Physicochemical Changes in Loam Soils Amended with Bamboo Biochar and Their Influence in Tomato Production Yield
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil and Biochar Production
2.2. Soil-Biochar Mixture Preparation
2.3. Physicochemical Analysis of the Materials
2.4. Soil Water Holding Capacity Measurements
2.5. Soil Water Storage and Air Capacity Indexes
2.6. Fruit Yield and Classification
2.7. Statistical Analysis
3. Results
3.1. Characterization of the Biochar and Soil Amendments
3.2. Effect of Biochar on the Hydraulic Properties
3.3. Soil Physical Quality Indicators
3.4. Variation of the Crop Productivity with the Biochar Fraction
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mehmood, K.; Chávez Garcia, E.; Schirrmann, M.; Ladd, B.; Kammann, C.; Wrage-Mönnig, N.; Siebe, C.; Estavillo, J.M.; Fuertes-Mendizabal, T.; Cayuela, M.; et al. Biochar research activities and their relation to development and environmental quality. A meta-analysis. Agron. Sustain. Dev. 2017, 37, 22. [Google Scholar] [CrossRef] [Green Version]
- World Reference Base for Soil Resources 2014, Update 2015 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; IUSS Working Group WRB: Rome, Italy, 2015.
- Agegnehu, G.; Srivastava, A.K.; Bird, M.I. The role of biochar and biochar-compost in improving soil quality and crop performance: A review. Appl. Soil Ecol. 2017, 119, 156–170. [Google Scholar] [CrossRef]
- Boletin del ENOS N°118, Fase Actual: El Niño; IMN: San José Province, Costa Rica, 2019.
- Agbna, G.H.D. Biochar amendments improves tomato growth, yield and irrigation water use efficiency under poor silt loam soil. Int. J. Eng. Sci. Res. 2017, 5, 95–104. [Google Scholar]
- Akhtar, S.S.; Li, G.; Andersen, M.N.; Liu, F. Biochar Enhances Yield and Quality of Tomato under Reduced Irrigation. Agric. Water Manag. 2014, 138, 37–44. [Google Scholar] [CrossRef]
- Keabetswe, L.; Shao, G.C.; Cui, J.; Lu, J.; Stimela, T. A combination of biochar and regulated deficit irrigation improves tomato fruit quality: A comprehensive quality analysis. Folia Hortic. 2019, 31, 181–193. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Niu, W.; Wang, J.; Liu, L.; Zhang, M.; Xu, J. Effects of Artificial Soil Aeration Volume and Frequency on Soil Enzyme Activity and Microbial Abundance when Cultivating Greenhouse Tomato. Soil Sci. Soc. Am. J. 2016, 80, 1208–1221. [Google Scholar] [CrossRef]
- Suthar, R.G.; Wang, C.; Nunes, M.C.N.; Chen, J.; Sargent, S.A.; Bucklin, R.A.; Gao, B. Bamboo biochar pyrolyzed at low temperature improves tomato plant growth and fruit quality. Agriculture 2018, 8, 153. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.; Zhang, Z.; Zhu, C.; Zhai, Y.; Lu, P. Effect of biochar on sweet corn and soil salinity under conjunctive irrigation with brackish water in coastal saline soil. Sci. Hortic. 2019, 250, 405–413. [Google Scholar] [CrossRef]
- Glaser, B.; Lehmann, J.; Zech, W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—A review. Biol. Fertil. Soils 2002, 35, 219–230. [Google Scholar] [CrossRef]
- Cross, A.; Zwart, K.; Schackley, S.; Ruysschaert, G. The Role of Biochar in Agricultural Soils. In Biochar in European Soils and Agriculture: Science and Practice; Shackley, S., Ruysschaert, G., Zwart, K., Glaser, B., Eds.; Routledge: Abingdon, UK, 2016. [Google Scholar]
