Application of Genomics Approaches for the Improvement in Ascochyta Blight Resistance in Chickpea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Nucleic Acid Extraction
2.2. GBS-t Sequencing Library Preparation, SNP Identification and Target Enrichment Array Design
2.3. Genotyping the RIL Mapping Population
2.4. Genetic Linkage Mapping
2.5. AB Inoculation, Disease Rating and Statistical Analysis of Phenotyping Data
2.6. Identification of Genomic Regions for AB Resistance
3. Results
3.1. Target Enrichment Array Design from Advanced Varieties/Advanced Breeding Lines
3.2. Genotyping the RIL Mapping Population and Genetic Linkage Map Construction
3.3. Phenotypic Analysis of RIL Populations and the Identification of Genomic Regions for AB Resistance
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Food Agriculture Organization of the United Nations. FAOSTAT Statistical Database; FAO: Rome, Italy, 2020. [Google Scholar]
- Roorkiwal, M.; Rathore, A.; Das, R.R.; Singh, M.K.; Jain, A.; Srinivasan, S.; Gaur, P.; Chellapilla, B.; Tripathi, S.; Li, Y.; et al. Genome-Enabled Prediction Models for Yield Related Traits in Chickpea. Front. Plant Sci. 2016, 7, 1666. [Google Scholar] [CrossRef] [Green Version]
- Stephens, A.; Lombardi, M.; Cogan, N.O.I.; Forster, J.W.; Hobson, K.; Materne, M.; Kaur, S. Genetic marker discovery, intraspecific linkage map construction and quantitative trait locus analysis of ascochyta blight resistance in chickpea (Cicer arietinum L.). Mol. Breed. 2013, 33, 297–313. [Google Scholar] [CrossRef]
- Li, Y.; Ruperao, P.; Batley, J.; Edwards, D.; Davidson, J.; Hobson, K.; Sutton, T. Genome Analysis Identified Novel Candidate Genes for Ascochyta Blight Resistance in Chickpea Using Whole Genome Re-sequencing Data. Front. Plant Sci. 2017, 8, 359. [Google Scholar] [CrossRef] [Green Version]
- Dey, S.K.; Singh, G. Resistance to Ascochyta blight in chickpea—Genetic basis. Euphytica 1993, 68, 147–153. [Google Scholar] [CrossRef]
- Sharma, M.; Ghosh, R. An Update on Genetic Resistance of Chickpea to Ascochyta Blight. Agronomy 2016, 6, 18. [Google Scholar] [CrossRef] [Green Version]
- Udupa, S.M.; Baum, M. Genetic dissection of pathotype-specific resistance to ascochyta blight disease in chickpea (Cicer arietinum L.) using microsatellite markers. Theor. Appl. Genet. 2002, 106, 1196–1202. [Google Scholar] [CrossRef]
- Coyne, C.J.; Kumar, S.; Von Wettberg, E.J.; Marques, E.; Berger, J.D.; Redden, R.J.; Ellis, T.N.; Brus, J.; Zablatzká, L.; Smýkal, P. Potential and limits of exploitation of crop wild relatives for pea, lentil, and chickpea improvement. Legum. Sci. 2020, 2, e36. [Google Scholar] [CrossRef] [Green Version]
- Collard, B.C.Y.; Ades, P.K.; Pang, E.C.K.; Brouwer, J.B.; Taylor, P.W.J. Prospecting for sources of resistance to ascochyta blight in wild Cicer species. Australas. Plant Pathol. 2001, 30, 271–276. [Google Scholar] [CrossRef]
- Pundir, R.P.S.; Mengesha, M.H. Cross compatibility between chickpea and its wild relative, Cicer echinospermum Davis. Euphytica 1995, 83, 241–245. [Google Scholar] [CrossRef] [Green Version]
- Varshney, R.K.; Song, C.; Saxena, R.K.; Azam, S.; Yu, S.; Sharpe, A.G.; Cannon, S.; Baek, J.; Rosen, B.D.; Tar’An, B.; et al. Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat. Biotechnol. 2013, 31, 240–246. [Google Scholar] [CrossRef] [Green Version]
- Jain, M.; Misra, G.; Patel, R.; Priya, P.; Jhanwar, S.; Khan, A.W.; Shah, N.; Singh, V.K.; Garg, R.; Jeena, G.; et al. A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.). Plant J. 2013, 74, 715–729. [Google Scholar] [CrossRef]
