Proposal for Integrated Management of Verticillium Wilt Disease in Avocado Cultivar Hass Crops
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Plant Material for Evaluation under Net-House Conditions
2.3. Microorganism Isolation and Identification
2.4. In Vitro Assays
2.5. Net-House Tests
2.5.1. Pathogenicity Tests on Avocado cv. Hass Plants
2.5.2. Effect of Fungicides, Solarization, and Inoculation with Beneficial Microorganism (Trichoderma sp. and R. fasciculatum) on V. dahliae inoculum)
2.6. Assays under Field Conditions
2.7. Experimental Design and Statistical Analyses
3. Results
3.1. In Vitro Assays
3.2. Net-House Assays
3.3. Assays under Field Conditions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klosterman, S.J.; Atallah, Z.K.; Vallad, G.E.; Subbarao, K.V. Diversity, pathogenicity, and management of Verticillium species. Annu. Rev. Phytopathol. 2009, 47, 39–62. [Google Scholar] [CrossRef] [Green Version]
- Pegg, G.; Brady, B. Verticillium Wilts; CABI Publishing: New York, NY, USA, 2002. [Google Scholar]
- Bhat, R.G.; Subbarao, K.V. Host Range specificity in Verticillium dahliae. Phytopathology 1999, 89, 1218–1225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inderbitzin, P.; Davis, R.M.; Bostock, R.M.; Subbarao, K.V. Identification and differentiation of Verticillium species and V. longisporum lineages by simplex and multiplex PCR assays. PLoS ONE 2013, 8, e65990. [Google Scholar] [CrossRef] [Green Version]
- Carroll, C.L.; Carter, C.A.; Goodhue, R.E.; Lawell, C.-Y.C.L.; Subbarao, K.V. A Review of control options and externalities for Verticillium wilts. Phytopathology 2018, 108, 160–171. [Google Scholar] [CrossRef] [Green Version]
- Papasotiriou, F.G.; Varypatakis, K.G.; Christofi, N.; Tjamos, S.E.; Paplomatas, E.J. Olive mill wastes: A source of resistance for plants against Verticillium dahliae and a reservoir of biocontrol agents. Biol. Control 2013, 67, 51–60. [Google Scholar] [CrossRef]
- Gómez-Gálvez, F.-J.; Rodríguez-Jurado, D. Potential wfficacy of soil-applied disinfectant treatments against Verticillium wilt of olive. Crop Prot. 2018, 106, 190–200. [Google Scholar] [CrossRef]
- Pegg, G.F. The impact of Verticillium diseases in agriculture. Phytopathol. Mediterr. 1984, 23, 176–192. [Google Scholar]
- Zentmyer, G. Avocado diseases. Trop. Pest Manag. 1984, 30, 677–682. [Google Scholar] [CrossRef]
- Morello, P.; Díez, C.M.; Codes, M.; Rallo, L.; Barranco, D.; Trapero, A.; Moral, J. Sanitation of olive plants infected by Verticillium dahliae using heat treatments. Plant Pathol. 2016, 65, 412–421. [Google Scholar] [CrossRef] [Green Version]
- Zentmyer, G. Verticillium wilt of avocado. Phytopathology 1949, 39, 677–682. [Google Scholar]
- Ramírez-Gil, J.G.; Morales, J.G. Polyphasic Identification of preharvest pathologies and disorders in avocado cv. Hass. Agron. Colomb. 2019, 37, 213–227. [Google Scholar] [CrossRef]
- Bubici, G.; Amenduni, M.; Colella, C.; D’Amico, M.; Cirulli, M. Efficacy of acibenzolar-s-methyl and two strobilurins, azoxystrobin and trifloxystrobin, for the control of corky root of tomato and Verticillium wilt of wggplant. Crop Prot. 2006, 8, 814–820. [Google Scholar] [CrossRef]
- Ramírez-Gil, J.G.; Morales-Osorio, J.G. Integrated proposal for management of root rot caused by Phytophthora cinnamomi in avocado vv. Hass crops. Crop Prot. 2020, 137, 105271. [Google Scholar] [CrossRef]