- Uzoma, K.C.; Inoue, M.; Andry, H.; Zahoor, A.; Nishihara, E. Influence of biochar application on sandy soil hydraulic properties and nutrient retention. J. Food Agric. Environ. 2011, 9, 1137–1143. [Google Scholar] [CrossRef] [Green Version]
- Hussain, M.; Farooq, M.; Nawaz, A.; Al-Sadi, A.M.; Solaiman, Z.M.; Alghamdi, S.S.; Ammara, U.; Ok, Y.S.; Siddique, K.H.M. Biochar for Crop production: Potential Benefits and Risks. J. Soils Sediments 2017, 17, 685–716. [Google Scholar] [CrossRef]
- Sohi, S.; Lopez-Capel, E.; Krull, E.; Bol, R. Biochar, Climate Change and Soil: A Review to Guide Future Research; CSIRO: Canberra, Australia, 2009. [Google Scholar]
- Verheijen, F.; Jeffery, S.; Bastos, A.C.; Van Der Velde, M.; Diafas, I. Biochar Application to Soils: A Critical Scientific Review of Effects on Soil Properties, Processes and Functions; Office for the Official Publications of the European Communities: Luxembourg, 2010; Volume 8, ISBN 9789279142932. [Google Scholar]
- Abel, S.; Peters, A.; Trinks, S.; Schonsky, H.; Facklam, M.; Wessolek, G. Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma 2013, 202–203, 183–191. [Google Scholar] [CrossRef]
- Barnes, R.T.; Gallagher, M.E.; Masiello, C.A.; Liu, Z.; Dugan, B. Biochar-induced changes in soil hydraulic conductivity and dissolved nutrient fluxes constrained by laboratory experiments. PLoS ONE 2014, 9, e108340. [Google Scholar] [CrossRef] [Green Version]
- Villagra-Mendoza, K.; Horn, R. Effect of biochar on the unsaturated hydraulic conductivity of two amended soils. Int. Agrophys. 2018, 32, 373–378. [Google Scholar] [CrossRef]
- Kumari, K.; Moldrup, P.; Paradelo, M.; Elsgaard, L.; Hauggaard-Nielsen, H.; de Jonge, L.W. Effects of bbiochar on air and water permeability and colloid and phosphorus leaching in soils from a natural calcium carbonate gradient. J. Environ. Qual. 2014, 647–657. [Google Scholar] [CrossRef]
- El-Naggar, A.; Lee, S.S.; Rinklebe, J.; Farooq, M.; Song, H.; Sarmah, A.K.; Zimmerman, A.R.; Ahmad, M.; Shaheen, S.M.; Ok, Y.S. Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma 2019, 337, 536–554. [Google Scholar] [CrossRef]
- Cornelissen, G.; Jubaedah Nurida, N.L.; Hale, S.E.; Martinsen, V.; Silvani, L.; Mulder, J. Fading positive effect of biochar on crop yield and soil acidity during five growth seasons in an Indonesian Ultisol. Sci. Total Environ. 2018, 634, 561–568. [Google Scholar] [CrossRef] [PubMed]
- Jeffery, S.; Abalos, D.; Prodana, M.; Bastos, A.C.; Van Groenigen, J.W.; Hungate, B.A.; Verheijen, F. Biochar boosts tropical but not temperate crop yields. Environ. Res. Lett. 2017, 12, 53001. [Google Scholar] [CrossRef]
- Jeffery, S.; Meinders, M.B.J.; Stoof, C.R.; Bezemer, T.M.; van de Voorde, T.F.J.; Mommer, L.; van Groenigen, J.W. Biochar application does not improve the soil hydrological function of a sandy soil. Geoderma 2015, 251–252, 47–54. [Google Scholar] [CrossRef]
- Atkinson, C.J.; Fitzgerald, J.D.; Hipps, N.A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant Soil 2010, 337, 1–18. [Google Scholar] [CrossRef]
- Hardie, M.; Clothier, B.; Bound, S.; Oliver, G.; Close, D. Does biochar influence soil physical properties and soil water availability? Plant Soil 2014, 376, 347–361. [Google Scholar] [CrossRef]
