Strawberry WRKY Transcription Factor WRKY50 Is Required for Resistance to Necrotrophic Fungal Pathogen Botrytis cinerea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal and Plant Materials
2.2. RNA Isolation and Gene Expression Analysis
2.3. Gene Cloning and Vector Construction
2.4. Bioinformatics Analysis of FvWRKY50
2.5. Subcellular Localization Analysis of FvWRKY50
2.6. Strawberry Fruit Infiltration and Sample Treatment
3. Results
3.1. Analysis of the Expression of FvWRKY50 in Response to B. cinerea Infection
3.2. Analysis of Sequence and Phylogenesis of FvWRKY50
3.3. Analysis of Tissue Expression Pattern and Subcellular Localization of FvWRKY50
3.4. Analysis of Promoter of FvWRKY50
3.5. Effect of FvWRKY50 in Regulation of Defense to B. cinerea
3.6. Effect of FvWRKY50 on the Transcript Levels of Disease Resistance Genes
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Petrasch, S.; Knapp, S.J.; van Kan, J.A.L.; Blanco-Ulate, B. Grey mould of strawberry, a devastating disease caused by the ubiquitous necrotrophic fungal pathogen Botrytis cinerea. Mol. Plant Pathol. 2019, 20, 877–892. [Google Scholar] [CrossRef] [Green Version]
- Koike, S.T.; Gordon, T.R. Management of Fusarium wilt of strawberry. Crop. Prot. 2015, 73, 67–72. [Google Scholar] [CrossRef]
- Zhang, Q.Y.; Zhang, L.Q.; Song, L.L.; Duan, K.; Li, N.; Wang, Y.X.; Gao, Q.H. The different interactions of Colletotrichum gloeosporioides with two strawberry varieties and the involvement of salicylic acid. Hortic. Res. 2016, 3, 16007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vielba-Fernandez, A.; Polonio, A.; Ruiz-Jimenez, L.; de Vicente, A.; Perez-Garcia, A.; Fernandez-Ortuno, D. Fungicide resistance in powdery mildew fungi. Microorganisms 2020, 8, 1431. [Google Scholar] [CrossRef]
- Li, H.; Chen, Y.; Zhang, Z.Q.; Li, B.Q.; Qin, G.Z.; Tian, S.P. Pathogenic mechanisms and control strategies of Botrytis cinerea causing post-harvest decay in fruits and vegetables. Food Qual. Saf. Oxf. 2018, 2, 111–119. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.R.; Dai, D.J.; Wang, H.D.; Zhang, C.Q. Rapid on-site evaluation of the development of resistance to quinone outside inhibitors in Botrytis cinerea. Sci. Rep. 2017, 7, 13861. [Google Scholar] [CrossRef] [PubMed]
- Droby, S.; Wisniewski, M.; Macarisin, D.; Wilson, C. Twenty years of postharvest biocontrol research: Is it time for a new paradigm? Postharvest Biol. Technol. 2009, 52, 137–145. [Google Scholar] [CrossRef]
- Ng, D.W.; Abeysinghe, J.K.; Kamali, M. Regulating the Regulators: The control of transcription factors in plant defense signaling. Int. J. Mol. Sci. 2018, 19, 3737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amorim, L.L.B.; da Fonseca Dos Santos, R.; Neto, J.P.B.; Guida-Santos, M.; Crovella, S.; Benko-Iseppon, A.M. Transcription factors involved in plant resistance to pathogens. Curr. Protein Pept. Sci. 2017, 18, 335–351. [Google Scholar] [CrossRef]
- Seo, E.; Choi, D. Functional studies of transcription factors involved in plant defenses in the genomics era. Brief. Funct. Genom. 2015, 14, 260–267. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.J.; Ma, S.H.; Ye, N.H.; Jiang, M.; Cao, J.S.; Zhang, J.H. WRKY transcription factors in plant responses to stresses. J. Integr. Plant Biol. 2017, 59, 86–101. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, P.; Reddy, M.P.; Chikara, J. WRKY: Its structure, evolutionary relationship, DNA-binding selectivity, role in stress tolerance and development of plants. Mol. Biol. Rep. 2011, 38, 3883–3896. [Google Scholar] [CrossRef]
- Ishiguro, S.; Nakamura, K. Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5′ upstream regions of genes coding for sporamin and beta-amylase from sweet potato. Mol. Genet. Genom. 1994, 244, 563–571. [Google Scholar] [CrossRef] [PubMed]
