Subsoil Melioration with Organic Material—Principle, Technology and Yield Effects
Abstract
:1. Introduction
2. Material and Methods
2.1. Principle of the Subsoil-Melioration with Organic Material
2.2. Design Methodology for Technology Development
2.2.1. List of Requirements
2.2.2. Design of the Development
2.2.3. Working Out and Design
2.2.4. Test and Optimization
2.3. Technology Evaluation
2.3.1. Longitudinal Distribution of the Organic Material
2.3.2. Mixing Quality of Organic Material in Subsoil
2.3.3. Working Depth
2.4. Agronomical Evaluation of the Soil3 Procedure
2.4.1. Design of the Field-Trials
2.4.2. Evaluation of Yield Effects
3. Results and Discussion
3.1. Engineering Development
3.1.1. List of Requirements
3.1.2. Concept of the Development
- (1)
- The depth of all tools is controlled by the tractor hydraulics, supported by mounted supporting wheels in the front (not shown in Figure 3) and rear of the frame.
- (2)
- The first moldboard (clearing coulter) removes the topsoil to a depth of 30 cm and places it to the side of the furrow. The furrows width should also be 30 cm to provide sufficient space for the following tools. The cleared topsoil shall be placed exclusively between the respective furrows on a width of 70 cm.
- (3)
- The injection tine consists of a share for deep loosening and a drop/injection channel. The tine’s working depth is 60 cm and is placed within the furrow created by the clearing share: it
- -
- opens and loosens the soil, lifts it upwards and sideways,
- -
- directs the compost from the storage tank into the subsoil, and
- -
- places it into the falling back subsoil. In this location it will be passively mixed.
- (4)
- If necessary, tines with mixing coulters improve the mixing quality, a tool (compaction wheels) can follow
- (5)
- Levelling blades guide the set-aside topsoil back into the furrow onto the thoroughly mixed subsoil
- (6)
- Trailed supporting wheels control the working depth
- (7)
- The storage tank with compost is mounted on the frame and supports the feeding of the tools by organic material’s gravity.
- two agitator shafts homogenize the compost, loosen it up to prevent bridging in the tank and keep the compost flowable
- three metering shafts direct the compost into the falling channel behind the injecttion tine
3.1.3. Finishing and Construction
- a.
- Support Frame
- b.
- Scraper Blade
- c.
- Injection tine
- -
- clogging cannot continue upward
- -
- the sides of the open hopper can vibrate slightly, resulting in self-cleaning.
- a.
- Post-mix tines
- b.
- Levelling blades
- c.
- Depth guidance and support
- d.
- Compost metering and storage
3.2. Technology Evaluation
3.2.1. Dosing Quality
3.2.2. Mixing Quality
3.2.3. Quality of Work in the Field
3.3. Agronomical Evaluation of the Soil3 Procedure
3.4. Summary of the Machine Concept
4. Conclusions
5. Patents
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seneviratne, S.I.; Luthi, D.; Litschi, M.; Schar, C. Landatmosphere coupling and climate change in Europe. Nature 2004, 443, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Davies, W. Root signals and the regulation of growth and development of plants in drying soil. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1991, 42, 55–76. [Google Scholar] [CrossRef]
- Angers, D.A.; Caron, J. Plant-induced changes in soil structure: Processes and feedbacks. Biogeochemistry 1998, 42, 55–72. [Google Scholar] [CrossRef]
- Batey, T. Soil compaction and soil management—A review. Soil Use Manag. 2009, 25, 335–345. [Google Scholar] [CrossRef]
- Schneider, F.; Don, A.; Hennings, I.; Schmittmann, O.; Seidel, S.J. The effect of deep tillage on crop yield—What do we really know? Soil Tillage Res. 2017, 174, 193–204. [Google Scholar] [CrossRef]
- Schulze Lammers, P.; Schmittmann, O. Schlitzsägerät für die einphasige Aussaat von Zuckerrüben. Landtechnik 2014, 69, 139–142. [Google Scholar] [CrossRef]