- Ruysschaert, G.; Nelisesen, V.; Postma, R.; Bruun, E.; O’Toole, A.; Hammond, J.; Rödger, J.M.; Hylander, E.; Kihlberg, T.; Zwart, K.; et al. Field applications of pure biochar in the North Sea region and across Europe. In Biochar in European Soils and Agriculture: Science and Practice; Schackley, S., Ruysschaert, G., Zwart, K., Glaser, B., Eds.; Routledge: London, UK, 2016. [Google Scholar]
- Pérez Martínez, E.Y. Evaluación de un carbonizador portátil de bajo costo en la valorización de residuos biomásicos lignocelulósicos, Licenciateship; Carrera de Ingeniería Ambiental, Instituto Tecnológico de Costa Rica: Provincia de Cartago, Costa Rica, 2015. [Google Scholar]
- Ajayi, A.E.; Horn, R. Modification of chemical and hydrophysical properties of two texturally differentiated soils due to varying magnitudes of added biochar. Soil Tillage Res. 2016, 164, 34–44. [Google Scholar] [CrossRef]
- Wang, Y.; Villamil, M.B.; Davidson, P.C.; Akdeniz, N. A quantitative understanding of the role of co-composted biochar in plant growth using meta-analysis. Sci. Total Environ. 2019, 685, 741–752. [Google Scholar] [CrossRef] [PubMed]
- Bertsch, F. La fertilidad de los suelos y su manejo; Asociacion Costarricense de la Ciencia del Suelo (ACCS): San José, Costa Rica, 1995. [Google Scholar]
- Gee, G.W.; Or, D. Particle Size Analysis. In Methods of Soil Analysis. Part 4, Physical Methods; Book Series No. 5; Dane, J.H., Topp, G.C., Eds.; Soils Science Society of America: Madison, WI, USA, 2002; pp. 255–294. [Google Scholar]
- Durner, W.; Iden, S.C.; von Unold, G. The integral suspension pressure method (ISP) for precise particle-size analysis by gravitational sedimentation. Water Resour. Res. 2017, 53, 33–48. [Google Scholar] [CrossRef]
- Zimmermann, I.; Horn, R. Impact of sample pretreatment on the results of texture analysis in different soils. Geoderma 2020, 371, 114379. [Google Scholar] [CrossRef]
- Sumner, M.E.; Miller, W.P. Cation Exchange Capacity and Exchange Coefficients. In Methods of Soil Analysis Part 3: Chemical Methods; SSA Book Series 5; Sparks, D.L., Ed.; Soil Science Society of America: Madison, WI, USA, 1996; pp. 1201–1230. [Google Scholar]
- Bertsch, F.; Ostinelli, M. Standard Operating Procedure for Soil Total Carbon: Dumas Dry Combustion Method; Food and Agriculture Organization of the United Nations, Global Soil Laboratory Network GLOSOLAN: Rome, Italy, 2019. [Google Scholar]
- Masís-Meléndez, F.; Segura-Chavarría, D.; García-González, C.A.; Quesada-Kimsey, J.; Villagra-Mendoza, K. Variability of Physical and Chemical Properties of TLUD Stove Derived Biochars. Appl. Sci. 2020, 10, 507. [Google Scholar] [CrossRef] [Green Version]
- van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef] [Green Version]
- AG Boden. Bodenkundliche Kartieranleitung, 5. Aufl.; E. Schweizerbart´sche Verlagsbuchhandlung: Stuttgart, Germany, 2005. [Google Scholar]
- Hartge, K.H.; Horn, R. Essential Soil Physics; Schweizerbart Science Publishers: Stuttgart, Germany, 2016. [Google Scholar]
- Reynolds, W.D.; Bowman, B.T.; Drury, C.F.; Tan, C.S.; Lu, X. Indicators of good soil physical quality: Density and storage parameters. Geoderma 2002, 110, 131–146. [Google Scholar] [CrossRef]
- Hutcheson, G.D. Data analysis using R and the R-commander (Rcmdr); Manchester University: Manchester, UK, 2013. [Google Scholar]