- Ulker, B.; Somssich, I.E. WRKY transcription factors: From DNA binding towards biological function. Curr. Opin. Plant Biol. 2004, 7, 491–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Y.; Ai, C.-r.; Jing, S.-j.; Yu, D.-q. Research progress on functional analysis of rice WRKY genes. Rice Sci. 2010, 17, 60–72. [Google Scholar] [CrossRef]
- Wei, K.F.; Chen, J.; Chen, Y.F.; Wu, L.J.; Xie, D.X. Molecular phylogenetic and expression analysis of the complete WRKY transcription factor family in maize. DNA Res. 2012, 19, 153–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, S.; Gao, Y.; Liu, J.; Peng, X.; Niu, X.; Fei, Z.; Cao, S.; Liu, Y. Genome-wide analysis of WRKY transcription factors in Solanum lycopersicum. Mol. Genet. Genom. 2012, 287, 495–513. [Google Scholar] [CrossRef]
- Guo, C.; Guo, R.; Xu, X.; Gao, M.; Li, X.; Song, J.; Zheng, Y.; Wang, X. Evolution and expression analysis of the grape (Vitis vinifera L.) WRKY gene family. J. Exp. Bot. 2014, 65, 1513–1528. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhu, W.; Fang, L.; Sun, X.; Su, L.; Liang, Z.; Wang, N.; Londo, J.P.; Li, S.; Xin, H. Genome-wide identification of WRKY family genes and their response to cold stress in Vitis vinifera. BMC Plant Biol. 2014, 14, 103. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Vannozzi, A.; Wang, G.; Liang, Y.H.; Tornielli, G.B.; Zenoni, S.; Cavallini, E.; Pezzotti, M.; Cheng, Z.M. Genome and transcriptome analysis of the grapevine (Vitis vinifera L.) WRKY gene family. Hortic. Res. 2014, 1, 14016. [Google Scholar] [CrossRef] [Green Version]
- Meng, D.; Li, Y.; Bai, Y.; Li, M.; Cheng, L. Genome-wide identification and characterization of WRKY transcriptional factor family in apple and analysis of their responses to waterlogging and drought stress. Plant Physiol. Biol. 2016, 103, 71–83. [Google Scholar] [CrossRef]
- Zhou, H.; Li, Y.; Zhang, Q.; Ren, S.; Shen, Y.; Qin, L.; Xing, Y. Genome-wide analysis of the expression of wrky family genes in different developmental stages of wild strawberry (Fragaria vesca) fruit. PLoS ONE 2016, 11, e0154312. [Google Scholar] [CrossRef]
- Chen, P.; Liu, Q.Z. Genome-wide characterization of the WRKY gene family in cultivated strawberry (Fragaria × ananassa Duch.) and the importance of several group III members in continuous cropping. Sci. Rep. 2019, 9, 8423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eulgem, T.; Rushton, P.J.; Robatzek, S.; Somssich, I.E. The WRKY superfamily of plant transcription factors. Trends Plant Sci. 2000, 5, 199–206. [Google Scholar] [CrossRef]
- Xu, X.; Chen, C.; Fan, B.; Chen, Z. Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell 2006, 18, 1310–1326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, Z.; Qamar, S.A.; Chen, Z.; Mengiste, T. Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J. 2006, 48, 592–605. [Google Scholar] [CrossRef]
- Li, J.; Brader, G.; Palva, E.T. The WRKY70 transcription factor: A node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 2004, 16, 319–331. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Hong, Y.B.; Zhang, Y.F.; Li, X.H.; Huang, L.; Zhang, H.J.; Li, D.Y.; Song, F.M. Tomato WRKY transcriptional factor SlDRW1 is required for disease resistance against Botrytis cinerea and tolerance to oxidative stress. Plant Sci. 2014, 227, 145–156. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, J.; Zheng, Z.; Fan, B.; Yu, J.Q.; Chen, Z. Characterization of the promoter and extended C-terminal domain of Arabidopsis WRKY33 and functional analysis of tomato WRKY33 homologues in plant stress responses. J. Exp. Bot. 2015, 66, 4567–4583. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Zhang, Z.; Xu, Z.; Wang, L.; Chen, C.; Ren, Z. Overexpression of SlMYB75 enhances resistance to Botrytis cinerea and prolongs fruit storage life in tomato. Plant Cell Rep. 2021, 40, 43–58. [Google Scholar] [CrossRef] [PubMed]