- Haberman, A.; Tsror (Lahkim), L.; Lazare, S.; Hazanovsky, M.; Lebiush, S.; Zipori, I.; Busatn, A.; Simenski, E.; Dag, A. Management of Verticillium wilt of avocado using tolerant rootstocks. Plants 2020, 9, 531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramírez-Gil, J.G.; Henao-Rojas, J.C.; Morales-Osorio, J.G. Mitigation of the adverse wffects of the El Niño (El Niño, La Niña) Southern Oscillation (ENSO) phenomenon and the most important diseases in avocado cv. Hass crops. Plants 2020, 9, 790. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Gil, J. Avocado wilt complex disease, implications and management in colombia. Rev. Fac. Nac. Agron. Medellín 2018, 71, 8525–8541. [Google Scholar] [CrossRef]
- Ramírez-Gil, J.G.; Peterson, A.T. Current and potential distributions of most important diseases affecting Hass avocado in Antioquia Colombia. J. Plant Prot. Res. 2019, 59, 214–228. [Google Scholar] [CrossRef]
- Plassard, C.; Becquer, A.; Garcia, K. Phosphorus transport in mycorrhiza: How far are we? Trends Plant Sci. 2019, 24, 794–801. [Google Scholar] [CrossRef]
- Sieverding, E.; da Silva, G.A.; Berndt, R.; Oehl, F. Rhizoglomus, a New Genus of the Glomeraceae. Available online: https://www.ingentaconnect.com/content/mtax/mt/2015/00000129/00000002/art00017 (accessed on 19 November 2018).
- Deketelaere, S.; Tyvaert, L.; França, S.C.; Höfte, M. Desirable traits of a good biocontrol agent against Verticillium wilt. Front. Microbiol. 2017, 8, 1186. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Feng, H.; Wang, L.; Li, Z.; Shi, Y.; Zhao, L.; Feng, Z.; Zhu, H. Potential of endophytic fungi isolated from cotton roots for biological control against Verticillium wilt disease. PLoS ONE 2017, 12, e0170557. [Google Scholar] [CrossRef] [Green Version]
- Larkin, R.P.; Honeycutt, C.W.; Olanya, O.M. Management of Verticillium wilt of potato with sisease-suppressive green, manures and as affected by previous cropping history. Plant Dis. 2011, 95, 568–576. [Google Scholar] [CrossRef] [Green Version]
- Markakis, E.A.; Fountoulakis, M.S.; Daskalakis, G.C.; Kokkinis, M.; Ligoxigakis, E.K. The Suppressive effect of compost amendments on Fusarium Oxysporum f.Sp. Radicis-Cucumerinum in cucumber and Verticillium dahliae in eggplant. Crop Prot. 2016, 79, 70–79. [Google Scholar] [CrossRef]
- De Corato, U.; Patruno, L.; Avella, N.; Lacolla, G.; Cucci, G. Composts from green sources show an increased suppressiveness to soilborne plant pathogenic fungi: Relationships between physicochemical properties, disease suppression, and the microbiome. Crop Prot. 2019, 124, 104870. [Google Scholar] [CrossRef]
- De Corato, U.; Salimbeni, R.; de Pretis, A.; Patruno, L.; Avella, N.; Lacolla, G.; Cucci, G. Microbiota from ‘next-generation green compost’ improves suppressiveness of composted municipal-solid-waste to soil-borne plant pathogens. Biol. Control 2018, 124, 1–17. [Google Scholar] [CrossRef]
- Rekanovic, E.; Potocnik, I.; Milijasevic-Marcic, S.; Stepanovic, M.; Todorovic, B.; Mihajlovic, M. Efficacy of seaweed concentrate from Ecklonia maxima (Osbeck) and conventional fungicides in the control of Verticillium wilt of pepper. Pestic. Fitomed. 2010, 25, 319–324. [Google Scholar] [CrossRef]
- Trade Map—Trade Statistics for International Business Development. Available online: https://www.trademap.org/Index.aspx (accessed on 31 August 2021).