- Gupta, S.; Nawaz, K.; Parween, S.; Roy, R.; Sahu, K.; Pole, A.K.; Khandal, H.; Srivastava, R.; Parida, S.K.; Chattopadhyay, D. Draft genome sequence of Cicer reticulatum L., the wild progenitor of chickpea provides a resource for agronomic trait improvement. DNA Res. 2016, 24, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Roorkiwal, M.; Jain, A.; Kale, S.M.; Doddamani, D.; Chitikineni, A.; Thudi, M.; Varshney, R.K. Development and evaluation of high-density Axiom® CicerSNP Array for high-resolution genetic mapping and breeding applications in chickpea. Plant Biotechnol. J. 2017, 16, 890–901. [Google Scholar] [CrossRef] [Green Version]
- Elshire, R.; Glaubitz, J.C.; Sun, Q.; Poland, J.; Kawamoto, K.; Buckler, E.; Mitchell, S.E. A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species. PLoS ONE 2011, 6, e19379. [Google Scholar] [CrossRef] [Green Version]
- Baird, N.A.; Etter, P.D.; Atwood, T.S.; Currey, M.C.; Shiver, A.L.; Lewis, Z.; Selker, E.U.; Cresko, W.; Johnson, E.A. Rapid SNP Discovery and Genetic Mapping Using Sequenced RAD Markers. PLoS ONE 2008, 3, e3376. [Google Scholar] [CrossRef]
- Miller, M.R.; Dunham, J.P.; Amores, A.; Cresko, W.; Johnson, E.A. Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res. 2007, 17, 240–248. [Google Scholar] [CrossRef] [Green Version]
- Dapprich, J.; Ferriola, D.; Mackiewicz, K.; Clark, P.M.; Rappaport, E.; D’Arcy, M.; Sasson, A.; Gai, X.; Schug, J.; Kaestner, K.H.; et al. The next generation of target capture technologies—Large DNA fragment enrichment and sequencing determines regional genomic variation of high complexity. BMC Genom. 2016, 17, 486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kale, S.; Jaganathan, D.; Ruperao, P.; Chen, C.; Punna, R.; Kudapa, H.; Thudi, M.; Roorkiwal, M.; Katta, M.A.; Doddamani, D.; et al. Prioritization of candidate genes in “QTL-hotspot” region for drought tolerance in chickpea (Cicer arietinum L.). Sci. Rep. 2015, 5, 15296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deokar, A.; Sagi, M.; Tar’An, B. Genome-wide SNP discovery for development of high-density genetic map and QTL mapping of ascochyta blight resistance in chickpea (Cicer arietinum L.). Theor. Appl. Genet. 2019, 132, 1861–1872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giolai, M.; Paajanen, P.; Verweij, W.; Percival-Alwyn, L.; Baker, D.; Witek, K.; Jupe, F.; Bryan, G.; Hein, I.; Jones, J.D.G.; et al. Targeted capture and sequencing of gene-sized DNA molecules. BioTechniques 2016, 61, 315–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malmberg, M.M.; Pembleton, L.W.; Baillie, R.C.; Drayton, M.C.; Sudheesh, S.; Kaur, S.; Shinozuka, H.; Verma, P.; Spangenberg, G.C.; Daetwyler, H.D.; et al. Genotyping-by-sequencing through transcriptomics: Implementation in a range of crop species with varying reproductive habits and ploidy levels. Plant Biotechnol. J. 2017, 16, 877–889. [Google Scholar] [CrossRef]
- Puritz, J.B.; Lotterhos, K.E. Expressed exome capture sequencing: A method for cost-effective exome sequencing for all organisms. Mol. Ecol. Resour 2018, 18, 1209–1222. [Google Scholar] [CrossRef] [Green Version]
- Warr, A.; Robert, C.; Hume, D.; Archibald, A.; Deeb, N.; Watson, M. Exome Sequencing: Current and Future Perspectives. G3: Genes Genomes Genet. 2015, 5, 1543–1550. [Google Scholar] [CrossRef] [Green Version]
- Gaur, R.; Azam, S.; Jeena, G.; Khan, A.W.; Choudhary, S.; Jain, M.; Yadav, G.; Tyagi, A.K.; Chattopadhyay, D.; Bhatia, S. High-Throughput SNP Discovery and Genotyping for Constructing a Saturated Linkage Map of Chickpea (Cicer arietinum L.). DNA Res. 2012, 19, 357–373. [Google Scholar] [CrossRef]