- Shu, P.; Zhang, S.; Li, Y.; Wang, X.; Yao, L.; Sheng, J.; Shen, L. Over-expression of SlWRKY46 in tomato plants increases susceptibility to Botrytis cinerea by modulating ROS homeostasis and SA and JA signaling pathways. Plant Physiol. Biol. 2021, 166, 1–9. [Google Scholar] [CrossRef]
- Higuera, J.J.; Garrido-Gala, J.; Lekhbou, A.; Arjona-Girona, I.; Amil-Ruiz, F.; Mercado, J.A.; Pliego-Alfaro, F.; Munoz-Blanco, J.; Lopez-Herrera, C.J.; Caballero, J.L. The strawberry fawrky1 transcription factor negatively regulates resistance to colletotrichum acutatum in fruit upon infection. Front. Plant Sci. 2019, 10, 480. [Google Scholar] [CrossRef] [PubMed]
- Jia, S.Z.; Wang, Y.H.; Zhang, G.; Yan, Z.M.; Cai, Q.S. Strawberry FaWRKY25 transcription factor negatively regulated the resistance of strawberry fruits to Botrytis cinerea. Genes 2021, 12, 56. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.H.; Zhao, F.X.; Zhang, G.; Jia, S.Z.; Yan, Z.M. FaWRKY11 transcription factor positively regulates resistance to Botrytis cinerea in strawberry fruit. Sci. Hortic. 2021, 279, 109893. [Google Scholar] [CrossRef]
- Wei, W.; Cui, M.Y.; Hu, Y.; Gao, K.; Xie, Y.G.; Jiang, Y.; Feng, J.Y. Ectopic expression of FvWRKY42, a WRKY transcription factor from the diploid woodland strawberry (Fragaria vesca), enhances resistance to powdery mildew, improves osmotic stress resistance, and increases abscisic acid sensitivity in Arabidopsis. Plant Sci. 2018, 275, 60–74. [Google Scholar] [CrossRef] [PubMed]
- Shulaev, V.; Sargent, D.J.; Crowhurst, R.N.; Mockler, T.C.; Folkerts, O.; Delcher, A.L.; Jaiswal, P.; Mockaitis, K.; Liston, A.; Mane, S.P.; et al. The genome of woodland strawberry (Fragaria vesca). Nat. Genet. 2011, 43, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Edger, P.P.; Poorten, T.J.; VanBuren, R.; Hardigan, M.A.; Colle, M.; McKain, M.R.; Smith, R.D.; Teresi, S.J.; Nelson, A.D.L.; Wai, C.M.; et al. Origin and evolution of the octoploid strawberry genome. Nat. Genet. 2019, 51, 765. [Google Scholar] [CrossRef] [Green Version]
- Xiong, J.S.; Zhu, H.Y.; Bai, Y.B.; Liu, H.; Cheng, Z.M. RNA sequencing-based transcriptome analysis of mature strawberry fruit infected by necrotrophic fungal pathogen Botrytis cinerea. Physiol. Mol. Plant Pathol. 2018, 104, 77–85. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Mao, W.; Chen, Y.; Wang, W.; Dai, Z.; Dou, Z.; Zhang, K.; Wei, L.; Li, T.; Zeng, B.; et al. Optimization and standardization of transient expression assays for gene functional analyses in strawberry fruits. Hortic. Res. 2019, 6, 53. [Google Scholar] [CrossRef] [Green Version]
- Schindelin, J.; Rueden, C.T.; Hiner, M.C.; Eliceiri, K.W. The ImageJ ecosystem: An open platform for biomedical image analysis. Mol. Reprod. Dev. 2015, 82, 518–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujita, Y.; Fujita, M.; Shinozaki, K.; Yamaguchi-Shinozaki, K. ABA-mediated transcriptional regulation in response to osmotic stress in plants. J. Plant Res. 2011, 124, 509–525. [Google Scholar] [CrossRef] [PubMed]
- Weisshaar, B.; Armstrong, G.A.; Block, A.; da Costa e Silva, O.; Hahlbrock, K. Light-inducible and constitutively expressed DNA-binding proteins recognizing a plant promoter element with functional relevance in light responsiveness. EMBO J. 1991, 10, 1777–1786. [Google Scholar] [CrossRef] [PubMed]
- Olive, M.R.; Walker, J.C.; Singh, K.; Dennis, E.S.; Peacock, W.J. Functional properties of the anaerobic responsive element of the maize Adh1 gene. Plant Mol. Biol. 1990, 15, 593–604. [Google Scholar] [CrossRef]