- Montiel, M.; Jiménez, V.M.; Guevara, E. Caracterización anatómica ultraestructural de las variantes “Atlántica”, “Sur” y “Cebolla” del bambú, Guadua angustifolia (Poaceae: Bambusoideae), en Costa Rica. Rev. Biol. Trop. 2006, 54, 1–12. [Google Scholar] [CrossRef]
- Osorio, L.; Trujillo, E.; Lens, F.; Ivens, J.; Verpoest, I.; Van Vuure, A.W. In-depth study of the microstructure of bamboo fibres and their relation to the mechanical properties. J. Reinf. Plast. Compos. 2018, 37, 1099–1113. [Google Scholar] [CrossRef]
- Eustáquio Moreira, L.; Seixas, M.; Ghavami, K. Lightness and efficiency of structural bars: Comparison of bamboo, steel and wood bars under compression. In Proceedings of the 18th International Conference on Non-Conventional Materials and Technologies ”Construction Materials & Technologies for Sustainability”, Nairobi, Kenya, 24–26 July 2019. [Google Scholar]
- Van Genuchten, M.V.; Leij, F.J.; Yates, S.R. The RETC Code for Quantifying the Hydraulic Functions of Unsaturated Soils; ResearchGate: Berlin, Germany, 1991. [Google Scholar]
- Diatta, A.A.; Fike, J.H.; Battaglia, M.L.; Galbraith, J.M.; Baig, M.B. Effects of biochar on soil fertility and crop productivity in arid regions: A review. Arab. J. Geosci. 2020, 13, 595. [Google Scholar] [CrossRef]
- Guo, L.; Yu, H.; Kharbach, M.; Zhang, W.; Wang, J.; Niu, W. Biochar Improves Soil-Tomato Plant, Tomato Production, and Economic Benefits under Reduced Nitrogen Application in Northwestern China. Plants 2021, 10, 759. [Google Scholar] [CrossRef] [PubMed]
- Laird, D.A.; Rogovska, N.; Garcia-Perez, M.; Collins, H.; Streubel, J.; Smith, M. Pyrolysis and biochar-opportunities for distributed production and soil quality enhancement. In Sustainable Alternative Fuel Feedstock Opportunities, Challenges and Roadmaps for Six U.S. Regions; Newell, K., Ed.; United States Department of Agriculture (USDA): Washington, DC, USA, 2011. [Google Scholar]
- Yargicoglu, E.N.; Sadasivam, B.Y.; Reddy, K.R.; Spokas, K. Physical and chemical characterization of waste wood derived biochars. Waste Manag. 2015, 36, 256–268. [Google Scholar] [CrossRef] [PubMed]
- Fidel, R.B.; Laird, D.A.; Thompson, M.L.; Lawrinenko, M. Characterization and quantification of biochar alkalinity. Chemosphere 2017, 167, 367–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, J.H.; Xu, R.K.; Qian, W.; Wang, R.H. Comparison of the ameliorating effects on an acidic ultisol between four crop straws and their biochars. J. Soils Sediments 2011, 11, 741–750. [Google Scholar] [CrossRef]
- Cornelissen, G.; Martinsen, V.; Shitumbanuma, V.; Alling, V.; Breedveld, G.; Rutherford, D.; Sparrevik, M.; Hale, S.; Obia, A.; Mulder, J. Biochar Effect on Maize Yield and Soil Characteristics in Five Conservation Farming Sites in Zambia. Agronomy 2013, 3, 256–274. [Google Scholar] [CrossRef] [Green Version]
- Krismawati, A.; Arifin, Z.; Hermanto, C.; Tafakresnanto, C. Application of biochar to improve maize performance on volcanic and sediment soil based parent materials in dry land. In Proceedings of the 1st International Conference on Sustainable Tropical Land Management, Bogor, Indonesia, 16–18 September 2020; Volume 648. [Google Scholar] [CrossRef]