- Kujur, A.; Bajaj, D.; Upadhyaya, H.D.; Das, S.; Ranjan, R.; Shree, T.; Saxena, M.S.; Badoni, S.; Kumar, V.; Tripathi, S.; et al. A genome-wide SNP scan accelerates trait-regulatory genomic loci identification in chickpea. Sci. Rep. 2015, 5, 11166. [Google Scholar] [CrossRef] [Green Version]
- Khajuria, Y.P.; Saxena, M.S.; Gaur, R.; Chattopadhyay, D.; Jain, M.; Parida, S.K.; Bhatia, S. Development and Integration of Genome-Wide Polymorphic Microsatellite Markers onto a Reference Linkage Map for Constructing a High-Density Genetic Map of Chickpea. PLoS ONE 2015, 10, e0125583. [Google Scholar] [CrossRef] [Green Version]
- Jhanwar, S.; Priya, P.; Garg, R.; Parida, S.K.; Tyagi, A.K.; Jain, M. Transcriptome sequencing of wild chickpea as a rich resource for marker development. Plant Biotechnol. J. 2012, 10, 690–702. [Google Scholar] [CrossRef] [PubMed]
- Deokar, A.; Sagi, M.; Daba, K.; Tar’An, B. QTL sequencing strategy to map genomic regions associated with resistance to ascochyta blight in chickpea. Plant Biotechnol. J. 2018, 17, 275–288. [Google Scholar] [CrossRef] [PubMed]
- Abbo, S.; Berger, J.; Turner, N. Viewpoint: Evolution of cultivated chickpea: Four bottlenecks limit diversity andconstrain adaptation. Funct. Plant Biol. 2003, 30, 1081–1087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trapnell, C.; Pachter, L.; Salzberg, S. TopHat: Discovering splice junctions with RNA-Seq. Bioinformatics 2009, 25, 1105–1111. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Handsaker, R.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef] [PubMed]
- Shinozuka, H.; Cogan, N.O.; Shinozuka, M.; Marshall, A.; Kay, P.; Lin, Y.-H.; Spangenberg, G.C.; Forster, J.W. A simple method for semi-random DNA amplicon fragmentation using the methylation-dependent restriction enzyme MspJI. BMC Biotechnol. 2015, 15, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 2013, arXiv:1303.3997 2013. [Google Scholar]
- Javid, M.; Rosewarne, G.M.; Sudheesh, S.; Kant, P.; Leonforte, A.; Lombardi, M.; Kennedy, P.R.; Cogan, N.O.I.; Slater, A.T.; Kaur, S. Validation of molecular markers associated with boron tolerance, powdery mildew resistance and salinity tolerance in field peas. Front. Plant Sci. 2015, 6, 917. [Google Scholar] [CrossRef] [Green Version]
- Meng, L.; Li, H.; Zhang, L.; Wang, J. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop. J. 2015, 3, 269–283. [Google Scholar] [CrossRef] [Green Version]
- Voorrips, R.E. MapChart: Software for the Graphical Presentation of Linkage Maps and QTLs. J. Hered. 2002, 93, 77–78. [Google Scholar] [CrossRef] [Green Version]
- Bayer, M.; Milne, I.; Stephen, G.; Shaw, P.; Cardle, L.; Wright, F.; Marshall, D. Comparative visualization of genetic and physical maps with Strudel. Bioinformatics 2011, 27, 1307–1308. [Google Scholar] [CrossRef] [Green Version]
- Payne, R.; Baird, D.; Cherry, M.; Gilmour, A.; Harding, S.; Lane, P.; Morgan, G.; Murray, D.; Soutar, D.; Thompson, R. GenStat Release 6.1 Reference Manual. Part Directives; VSN International: Hemel Hempstead, UK, 2002. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2020. [Google Scholar]
- Gilmour, A.R.; Gogel, B.J.; Cullis, B.R.; Welham, S.J.; Thompson, R. ASReml User Guide Release 4.1; VSN International Ltd.: Hemel Hempstead, UK, 2015. [Google Scholar]
- Wang, S.; Basten, C.; Zeng, Z. Windows QTL Cartographer 2.Department of Statistics; North Carolina State University: Raleigh, NC, USA, 2012. [Google Scholar]
- You, Q.; Yang, X.; Peng, Z.; Xu, L.; Wang, J. Development and Applications of a High Throughput Genotyping Tool for Polyploid Crops: Single Nucleotide Polymorphism (SNP) Array. Front. Plant Sci. 2018, 9, 104. [Google Scholar] [CrossRef] [Green Version]