- Roy, S.; Choudhury, S.R.; Singh, S.K.; Das, K.P. Functional analysis of light-regulated promoter region of AtPol lambda gene. Planta 2012, 235, 411–432. [Google Scholar] [CrossRef]
- Lescot, M.; Dehais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Van de Peer, Y.; Rouze, P.; Rombauts, S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef]
- Turner, J.G.; Ellis, C.; Devoto, A. The jasmonate signal pathway. Plant Cell 2002, 14, S153–S164. [Google Scholar] [CrossRef] [Green Version]
- Chattopadhyay, S.; Ang, L.H.; Puente, P.; Deng, X.W.; Wei, N. Arabidopsis bZIP protein HY5 directly interacts with light-responsive promoters in mediating light control of gene expression. Plant Cell 1998, 10, 673–683. [Google Scholar] [CrossRef] [Green Version]
- Dunn, M.A.; White, A.J.; Vural, S.; Hughes, M.A. Identification of promoter elements in a low-temperature-responsive gene (blt4.9) from barley (Hordeum vulgare L.). Plant Mol. Biol. 1998, 38, 551–564. [Google Scholar] [CrossRef]
- Xu, Z.W.; Wang, M.P.; Guo, Z.T.; Zhu, X.F.; Xia, Z.L. Identification of a 119-bp promoter of the maize sulfite oxidase gene (zmso) that confers high-level gene expression and aba or drought inducibility in transgenic plants. Int. J. Mol. Sci. 2019, 20, 3326. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.M.; Yan, J.W.; Yan, H.X.; Wang, F. Characterization of a strong green tissue-specific motif in rice photosystem I gene promoter Ppsak. Plant Biotechnol. Rep. 2017, 11, 87–95. [Google Scholar] [CrossRef]
- Rouster, J.; Leah, R.; Mundy, J.; CameronMills, V. Identification of a methyl jasmonate-responsive region in the promoter of a lipoxygenase 1 gene expressed in barley grain. Plant J. 1997, 11, 513–523. [Google Scholar] [CrossRef]
- Asao, H.; Yoshida, K.; Nishi, Y.; Shinmyo, A. Wound-responsive cis-element in the 5 '-upstream region of cucumber ascorbate oxidase gene. Biosci. Biotechol. Biochem. 2003, 67, 271–277. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, T.; Kobayashi, D.; Kariu, T.; Tahara, M.; Hada, K.; Kouzuma, Y.; Kimura, M. Genomic cloning of ribonucleases in Nicotiana glutinosa leaves, as induced in response to wounding or to TMV-infection, and characterization of their promoters. Biosci. Biotechnol. Biochem. 2003, 67, 2574–2583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palm, C.J.; Costa, M.A.; An, G.H.; Ryan, C.A. Wound-inducible nuclear-protein binds dna fragments that regulate a proteinase inhibitor-ii gene from potato. Proc. Natl. Acad. Sci. USA 1990, 87, 603–607. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.R.; Chen, L.G.; Wang, H.P.; Zhang, L.P.; Wang, F.; Yu, D.Q. Arabidopsis transcription factor WRKY8 functions antagonistically with its interacting partner VQ9 to modulate salinity stress tolerance. Plant J. 2013, 74, 730–745. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, H.; Li, Y.; Pan, J.; Hu, Y.; Yu, D. Arabidopsis VQ10 interacts with WRKY8 to modulate basal defense against Botrytis cinerea. J. Integr. Plant Biol. 2018, 60, 956–969. [Google Scholar] [CrossRef]
- Eckardt, N.A. Induction of phytoalexin biosynthesis: wrky33 is a target of MAPK signaling. Plant Cell 2011, 23, 1190. [Google Scholar] [CrossRef]
- Chen, X.; Li, C.; Wang, H.; Guo, Z. WRKY transcription factors: Evolution, binding, and action. Phytopathol. Res. 2019, 1, 13. [Google Scholar] [CrossRef]