- Cai, H.; Ma, W.; Zhang, X.; Ping, J.; Yan, X.; Liu, J.; Yuan, J.; Wang, L.; Ren, J. Effect of subsoil tillage depth on nutrient accumulation, root distribution, and grain yield in spring maize. Crop J. 2014, 2, 297–307. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, P.K.; Mohanty, M.; Bandyopadhyay, K.K.; Painuli, D.K.; Misra, A.K. Growth, competition, yield advantage and economics in soybean/pigeonpea intercropping system in semi-arid tropics of India. Field Crop. Res. 2006, 96, 80–89. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Wienhold, B.J.; Jin, V.L.; Schmer, M.R.; Kibet, L.C. Long-term tillage impact on soil hydraulic properties. Soil Tillage Res. 2017, 170, 38–42. [Google Scholar] [CrossRef] [Green Version]
- Hartmann, C.; Poss, R.; Noble, A.D.; Jongskul, A.; Bourdon, E.; Brunet, D.; Lesturgez, G. Subsoil improvement in a tropical coarse textured soil: Effect of deep-ripping and slotting. Soil Tillage Res. 2008, 99, 245–253. [Google Scholar] [CrossRef]
- Kirkegaard, J.A.; Lilley, J.M.; Howe, G.N.; Graham, J.M. Impact of subsoil water use on wheat yield. Aust. J. Agric. Res. 2007, 58, 303. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, R.; Wang, S.; Wang, H.; Xu, Z.; Jia, G.; Wang, X.; Li, J. Effects of different sub-soiling frequencies incorporated into no-tillage systems on soil properties and crop yield in dryland wheat-maize rotation system. Field Crop. Res. 2017, 209, 151–158. [Google Scholar] [CrossRef]
- Evanylo, G.; Sherony, C.; Spargo, J.; Starner, D.; Brosius, M.; Haering, K. Soil and water environmental effects of fertilizer-, manure-, and compost-based fertility practices in an organic vegetable cropping system. Agric. Ecosyst. Environ. 2008, 127, 50–58. [Google Scholar] [CrossRef]
- Diacono, M.; Montemurro, F. Long-term effects of organic amendments on soil fertility. A review. Agron. Sustain. Dev. 2010, 30, 401–422. [Google Scholar] [CrossRef] [Green Version]
- Abiven, S.; Menasseri, S.; Chenu, C. The effects of organic inputs over time on soil aggregate stability—A literature analysis. Soil Biol. Biochem. 2009, 41, 1–12. [Google Scholar] [CrossRef]
- Freibauer, A.; Rounsevell, M.D.; Smith, P.; Verhagen, J. Carbon sequestration in the agricultural soils of Europe. Geoderma 2004, 122, 1–23. [Google Scholar] [CrossRef]
- Silber, W. Vorrichtung zur Bewässerung von Reihenkulturen in Trockenzonen. German Patent DE 10 2014 005 054 A1, 8 October 2015. [Google Scholar]
- Reich, J.; Unger, H.; Streitenberger, H. Verfahren und Vorrichtung zur Verbesserung verdichteter Unterböden. German Patent DD000000233915A1, 19 March 1986. [Google Scholar]
- Nicholson, C. Solving the Commercial Constraints Preventing Adoption of Subsoil Ameloration in South West Victoria; S. 9f; SFS Ltd.: Inverleigh, VIC, Australia, 2016. [Google Scholar]
- Deutsches Patent-und Markenamt 2018. Verfahren zur Bodenbearbeitung und/oder zur Bodenmodifikation durch Einbringen von Wachstumsförderndem Organischem Material in Einen Ackerboden. German Patent DE102018120092A1, 20 February 2020. [Google Scholar]
- Jakobs, I.; Schmittmann, O.; Schulze Lammers, P. Short-term effects of in-row subsoiling and simultaneous admixing of organic material on growth of spring barley (H. vulgare). Soil Use Manag. 2017, 33, 620–630. [Google Scholar] [CrossRef]
- Jakobs, I.; Schmittmann, O.; Athmann, M.; Kautz, T.; Lammers, P.S. Cereal Response to Deep Tillage and Incorporated Organic Fertilizer. Agronomy 2019, 9, 296. [Google Scholar] [CrossRef] [Green Version]
- DLG. DLG-Prüfbericht 6045F—Verteilqualität Stallmist und Kompost; S. 1; Deutsche Landwirtschafts-Gesellschaft e.V.: Groß-Umstadt, Germany, 2011. [Google Scholar]
- DüV; Bundesministerium fuer Justiz und Verbraucherschutz. Verordnung über die Anwendung von Düngemitteln, Bodenhilfsstoffen, Kultursubstraten und Pflanzenhilfsmitteln nach den Grundsätzen der guten fachlichen Praxis beim Düngen2. Available online: http://www.gesetze-im-internet.de/d_v_2017/ (accessed on 10 August 2021).