- Lutz, S.; Brion, C.; Kliebhan, M.; Albert, F.W. DNA variants affecting the expression of numerous genes in trans have diverse mechanisms of action and evolutionary histories. PLoS Genet. 2019, 15, e1008375. [Google Scholar] [CrossRef] [Green Version]
- Reuter, J.A.; Spacek, D.V.; Snyder, M.P. High-Throughput Sequencing Technologies. Mol. Cell 2015, 58, 586–597. [Google Scholar] [CrossRef] [Green Version]
- Fuchsberger, C.; Abecasis, G.R.; Hinds, D. minimac2: Faster genotype imputation. Bioinformatics 2014, 31, 782–784. [Google Scholar] [CrossRef] [Green Version]
- Browning, B.L.; Zhou, Y.; Browning, S. A One-Penny Imputed Genome from Next-Generation Reference Panels. Am. J. Hum. Genet. 2018, 103, 338–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Money, D.; Gardner, K.; Migicovsky, Z.; Schwaninger, H.; Zhong, G.-Y.; Myles, S. LinkImpute: Fast and Accurate Genotype Imputation for Nonmodel Organisms. G3: Genes Genomes Genet. 2015, 5, 2383–2390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, S.; Yuan, N.; Yang, M.; Du, Z.; Wang, J.; Sheng, X.; Wu, J.; Xiao, J. Comprehensive Assessment of Genotype Imputation Performance. Hum. Hered. 2018, 83, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Pootakham, W.; Shearman, J.R.; Ruang-Areerate, P.; Sonthirod, C.; Sangsrakru, D.; Jomchai, N.; Yoocha, T.; Triwitayakorn, K.; Tragoonrung, S.; Tangphatsornruang, S. Large-Scale SNP Discovery through RNA Sequencing and SNP Genotyping by Targeted Enrichment Sequencing in Cassava (Manihot esculenta Crantz). PLoS ONE 2014, 9, e116028. [Google Scholar] [CrossRef] [Green Version]
- Kaur, L.; Sirari, A.; Kumar, D.; Singh Sandhu, J.; Singh, S.; Kapoor, K.; Singh, I.; Gowda, C.L.L.; Pande, S.; Gaur, P. Combining Ascochyta blight and Botrytis grey mould resistance in chickpea through interspecific hybridization. Phytopathol. Mediterr. 2013, 52, 157–165. [Google Scholar]
- Tewari, S.K.; Pandey, M.P. Genetics of resistance to ascochyta blight in chickpea (Cicer arietinum L.). Euphytica 1986, 35, 211–215. [Google Scholar] [CrossRef]
- Singh, V.; Khan, A.W.; Saxena, R.K.; Kumar, V.; Kale, S.; Sinha, P.; Chitikineni, A.; Pazhamala, L.T.; Garg, V.; Sharma, M.; et al. Next-generation sequencing for identification of candidate genes for Fusarium wilt and sterility mosaic disease in pigeonpea (Cajanus cajan). Plant Biotechnol. J. 2015, 14, 1183–1194. [Google Scholar] [CrossRef] [Green Version]
- Luo, H.; Pandey, M.K.; Khan, A.W.; Wu, B.; Guo, J.; Ren, X.; Zhou, X.; Chen, Y.; Chen, W.; Huang, L.; et al. Next-generation sequencing identified genomic region and diagnostic markers for resistance to bacterial wilt on chromosome B02 in peanut (Arachis hypogaea L.). Plant Biotechnol. J. 2019, 17, 2356–2369. [Google Scholar] [CrossRef] [Green Version]
- Magwanga, R.O.; Lu, P.; Kirungu, J.N.; Diouf, L.; Dong, Q.; Hu, Y.; Cai, X.; Xu, Y.; Hou, Y.; Zhou, Z.; et al. GBS Mapping and Analysis of Genes Conserved between Gossypium tomentosum and Gossypium hirsutum Cotton Cultivars that Respond to Drought Stress at the Seedling Stage of the BC2F2 Generation. Int. J. Mol. Sci. 2018, 19, 1614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sari, E.; Bhadauria, V.; Ramsay, L.; Borhan, M.H.; Lichtenzveig, J.; Bett, K.E.; Vandenberg, A.; Banniza, S. Defense responses of lentil (Lens culinaris) genotypes carrying non-allelic ascochyta blight resistance genes to Ascochyta lentis infection. PLoS ONE 2018, 13, e0204124. [Google Scholar] [CrossRef] [Green Version]