- Novak, J.M.; Busscher, W.J.; Laird, D.L.; Ahmedna, M.; Watts, D.W.; Niandou, M.A. Impact of Biochar Amendment on Soil Fertility of a Southeastern Coastal Plain Soil. Soil Sci. 2009, 174, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Liang, B.; Lehmann, J.; Solomon, D.; Kinyangi, J.; Grossman, J.; O’Neill, B.; Skjemstad, J.O.; Thies, J.; Luizão, F.J.; Petersen, J.; et al. Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J. 2006, 70, 1719–1730. [Google Scholar] [CrossRef] [Green Version]
- Masiello, C.A.; Dugan, B.; Brewer, C.E.; Spokas, K.; Novak, J.M.; Liu, Z.; Sorrenti, G. Biochar effects on soil hydrology. In Biochar for Environmental Management Science, Technology and Implementation; Johannes Lehmann, S.J., Ed.; Routledge: London, UK, 2014; pp. 541–560. [Google Scholar]
- Ajayi, A.E.; Horn, R. Comparing the potentials of clay and biochar in improving water retention and mechanical resilience of sandy soil. Int. Agrophysics 2016, 30, 391–399. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Amonette, J.E.; Flury, M. Effect of biochar and biochar particle size on plant-available water of sand, silt loam, and clay soil. Soil Tillage Res. 2021, 212, 104992. [Google Scholar] [CrossRef]
- Głąb, T.; Palmowska, J.; Zaleski, T.; Gondek, K. Effect of biochar application on soil hydrological properties and physical quality of sandy soil. Geoderma 2016, 281, 11–20. [Google Scholar] [CrossRef]
- Castellini, M.; Giglio, L.; Niedda, M.; Palumbo, A.D.; Ventrella, D. Impact of biochar addition on the physical and hydraulic properties of a clay soil. Soil Tillage Res. 2015, 154, 1–13. [Google Scholar] [CrossRef]
- Reynolds, W.D.; Drury, C.F.; Tan, C.S.; Fox, C.A.; Yang, X.M. Use of indicators and pore volume-function characteristics to quantify soil physical quality. Geoderma 2009, 152, 252–263. [Google Scholar] [CrossRef]
- Reynolds, W.D.; Drury, C.F.; Yang, X.M.; Tan, C.S. Optimal soil physical quality inferred through structural regression and parameter interactions. Geoderma 2008, 146, 466–474. [Google Scholar] [CrossRef]
- Chen, C.; Wang, R.; Shang, J.; Liu, K.; Irshad, M.K.; Hu, K.; Arthur, E. Effect of Biochar Application on Hydraulic Properties of Sandy Soil under Dry and Wet Conditions. Vadose Zone J. 2018, 17, 180101. [Google Scholar] [CrossRef] [Green Version]
Fertilizer | Doses per Week During Periods of Four Weeks kg | Total Dose kg | |||
---|---|---|---|---|---|
1–4 | 5–8 | 9–12 | 13–16 | ||
12:42:12 | 0.000 | 0.020 | 0.000 | 0.000 | 0.080 |
10:5:25 | 0.100 | 0.280 | 0.840 | 0.750 | 7.880 |
Magnesium sulfate | 0.040 | 0.160 | 0.220 | 0.255 | 2.700 |
Potassium sulfate | 0.000 | 0.080 | 0.140 | 0.150 | 1.480 |
Calcium nitrate | 0.033 | 0.510 | 0.490 | 0.500 | 6.132 |
BPS (mm) | C | H | O | N | S | Ash | C:N | O:C | H:C | SSA | SD | BD | pH |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
% | m2/g | g/cm3 | |||||||||||
>2.00 | 57.5 a | 5.1 a | 19.3 a | 0.4 a | 7.2 a | 10.4 a | 133.6 ab | 0.3 a | 1.1 a | 1.4 * | 1.4 | 9.7 | |
1.00 | 38.1 b | 4.3 a | 42.9 a | 0.4 a | 6.8 a | 7.5 b | 108.9 ab | 0.9 a | 1.4 a | 0.8 * | 1.6 | ||
0.50 | 48.6 a | 4.0 a | 35.9 a | 0.3 a | 7.4 a | 9.7 ab | 135.0 ab | 0.7 a | 1.1 a | 0.4 * | 1.4 | 0.29 ± 0.01 | |
0.25 | 58.1 a | 4.9 a | 22.1 a | 0.4 a | 5.8 a | 8.7 ab | 159.4 b | 0.3 a | 1.0 a | 0.3 * | 1.5 | ||
