Incorporating Molecular Markers and Causal Structure among Traits Using a Smith-Hazel Index and Structural Equation Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Path Coefficients
2.2. Causal Coefficients as Economic Weights
2.3. Experimental Data
2.4. Data Analysis
2.5. Estimation and Covariance Matrices
2.6. Estimation of Coefficient Matrix (Λ)
2.7. SEM Model Methodology
2.8. SEM Model Evaluation
2.9. Model Comparison
2.10. Model Validation
3. Results
3.1. Models Developed
Coupling Causal Structure and MM into the Smith–Hazel Index
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hazel, L.N.; Lush, J.L. The efficiency of three methods of selection. J. Hered. 1942, 33, 393–399. [Google Scholar] [CrossRef]
- Smith, H.F. A discriminant function for plant selection. Ann. Eugen. 1936, 7, 240–250. [Google Scholar] [CrossRef]
- Hazel, L.N. The genetic basis for constructing selection indexes. Genetics 1943, 28, 476–490. [Google Scholar] [CrossRef] [PubMed]
- Bernardo, R. Breeding for Quantitative Traits in Plants, 2nd ed.; Stemma Press: Woodbury, MN, USA, 2010. [Google Scholar]
- Neimann-Sorensen, A.; Robertson, A. The association between blood groups and several production characteristics in three Danish cattle breeds. Acta Agric. Scand. 1961, 11, 163–196. [Google Scholar] [CrossRef]
- Smith, C. Improvement of metric traits through specific genetic loci. Anim. Sci. 1967, 9, 349–358. [Google Scholar] [CrossRef]
- Lande, R.; Thompson, R. Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 1990, 124, 743–756. [Google Scholar] [CrossRef]
- Dofing, S.M.; Knight, C.W. Alternative model for path analysis of small-grain yield. Crop. Sci. 1992, 32, 487–489. [Google Scholar] [CrossRef]
- Wright, S. Correlation and causation. J. Agric. Res. 1921, 201, 557–585. Available online: https://www.google.com.mx/search?q=Wright%2C+S.%2C+1921+Correlation+and+causation.+J.+Agric.+Res.+201%3A+557%E2%80%93585&source=hp&ei=afarYPGPCsfatQXdxp7IDA&iflsig=AINFCbYAAAAAYKwEec1T6njhrEiKpZoxWx3xdCpkl817&oq=Wright%2C+S.%2C+1921+Correlation+and+causation.+J.+Agric.+Res.+201%3A+557%E2%80%93585&gs_lcp=Cgdnd3Mtd2l6EANQmAxYmAxg_RZoAHAAeACAAaUBiAGlAZIBAzAuMZgBAKABAqABAaoBB2d3cy13aXo&sclient=gws-wiz&ved=0ahUKEwix6LiF_-LwAhVHba0KHV2jB8kQ4dUDCAc&uact=5 (accessed on 24 May 2021).
- Rosa, G.J.; Valente, B.D.; de los Campos, G.; Wu, X.-L.; Gianola, D.; Silva, M.A. Inferring causal phenotype networks using structural equation models. Genet. Sel. Evol. 2011, 43, 6. [Google Scholar] [CrossRef] [Green Version]
- Gianola, D.; Sorensen, D. Quantitative genetic models for describing simultaneous and recursive relationships between phenotypes. Genetics. 2004, 167, 1407–1424. [Google Scholar] [CrossRef] [Green Version]
- Vargas, M.; Crossa, J.; Reynolds, M.P.; Dhungana, P.; Eskridge, K.M. Structural equation modelling for studying genotype environment interactions of physiological traits affecting yield in wheat. J. Agric. Sci. 2007, 145, 151. [Google Scholar] [CrossRef]
- Dhungana, P.; Eskridge, K.M.; Baenziger, P.S.; Campbell, B.T.; Gill, K.S.; Dweikat, I. Analysis of genotype-by-environment interaction in wheat using a structural equation model and chromosome substitution lines. Crop. Sci. 2007, 47, 477–484. [Google Scholar] [CrossRef]
- Guillen-Portal, F.R.; Stougaard, R.N.; Xue, Q.; Eskridge, K.M. Compensatory mechanisms associated with the effect of spring wheat seed size on wild oat competition. Crop. Sci. 2006, 46, 935–945. [Google Scholar] [CrossRef]
- Kozak, M.; Bocianowski, J.; Rybinski, W. Selection of promising genotypes based on path and cluster analyses. J. Agric. Sci. 2008, 146, 85. [Google Scholar] [CrossRef]
- Dhungana, P. Structural Equation Modeling of Genotype x Environment Interaction; The University of Nebraska-Lincoln: Lincoln, NE, USA, 2004. [Google Scholar]
- Lamb, E.; Shirtliffe, S.; May, W. Structural equation modeling in the plant sciences: An example using yield components in oat. Can. J. Plant. Sci. 2011, 91, 603–619. [Google Scholar] [CrossRef]
- Heineck, G.C.; Ehlke, N.J.; Altendorf, K.R.; Denison, R.F.; Jungers, J.M.; Lamb, E.G.; Watkins, E. Relationships and influence of yield components on spaced-plant and sward seed yield in perennial ryegrass. Grass Forage Sci. 2020, 75, 424–437. [Google Scholar] [CrossRef]
- Bollen, K.A. Structural Equations with Latent Variables; Wiley: New York, NY, USA, 1989; Available online: https://www.wiley.com/en-ae/Structural+Equations+with+Latent+Variables-p-9780471011712 (accessed on 21 May 2021).