- EU. Regulation (EU) No 1306/2013 of the European Parliament and of the Council of 17 December 2013. Off. J. Eur. Union 2013, 347, 549–607. [Google Scholar]
- DIN EN 13080. Stalldungstreuer—Umweltschutz—Anforderungen und Prüfmethoden, Deutsche Industiernorm; Beuth Verlag GmbH: Berlin, Germany, 2003. [Google Scholar]
- VDI-RICHTLINIE 2221. Methodik zum Entwickeln und Konstruieren technischer Systeme und Produkte; VDI: Düsseldorf, Germany, 1993. [Google Scholar]
- VDI-RICHTLINIE 2222. Methodisches Entwickeln von Lösungsprinzipien; VDI: Düsseldorf, Germany, 1997. [Google Scholar]
- FAO; Iuss Working Group Wrb. World reference base for soil resources 2014, update 2015: International soil classification system for naming soil and creating legends for soil maps. World Soil Resour. Rep. 2015, 106, 192. [Google Scholar]
- SPSS. Statistical Package for the Social Sciences; Version 27; IBM: Armonk, NY, USA, 2020. [Google Scholar]
- AutoDesk: Inventor 2020 Professional; Autodesk GmbH: Muenchen, Germany, 2019.
- StVO. Available online: https://www.stvo.de/strassenverkehrsordnung/105-22-ladung (accessed on 19 August 2021).
Functional Requirements | Priority | |
---|---|---|
F1 | Working depth 60 cm | P1 |
F2 | Removal of topsoil | P1 |
F3 | Injection of organic material into subsoil | P1 |
F4 | Mixing of different organic substrates only into subsoil | P1 |
F5 | Recompaction | P2 |
F6 | Levelling after injection | P1 |
F7 | Tank for compost | P1 |
Working Requirements | Priority | |
W1 | Process in one phase | P1 |
W2 | Working quality (no mixing of top- and subsoil) | P1 |
W3 | Working quality (no organic material in subsoil) | P2 |
W4 | Blockage-free soil preparation and admixing | P1 |
W5 | Protection against destruction and overload | P1 |
W6 | Soil protection | P2 |
W7 | Low-maintenance technology | P2 |
Interface Requirements | Priority | |
I1 | Compatible for tractor use | P1 |
I2 | Mounted on tractors | P1 |
I3 | Compatible to road traffic | P2 |
I4 | Transportability for truck | P1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmittmann, O.; Christ, A.; Schulze Lammers, P. Subsoil Melioration with Organic Material—Principle, Technology and Yield Effects. Agronomy 2021, 11, 1970. https://doi.org/10.3390/agronomy11101970
Schmittmann O, Christ A, Schulze Lammers P. Subsoil Melioration with Organic Material—Principle, Technology and Yield Effects. Agronomy. 2021; 11(10):1970. https://doi.org/10.3390/agronomy11101970
Chicago/Turabian StyleSchmittmann, Oliver, Andreas Christ, and Peter Schulze Lammers. 2021. "Subsoil Melioration with Organic Material—Principle, Technology and Yield Effects" Agronomy 11, no. 10: 1970. https://doi.org/10.3390/agronomy11101970
APA StyleSchmittmann, O., Christ, A., & Schulze Lammers, P. (2021). Subsoil Melioration with Organic Material—Principle, Technology and Yield Effects. Agronomy, 11(10), 1970. https://doi.org/10.3390/agronomy11101970