0.125 | 69.5 c | 4.8 a | 23.1 a | 0.5 ab | 7.0 a | 9.9 ab | 128.7 ab | 0.4 a | 1.1 a | 1.0 * | 1.5 | ||
0.063 | 43.4 a | 4.2 a | 32.3 a | 0.6 b | 5.8 a | 13.7 c | 76.0 a | 0.6 a | 1.2 a | 1.4 * | 1.5 |
Properties | Units | Treatments | |||||||
---|---|---|---|---|---|---|---|---|---|
SiL0 | SiL1 | SiL2.5 | SiL5 | SL0 | SL1 | SL2.5 | SL5 | ||
pH (H2O) | 6.1 | 6.1 | 6.4 | 6.3 | 5.0 | 5.3 | 5.2 | 5.6 | |
Acidity | cmol(+)/L | 0.13 | 0.12 | 0.11 | 0.11 | 0.74 | 0.31 | 0.48 | 0.17 |
Ca2+ | 11.9 | 11.4 | 12.1 | 11.6 | 12.1 | 13.7 | 12.8 | 12.6 | |
Mg2+ | 1.7 | 1.7 | 1.8 | 1.9 | 1.5 | 1.7 | 1.7 | 1.6 | |
K+ | 1.1 | 1.6 | 1.7 | 2.0 | 1.7 | 1.7 | 1.9 | 2.5 | |
ECEC | 14.9 | 14.8 | 15.7 | 15.6 | 16.1 | 17.4 | 16.9 | 16.8 | |
CEC | 8.3 ± 0.2 a | 8.1 ± 0.2 a | 8.9 ± 0.3 b | 8.7 ± 0.1 ab | 10.8 ± 0.2 c | 11.0 ± 0.2 c | 11.1 ± 0.1 c | 10.8 ± 0.1 c | |
AS% | % | 0.9 | 0.8 | 0.7 | 0.7 | 5 | 2 | 3 | 1 |
EC | mS/cm | 0.9 | 0.5 | 0.5 | 0.8 | 1.4 | 1.4 | 1.0 | 0.9 |
AWC | cm3/100 cm3 | 35.3 ± 1.9 a | 36.0 ± 3.2 a | 26.4 ± 3.5 b | 27.9 ± 0.6 b | 22.0 ± 2.5 cb | 21.1 ± 0.6 c | 24.1 ± 1.5 cb | 25.8 ± 2.0 cb |
AC | 16.3 ± 2.4 a | 15.5 ± 4.1 a | 14.6 ± 3.9 a | 15.1 ± 0.9 a | 18.4 ± 1.9 a | 25.3 ± 2.0 b | 26.3 ± 1.3 b | 25.5 ± 3.6 b | |
FC | 58.1 ± 4.2 ab | 59.2 ± 3.9 ab | 56.1 ± 3.5 a | 64.5 ± 4.9 b | 39.4 ± 3.4 c | 40.2 ± 3.5 c | 41.9 ± 1.5 c | 43.0 ± 3.9 c | |
BD | g/cm3 | 0.8 ± 0.07 a | 0.8 ± 0.08 a | 0.8 ± 0.07 a | 0.7 ± 0.05 a | 0.8 ± 0.05 b | 0.8 ± 0.05 b | 0.9 ± 0.01 b | 0.8 ± 0.06 b |
Sand | % | 36 | 56 | ||||||
Silt | 59 | 35 | |||||||
Clay | 4 | 8 | |||||||
Textural class | Silt loam (SiL) | Sandy loam (SL) |
Treatment | Ks | n | R2 | ||
---|---|---|---|---|---|
cm/Day | cm3/cm3 | ||||
SiL0 | 655.0 | 0.71338 | 0.02210 | 1.52698 | 0.9960 |
SiL1 | 635.2 | 0.73694 | 0.02568 | 1.49074 | 0.9930 |
SiL2.5 | 480.2 | 0.69733 | 0.02374 | 1.70873 | 0.9960 |
SiL5 | 747.0 | 0.69188 | 0.01050 | 1.88584 | 0.9840 |
SL0 | 550.2 | 0.58293 | 0.09383 | 1.34821 | 0.9850 |
SL1 | 968.7 | 0.69977 | 0.14182 | 1.42013 | 0.9900 |
SL2.5 | 832.6 | 0.67271 | 0.11994 | 1.35060 | 0.9870 |
SL5 | 1086.3 | 0.71848 | 0.13004 | 1.37440 | 0.9900 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villagra-Mendoza, K.; Masís-Meléndez, F.; Quesada-Kimsey, J.; García-González, C.A.; Horn, R. Physicochemical Changes in Loam Soils Amended with Bamboo Biochar and Their Influence in Tomato Production Yield. Agronomy 2021, 11, 2052. https://doi.org/10.3390/agronomy11102052
Villagra-Mendoza K, Masís-Meléndez F, Quesada-Kimsey J, García-González CA, Horn R. Physicochemical Changes in Loam Soils Amended with Bamboo Biochar and Their Influence in Tomato Production Yield. Agronomy. 2021; 11(10):2052. https://doi.org/10.3390/agronomy11102052
Chicago/Turabian StyleVillagra-Mendoza, Karolina, Federico Masís-Meléndez, Jaime Quesada-Kimsey, Carlos A. García-González, and Rainer Horn. 2021. "Physicochemical Changes in Loam Soils Amended with Bamboo Biochar and Their Influence in Tomato Production Yield" Agronomy 11, no. 10: 2052. https://doi.org/10.3390/agronomy11102052
APA StyleVillagra-Mendoza, K., Masís-Meléndez, F., Quesada-Kimsey, J., García-González, C. A., & Horn, R. (2021). Physicochemical Changes in Loam Soils Amended with Bamboo Biochar and Their Influence in Tomato Production Yield. Agronomy, 11(10), 2052. https://doi.org/10.3390/agronomy11102052