E. Soil Heating in Chaparral Fires Effects on Soil Properties, Plant Nutrients, Erosion, and Runoff; Pacific Southwest Forest and Range Experiment Station: Berkeley, CA, USA, 1979; p. 21. [Google Scholar]
- Simard, D.G.; Fyles, J.W.; Paré, D.; Nguyen, T. Impacts of clearcut harvesting and wildfire on soil nutrient status in the Quebec boreal forest. Can. J. Soil Sci. 2001, 81, 229–237. [Google Scholar] [CrossRef] [Green Version]
- Laganière, J.; Angers, A.D.; Paré, D. Carbon accumulation in agricultural soils after afforestation: A meta-analysis. Glob. Chang. Biol. 2010, 16, 439–453. [Google Scholar] [CrossRef]
- Finér, L.; Messier, C.; DeGrandpré, L. Fine-root dynamics in mixed boreal conifer-broad-leafed forest stands at different successional stages after fire. Can. J. For. Res. 1997, 27, 304–314. [Google Scholar] [CrossRef]
- Yuan, Z.Y.; Chen, H.Y.H. Fine root biomass, production, turnover rates, and nutrient contents in boreal forest ecosystems in relation to species, climate, fertility, and stand age: Literature review and meta-analyses. Crit. Rev. Plant Sci. 2010, 29, 204–221. [Google Scholar] [CrossRef]
- Ruess, R.W.; Van Cleve, K.; Yarie, J.; Viereck, L.A. Contributions of fine root production and turnover to the carbon and nitrogen cycling in taiga forests of the Alaskan interior. Can. J. For. Res. 1996, 26, 1326–1336. [Google Scholar] [CrossRef]
- Ruess, R.W.; Hendrick, R.L.; Burton, A.J.; Pregitzer, K.S.; Sveinbjornsson, B.; Allen, M.F.; Maurer, G.E. Coupling fine root dynamics with ecosystem carbon cycling in black spruce forests of interior Alaska. Ecol. Monogr. 2003, 73, 643–662. [Google Scholar] [CrossRef]
- McCarty, J.L.; Smith, T.E.L.; Turetsky, M.R. Arctic fires re-emerging. Nat. Geosci. 2020, 13, 658–660. [Google Scholar] [CrossRef]
- Scholten, R.C.; Jandt, R.; Miller, E.A.; Rogers, B.M.; Veraverbeke, S. Overwintering fires in boreal forests. Nature 2021, 593, 399–404. [Google Scholar] [CrossRef]
- Giovannini, G.; Lucchesi, S.; Giachetti, M. Beneficial and detrimental effects of heating on soil quality. In Fire in Ecosystem Dynamics; Goldammer, M.J.G., Jenkins, M.J., Eds.; SPB Academic Publishing: The Hague, The Netherlands, 1990; pp. 95–102. [Google Scholar]
- Liao, J.D.; Boutton, T.W. Soil microbial biomass response to woody plant invasion of grassland. Soil Biol. Biochem. 2008, 40, 1207–1216. [Google Scholar] [CrossRef] [Green Version]
- Abiven, S.; Menasseri, S.; Chenu, C. The effects of organic inputs over time on soil aggregate stability—A literature analysis. Soil Biol. Biochem. 2009, 41, 1–12. [Google Scholar] [CrossRef]
- Christensen, B.T. Organic Matter in Soil: Structure, Function and Turnover, Dias Report, Tjele; Danish Institute of Agricultural Sciences, Research Center Foulum: Tjele, Denmark, 2000; p. 95. [Google Scholar]
- Sohi, S.P.; Mahieu, N.; Arah, J.R.M.; Powlson, D.S.; Madari, B.; Gaunt, J.L. A procedure for isolating soil organic matter fractions suitable for modeling. Soil Sci. Soc. Am. J. 2001, 65, 1121–1128. [Google Scholar] [CrossRef]
- Ashagrie, Y.; Zech, W.; Guggenberger, G.; Mamo, T. Soil aggregation, and total and particulate organic matter following conversion of native forests to continuous cultivation in Ethiopia. Soil Tillage Res. 2007, 94, 101–108. [Google Scholar] [CrossRef]
- Roscoe, R.; Buurman, P. Tillage effects on soi1 organic matter in density fiactions of a Cerrado oxisol. Soil Tillage Res. 2003, 70, 107–109. [Google Scholar] [CrossRef]
- Roscoe, R.; Buurman, P.; Velthorst, E.J.; Vasconcellos, C.A. Soil organic matter dynamics in density and particle-size fractions as revealed by the 13C/12C isotopic ratio in a Cerrado’s oxisol. Geoderma 2001, 104, 185–202. [Google Scholar] [CrossRef]
- de Moraes Sa, J.C.; Lal, R. Stratification ratio of soil organic matter pools as an indicator of carbon sequestration in a tillage chronosequence on a Brazilian Oxisol. Soil Tillage Res. 2009, 103, 46–56. [Google Scholar]