- Jiang, Y.; Yu, D. The WRKY57 transcription factor affects the expression of jasmonate ZIM-domain genes transcriptionally to compromise Botrytis cinerea resistance. Plant Physiol. 2016, 171, 2771–2782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saavedra, G.M.; Sanfuentes, E.; Figueroa, P.M.; Figueroa, C.R. Independent preharvest applications of methyl jasmonate and chitosan elicit differential upregulation of defense-related genes with reduced incidence of gray mold decay during postharvest storage of Fragaria chiloensis fruit. Int. J. Mol. Sci. 2017, 18, 1420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Cis-Element | Position | Sequences | Function |
---|---|---|---|
ABRE | - 789 (-), - 546 (+), - 588 (+), - 547 (+, -) | ACGTG/TACGTG/CACGTA | Cis-acting element involved in the abscisic acid responsiveness [43] |
ACE | - 1196 (+), - 429 (+) | CTAACGTATT | Cis-acting element involved in light responsiveness [44] |
ARE | - 1414 (+), - 661 (+), - 899 (-), - 214 (-) | AAACCA | cis-acting regulatory element essential for the anaerobic induction [45] |
ATCT-motif | - 561 (+) | AATCTAATCC | Part of a conserved DNA module involved in light responsiveness [46] |
CCGTCC motif | - 1027 (-) | CCGTCC | Cis-acting regulatory element related to meristem specific activation [47] |
CAT-box | - 986 (-) | GCCACT | Cis-acting regulatory element related to meristem expression [47] |
CGTCA-motif | - 1462 (-), - 94 (-), - 797 (+) | CGTCA | Cis-acting regulatory element involved in the MeJA-responsiveness [48] |
G-Box | - 789 (+), - 589 (-), - 1870 (-), - 547 (+) | CACGTT/CACGAC/ TACGTG | Cis-acting regulatory element involved in light responsiveness [49] |
GATA-motif | - 1031 (+) | GATAGGA | Part of a light responsive element [49] |
GC-motif | - 715 (-) | CCCCCG | Enhancer-like element involved in anoxic specific inducibility [45] |
GT1-motif | - 1458 (+) | GGTTAA | Light responsive element [49] |
LTR | - 1450 (-), - 1388 (+) | CCGAAA | Cis-acting element involved in low-temperature responsiveness [50] |
MBS | - 1704 (+) | CAACTG | MYB binding site involved in drought-inducibility [47] |
MYB | - 1444 (-), - 972 (-) | CAACCA | MYB binding site [51] |
MYC | - 1423 (+), - 257 (-), - 348 (-), - 760 (-), - 288 (-) | CAATTG | MYC binding site [47] |
STRE | - 1995 (+), - 397 (+), - 1491 (-), - 248 (+) | AGGGG | Stress response elements [47] |
TCT-motif | - 416 (-) | TCTTAC | Part of a light responsive element [52] |
TGACG-motif | - 1462 (+), - 94 (+), - 797 (-) | TGACG | Cis-acting regulatory element involved in the MeJA-responsiveness [53] |
WER3 | - 1124 (-) | CCACCT | Wound-responsive elements [54] |
WUN-motif | - 1561 (+), - 948 (+), - 1060 (+) | AAATTACTA/AAATTACT/ AAATTTCCT | Wound-responsive element [55] |
chs-CMA1a | - 945 (+) | TTACTTAA | Part of a light responsive element [47] |
W-box | - 1164 (+), - 1135 (-), - 645 (-), - 285 (+) | TTGACT | Wounding and pathogen responsiveness [56] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, C.; Xiong, J.; Liang, M.; Liu, X.; Lai, X.; Bai, Y.; Cheng, Z. Strawberry WRKY Transcription Factor WRKY50 Is Required for Resistance to Necrotrophic Fungal Pathogen Botrytis cinerea. Agronomy 2021, 11, 2377. https://doi.org/10.3390/agronomy11122377
Ma C, Xiong J, Liang M, Liu X, Lai X, Bai Y, Cheng Z. Strawberry WRKY Transcription Factor WRKY50 Is Required for Resistance to Necrotrophic Fungal Pathogen Botrytis cinerea. Agronomy. 2021; 11(12):2377. https://doi.org/10.3390/agronomy11122377
Chicago/Turabian StyleMa, Chuangju, Jinsong Xiong, Morong Liang, Xiaoyu Liu, Xiaodong Lai, Yibo Bai, and Zongming Cheng. 2021. "Strawberry WRKY Transcription Factor WRKY50 Is Required for Resistance to Necrotrophic Fungal Pathogen Botrytis cinerea" Agronomy 11, no. 12: 2377. https://doi.org/10.3390/agronomy11122377
APA StyleMa, C., Xiong, J., Liang, M., Liu, X., Lai, X., Bai, Y., & Cheng, Z. (2021). Strawberry WRKY Transcription Factor WRKY50 Is Required for Resistance to Necrotrophic Fungal Pathogen Botrytis cinerea. Agronomy, 11(12), 2377. https://doi.org/10.3390/agronomy11122377