- Shipley, B. Cause and Correlation in Biology: A User’s Guide to Path Analysis, Structural Equations and Causal Inference with R; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Hatcher, L. Norm O’Rourke. A Step-By-Step Approach to Using SAS for Factor Analysis and Structural Equation Modeling; SAS Institute: Caray, NC, USA, 2013. [Google Scholar]
- Baker, R.J. Selection Indices in Plant Breeding; CRC Press Inc.: Boca Raton, FL, USA, 1986; 218p. [Google Scholar]
- Grace, J.B. Structural Equation Modeling and Natural Systems; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- El-basyoni, I.S. Association Mapping for Important Biotic & Abiotic Related Traits in Structured Wheat Population; ETD collection for University of Nebraska—Lincoln: Lincoln, NE, USA, 2012; p. AAI3508512. [Google Scholar]
- Falconer, D.S.; Mackay, T.P.P. Introduction to Quantitative Genetics; Longmans: Harlow, Essex, UK, 1996. [Google Scholar]
- SAS Institute. SAS/STAT 9.2 User’s Guide; SAS Institute: Caray, NC, USA, 2000. [Google Scholar]
- MacCallum, R.C.; Browne, M.W.; Sugawara, H.M. Power analysis and determination of sample size for covariance structure modeling. Psychol. Methods 1996, 1, 130. [Google Scholar] [CrossRef]
- Lange, C.; Whittaker, J.C. On prediction of genetic values in marker-assisted selection. Genetics 2001, 159, 1375–1381. [Google Scholar] [CrossRef]
- Anderson, T.W.; Anderson, T.W.; Anderson, T.W.; Anderson, T.W. An Introduction to Multivariate Statistical Analysis, 3rd ed.; John-Wiley & Sons: Englewood Cliffs, NJ, USA, 2003. [Google Scholar]
- Valente, B.D.; Rosa, G.J.; Gianola, D.; Wu, X.-L.; Weigel, K. Is structural equation modeling advantageous for the genetic improvement of multiple traits? Genetics 2013, 194, 561–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabiei, B.; Valizadeh, M.; Ghareyazie, B.; Moghaddam, M. Evaluation of selection indices for improving rice grain shape. Field Crop. Res. 2004, 89, 359–367. [Google Scholar] [CrossRef]
- Sabouri, H.; Rabiei, B.; Fazlalipour, M. Use of selection indices based on multivariate analysis for improving grain yield in rice. Rice Sci. 2008, 15, 303–310. [Google Scholar] [CrossRef]
Model | Selection Index (I) |
---|---|
Classical Smith-Hazel | |
Smith-Hazel with causality | |
Smith-Hazel with markers and causality |
Variables | |||
---|---|---|---|
Spikes per square meter | 0.81 | −0.347 | 0.463 |
Kernel per spike | 0.52 | −0.043 | 0.477 |
Kernel weight | 0.17 | 0 | 0.170 |
Yield | S-H | S-H c | S-H mc | |
---|---|---|---|---|
Standardized Mean | 1.62 | 0.115 | 0.866 | 0.592 |
True Mean (g/m2) ** | 480.6 | 432.8 | 456.7 | 448.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hidalgo-Contreras, J.V.; Salinas-Ruiz, J.; Eskridge, K.M.; Baenziger, S.P. Incorporating Molecular Markers and Causal Structure among Traits Using a Smith-Hazel Index and Structural Equation Models. Agronomy 2021, 11, 1953. https://doi.org/10.3390/agronomy11101953
Hidalgo-Contreras JV, Salinas-Ruiz J, Eskridge KM, Baenziger SP. Incorporating Molecular Markers and Causal Structure among Traits Using a Smith-Hazel Index and Structural Equation Models. Agronomy. 2021; 11(10):1953. https://doi.org/10.3390/agronomy11101953
Chicago/Turabian StyleHidalgo-Contreras, Juan Valente, Josafhat Salinas-Ruiz, Kent M. Eskridge, and Stephen P. Baenziger. 2021. "Incorporating Molecular Markers and Causal Structure among Traits Using a Smith-Hazel Index and Structural Equation Models" Agronomy 11, no. 10: 1953. https://doi.org/10.3390/agronomy11101953
APA StyleHidalgo-Contreras, J. V., Salinas-Ruiz, J., Eskridge, K. M., & Baenziger, S. P. (2021). Incorporating Molecular Markers and Causal Structure among Traits Using a Smith-Hazel Index and Structural Equation Models. Agronomy, 11(10), 1953. https://doi.org/10.3390/agronomy11101953