Sample Type | Locations | Predominant Tree Type | Predominant Shrub Type | Canopy Density | Shrub Height (m) | Shrub Coverage (%) | Herb Height (cm) | Herb Coverage (%) | Altitude (m) | Successional Types | Soil Taxonomy Reference | Year of Forest Fire |
---|---|---|---|---|---|---|---|---|---|---|---|---|
25-year-old | Xi lin ji Forestry Bureau | Betula platyphylla. | Ledum spp. | 0.7 | 2 | 35 | 50 | 80 | 565 | Species-dominance relay | Cambisols | 1987 |
17-year-old | Han jia yuan ForestryBureau | Larix gmelinii. | Carex sp. | 0.2 | 0.6 | 80 | 60 | 10 | 286 | Self-replacement | Cambisols | 1995 |
3-month-old | Xi lin ji Forestry Bureau | Larix gmelinii. | Ledum spp. | 0.4 | 0.3 | 70 | 40 | 20 | 550 | Undifferentiated | Cambisols | 2012 |
Control | Ta he Forestry Bureau | Larix gmelinii. | Rhododendron dauricum | 0.5 | 0.8 | 8 | 20 | 55 | 419 | Cambisols | No fire |
Sample Type | Soil Horizon | Depth (Amiro et al.) | Soil Color | Soil Texture | Soil Structure | Roots | Bulk Density (g cm−3) | Gravel (%) | pH (H2O) | pH (KCl) | T-N (g kg−1) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Dry | Wet | |||||||||||
Control | Ah | 0–10 | 10YR 7/4 | 10YR 4/6 | Loam | Small granular | Few medium roots, moderate fine roots | 0.85 | 0 | 4.50 ± 0.06 | 3.48 ± 0.04 | 2.62 ± 0.43 |
Bw | 10–61 | 2.5Y 8/4 | 10 YR 5/4 | Clay loam | Small blocky | Very few medium and few fine roots | 1.48 | 45 | 4.50 ± 0.04 | 3.56 ± 0.02 | 1.37 ± 0.2 | |
BC | 61–104 | 2.5Y 8/4 | 10YR 5/6 | Sandy loam | Medium blocky | Very few fine roots | 1.61 | 70 | 5.48 ± 0.12 | 3.64 ± 0.02 | 1.24 ± 0.12 | |
25-year-old | Ah | 0–10 | 10YR 8/1 | 10YR 4/2 | Loam | Small granular | Very few medium roots and few fine roots | 1.20 | 0 | 4.68 ± 0.07 | 3.46 ± 0.04 | 2.02 ± 0.34 |
Bts1 | 10–38 | 7.5YR 8/3 | 10YR 5/4 | Clay loam | Medium platy | Few fine roots | 1.55 | 0 | 4.92 ± 0.26 | 3.68 ± 0.07 | 1.25 ± 0.12 | |
Bts2 | 38–82 | 10YR 6/3 | 10YR 5/3 | Clay loam | Small blocky | Few fine roots | 1.47 | 10 | 5.40 ± 0.18 | 3.90 ± 0.02 | 1.21 ± 0.1 | |
BC | 82–100 | 10YR 6/3 | 10YR 3/3 | Sandy loam | Medium blocky | A few of fine roots | 1.60 | 23 | 5.58 ± 0.04 | 4.18 ± 0.02 | 1.06 ± 0.12 | |
17-year-old | Ah | 0–17 | 10YR 8/2 | 10YR 5/4 | Silt loam | Small blocky | Moderately medium, fine and very fine | 1.03 | 8 | 5.50 ± 0.15 | 4.30 ± 0.03 | 1.37 ± 0.21 |
Bw | 17–42 | 7.5YR 8/1 | 10YR 5/4 | Silt loam | Small blocky | none | 1.00 | 25 | 5.86 ± 0.04 | 4.08 ± 0.06 | 1.04 ± 0.16 | |
BC | 42–67 | 10YR 8/2 | 10YR 6/4 | Silt loam | Medium blocky | none | 1.63 | 15 | 5.90 ± 0.02 | 4.00 ± 0.1 | 0.93 ± 0.19 | |
3-month-old | Ah | 0–20 | 10YR 5/3 | 10YR 2/3 | Clay loam | Small single grain | Few medium roots and many fine roots | 1.31 | 5 | 4.96 ± 0.1 | 4.00 ± 0.02 | 1.50 ± 0.37 |
Bw | 20–62 | 10YR 7/4 | 10YR 4/6 | Clay loam | Big blocky | Few fine roots | 1.53 | 6 | 6.00 ± 0.08 | 4.38 ± 0.08 | 1.09 ± 0.15 | |
BC | 62–121 | 7.5YR 5/6 | 5YR 3/3 | Clay loam | Small blocky | None | 1.63 | 90 | 6.18 ± 0.11 | 4.68 ± 0.05 | 1.16 ± 0.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, C.-L.; Sun, Z.-X.; Shao, S.; Wang, Q.-B.; Libohova, Z.; Owens, P.R. Changes of Soil Organic Carbon after Wildfire in a Boreal Forest, Northeast CHINA. Agronomy 2021, 11, 1925. https://doi.org/10.3390/agronomy11101925
Han C-L, Sun Z-X, Shao S, Wang Q-B, Libohova Z, Owens PR. Changes of Soil Organic Carbon after Wildfire in a Boreal Forest, Northeast CHINA. Agronomy. 2021; 11(10):1925. https://doi.org/10.3390/agronomy11101925
Chicago/Turabian StyleHan, Chun-Lan, Zhong-Xiu Sun, Shuai Shao, Qiu-Bing Wang, Zamir Libohova, and Phillip Ray Owens. 2021. "Changes of Soil Organic Carbon after Wildfire in a Boreal Forest, Northeast CHINA" Agronomy 11, no. 10: 1925. https://doi.org/10.3390/agronomy11101925
APA StyleHan, C. -L., Sun, Z. -X., Shao, S., Wang, Q. -B., Libohova, Z., & Owens, P. R. (2021). Changes of Soil Organic Carbon after Wildfire in a Boreal Forest, Northeast CHINA. Agronomy, 11(10), 1925. https://doi.org/10.3390/agronomy11101925