- Aguacate | Hass | Corpohass |. Available online: https://www.corpohass.com/ (accessed on 31 August 2021).
- FAO FAOSTAT. 2021. Available online: http://www.fao.org/faostat/es/#home (accessed on 9 January 2021).
- Tamayo, P. Enfermedades del aguacate. Politecnica 2007, 4, 51–70. [Google Scholar]
- Rekanovic, E.; Milijasevic, S.; Todorovic, B.; Potocnik, I. Possibilities of biological and chemical control of Verticillium wilt in pepper. Phytoparasitica 2007, 35, 436. [Google Scholar] [CrossRef]
- Thorat, S.; More, B.; Konde, B. Chemical control of Verticillium wilt of eggplant (Solanum melongena L.) by soil and plant application. Hind. Antibiot. Bull. 1976, 18, 117–118. [Google Scholar]
- Madden, L.V.; Hughes, G.; van den Bosch, F. The Study of Plant Disease Epidemics; American Phytopathological Society (APS Press): St. Paul, MN, USA, 2007; ISBN 978-0-89054-505-8. [Google Scholar]
- Ramírez-Gil, J.G.; Morales-Osorio, J.G.; Ramírez-Gil, J.G.; Morales-Osorio, J.G. Development and validation of severity scales of avocado wilt complex caused by Phytophthora cinnamomi, Verticillium dahliae and hypoxia-anoxia disorder and their physiological responses in avocado plants. Agron. Colomb. 2020, 38, 85–100. [Google Scholar] [CrossRef]
- Goud, J.C.; Termorshuizen, A.J. Quality of methods to quantify microsclerotia of Verticillium dahliae in soil. Eur. J. Plant Pathol. 2003, 109, 523–534. [Google Scholar] [CrossRef]
- Giovannetti, M.; Mosse, B. An Evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol. 1980, 84, 489–500. [Google Scholar] [CrossRef]
- Phillips, J.M.; Hayman, D.S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 1970, 55, 158-IN18. [Google Scholar] [CrossRef]
- Kormanik, P.P.; Bryan, W.C.; Schultz, R.C. Procedures and equipment for staining large numbers of plant root samples for endomycorrhizal assay. Can. J. Microbiol. 1980, 26, 536–538. [Google Scholar] [CrossRef]
- Ramirez-Gil, J.; Osorno, L.; Morales Osorio, J.G.; Osorio, N. Addition of glucose as carbon source improves the Glomus fasciculatum-Trichoderma harzianum-Leucaena leucocephala interactions. In Proceedings of the XV National Congress of Biotechnology and Bioengineering and 12 th International Symposium on the Genetics of Industrial Microorganisms (GIM 2013), Cancun, Mexico, 23–28 June 2013. [Google Scholar]
- Vilariño, A.; Sainz, M.J. Treatment of Glomus mosseae propagules with 50% sucrose increases spore germination and inoculum potential. Soil Biol. Biochem. 1997, 29, 1571–1573. [Google Scholar] [CrossRef]
- Locke, T.; Thorpe, I. Benomyl tolerance in Verticillium dahliae Kleb. Plant Pathol. 1997, 25, 152. [Google Scholar] [CrossRef]
- Castillo, A.G.; Puig, C.G.; Cumagun, C.J.R. Non-synergistic effect of Trichoderma harzianum and Glomus spp. in reducing infection of Fusarium wilt in banana. Pathogens 2019, 8, 43. [Google Scholar] [CrossRef] [Green Version]