- Fikere, M.; Barbulescu, D.M.; Malmberg, M.M.; Shi, F.; Koh, J.C.; Slater, A.T.; MacLeod, I.M.; Bowman, P.J.; Salisbury, P.A.; Spangenberg, G.C.; et al. Genomic Prediction Using Prior Quantitative Trait Loci Information Reveals a Large Reservoir of Underutilised Blackleg Resistance in Diverse Canola (Brassica napus L.) Lines. Plant Genome 2018, 11, 170100. [Google Scholar] [CrossRef] [Green Version]
- Olatoye, M.O.; Clark, L.V.; Wang, J.; Yang, X.; Yamada, T.; Sacks, E.J.; Lipka, A.E. Evaluation of genomic selection and marker-assisted selection in Miscanthus and energycane. Mol. Breed. 2019, 39, 171. [Google Scholar] [CrossRef] [Green Version]
- Jannink, J.-L. Dynamics of long-term genomic selection. Genet. Sel. Evol. 2010, 42, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Etayeh, N.; Eklein, A.; Paslier, M.-C.E.; Ejacquin, F.; Ehoutin, H.; Erond, C.; Echabert-Martinello, M.; Emagnin-Robert, J.-B.; Emarget, P.; Aubert, G.; et al. Genomic Prediction in Pea: Effect of Marker Density and Training Population Size and Composition on Prediction Accuracy. Front. Plant Sci. 2015, 6, 941. [Google Scholar] [CrossRef] [Green Version]
- Spindel, J.; Begum, H.; Akdemir, D.; Virk, P.; Collard, B.; Redoña, E.; Atlin, G.; Jannink, J.-L.; McCouch, S.R. Genomic Selection and Association Mapping in Rice (Oryza sativa): Effect of Trait Genetic Architecture, Training Population Composition, Marker Number and Statistical Model on Accuracy of Rice Genomic Selection in Elite, Tropical Rice Breeding Lines. PLoS Genet. 2015, 11, e1004982. [Google Scholar] [CrossRef] [Green Version]
Linkage Group | Number of Mapped Markers | Cumulative Map Length (cM) | Average Marker Density |
---|---|---|---|
LG1 | 936 | 62.23 | 0.07 |
LG2 | 206 | 76.05 | 0.37 |
LG2.2 | 21 | 16.08 | 0.77 |
LG3 | 31 | 32.56 | 1.05 |
LG3.2 | 501 | 36.54 | 0.07 |
LG4 | 1934 | 105.76 | 0.05 |
LG5 | 105 | 110.83 | 1.06 |
LG6 | 1031 | 56.81 | 0.06 |
LG6.2 | 33 | 7.68 | 0.23 |
LG7 | 676 | 148.82 | 0.22 |
LG8 | 412 | 63.90 | 0.16 |
Total | 5886 | 717.26 | 0.12 |
QTL Name | Chromosome | Flanking Markers | Position (cM) | LOD Threshold | Maximum LOD Threshold | % Phenotypic Variance | Additive Effect |
---|---|---|---|---|---|---|---|
AB_echino_2014 | LG4 | Ca_Ce_18445 | 48.15 | 4.5 | 13.7 | 34 | 0.45 |
Ca_Ce_18594, a_Ce_18577 | 48.68 | ||||||
Ca_Ce_18656 | 49.14 | ||||||
AB_echino_2015 | LG4 | Ca_Ce_18445 | 48.15 | 4 | 16.0 | 41 | 0.40 |
Ca_Ce_18594, a_Ce_18577 | 48.68 | ||||||
Ca_Ce_18656 | 49.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sudheesh, S.; Kahrood, H.V.; Braich, S.; Dron, N.; Hobson, K.; Cogan, N.O.I.; Kaur, S. Application of Genomics Approaches for the Improvement in Ascochyta Blight Resistance in Chickpea. Agronomy 2021, 11, 1937. https://doi.org/10.3390/agronomy11101937
Sudheesh S, Kahrood HV, Braich S, Dron N, Hobson K, Cogan NOI, Kaur S. Application of Genomics Approaches for the Improvement in Ascochyta Blight Resistance in Chickpea. Agronomy. 2021; 11(10):1937. https://doi.org/10.3390/agronomy11101937
Chicago/Turabian StyleSudheesh, Shimna, Hossein V. Kahrood, Shivraj Braich, Nicole Dron, Kristy Hobson, Noel O. I. Cogan, and Sukhjiwan Kaur. 2021. "Application of Genomics Approaches for the Improvement in Ascochyta Blight Resistance in Chickpea" Agronomy 11, no. 10: 1937. https://doi.org/10.3390/agronomy11101937
APA StyleSudheesh, S., Kahrood, H. V., Braich, S., Dron, N., Hobson, K., Cogan, N. O. I., & Kaur, S. (2021). Application of Genomics Approaches for the Improvement in Ascochyta Blight Resistance in Chickpea. Agronomy, 11(10), 1937. https://doi.org/10.3390/agronomy11101937