- Martinez, A.; Obertello, M.; Pardo, A.; Ocampo, J.A.; Godeas, A. Interactions between Trichoderma pseudokoningii strains and the arbuscular mycorrhizal fungi Glomus mosseae and Gigaspora rosea. Mycorrhiza 2004, 14, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Pullman, G.S.; DeVay, J.E.; Garber, R. Soil solarisation and thermal death: A logarithmic relationship between time and temperature for four soilborne plant pathogens. Phytopathology 1981, 71, 959–964. [Google Scholar] [CrossRef]
- Gil, P.M.; Bonomelli, C.; Schaffer, B.; Ferreyra, R.; Gentina, C. Effect of soil water-to-air ratio on biomass and mineral nutrition of avocado trees. J. Soil Sci. Plant Nutr. 2012, 12, 609–630. [Google Scholar] [CrossRef] [Green Version]
- Short, D.P.G.; Sandoya, G.; Vallad, G.E.; Koike, S.T.; Xiao, C.-L.; Wu, B.-M.; Gurung, S.; Hayes, R.J.; Subbarao, K.V. Dynamics of Verticillium species microsclerotia in field soils in response to fumigation, cropping patterns, and flooding. Phytopathology 2015, 105, 638–645. [Google Scholar] [CrossRef] [Green Version]
- Bonilla, N.; Cazorla, F.M.; Martínez-Alonso, M.; Hermoso, J.M.; González-Fernández, J.J.; Gaju, N.; Landa, B.B.; de Vicente, A. Organic amendments and land management affect bacterial community composition, diversity and biomass in avocado crop soils. Plant Soil 2012, 357, 215–226. [Google Scholar] [CrossRef] [Green Version]
- Downer, J.; Faber, B.; Menge, J. Factors affecting root rot control in mulched avocado orchards. HortTechnology 2002, 12, 601–605. [Google Scholar] [CrossRef]
Treatment | Variable Unit Cost for Tree/Two Years a,b | Cost of Production of 1 kg c | Yield and Reduction | Cost/Benefit Ratio | Cost/Benefit Ratio as % Respect to Control e | ||
---|---|---|---|---|---|---|---|
Fixed a,b | Variable a,b | Yield (kg/tree) | Reduction (%) d | ||||
Control+ | 0.0 | 0.35 | 0.32 | 20.9 | 212.9 | 0.95 | 1 |
T1fi f | 5.2 | 0.35 | 0.65 | 39.5 | 65.5 | 3.30 | 347 |
T2fi | 2.5 | 0.35 | 0.50 | 28.2 | 131.9 | 2.00 | 210 |
T3fi | 4.5 | 0.35 | 0.45 | 25.0 | 161.6 | 1.50 | 157 |
T4fi | 4.2 | 0.35 | 0.40 | 28.1 | 132.7 | 1.65 | 175 |
T5fi | 6.5 | 0.35 | 0.42 | 31.4 | 108.2 | 2.2 | 231 |
T6fi | 2.2 | 0.35 | 0.40 | 25.9 | 152.5 | 1 | 1.05 |
T7fi | 19.9 | 0.35 | 0.90 | 50.3 | 30.0 | 4.5 | 473 |
T8fi | 25.1 | 0.35 | 0.95 | 55.4 | 18.0 | 4.7 | 494 |
Control− | 0.0 | 0.35 | 0.32 | 65.4 | na | na | na |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramírez-Gil, J.G.; Morales-Osorio, J.G. Proposal for Integrated Management of Verticillium Wilt Disease in Avocado Cultivar Hass Crops. Agronomy 2021, 11, 1932. https://doi.org/10.3390/agronomy11101932
Ramírez-Gil JG, Morales-Osorio JG. Proposal for Integrated Management of Verticillium Wilt Disease in Avocado Cultivar Hass Crops. Agronomy. 2021; 11(10):1932. https://doi.org/10.3390/agronomy11101932
Chicago/Turabian StyleRamírez-Gil, Joaquín Guillermo, and Juan Gonzalo Morales-Osorio. 2021. "Proposal for Integrated Management of Verticillium Wilt Disease in Avocado Cultivar Hass Crops" Agronomy 11, no. 10: 1932. https://doi.org/10.3390/agronomy11101932
APA StyleRamírez-Gil, J. G., & Morales-Osorio, J. G. (2021). Proposal for Integrated Management of Verticillium Wilt Disease in Avocado Cultivar Hass Crops. Agronomy, 11(10), 1932. https://doi.org/10.3390/agronomy11101932