Chemical Composition of Fir, Pine and Thyme Essential Oils and Their Effect on Onion (Allium cepa L.) Seed Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Analysis of the Chemical Compositions of the Essential Oils
2.2.2. Seed Treatment
2.2.3. Seed Germination Test
2.2.4. Seed Vigour Test
2.2.5. Seed Health Test
2.2.6. Data Analysis
3. Results
3.1. Chemical Compositions of the Essential Oils
3.2. Seed Quality Evaluation
3.2.1. Seed Germination and Vigour
3.2.2. Seed Health
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Richardson, M.J. An Annotated List of Seed-borne Diseases, 4th ed.; International Seed Testing Association: Zürich, Switzerland, 1990; p. 351. [Google Scholar]
- Kwaśna, H. Occurrence of Alternaria species in Poland. In Alternaria: Biology, Plant Diseases and Metabolites, 1st ed.; Chełkowski, J., Visconti, A., Eds.; Elsevier Science Publishers B.V.: Amsterdam, The Netherlands; London, UK; New York, NY, USA; Tokyo, Japanese, 1992; pp. 301–336. [Google Scholar]
- Agrios, G.N. Plant Pathology, 4th ed.; Harcourt Academic Press: San Diego, CA, USA, 1997; p. 635. [Google Scholar]
- El-Mohamedy, R.S.R. Plant Essential Oils for Controlling Plant Pathogenic Fungi. In Volatiles and Food Security, 1st ed.; Choudhary, D.K., Sharma, A.K., Agarwal, P., Varma, A., Tuteja, N., Eds.; Springer Nature: Singapore, 2017; pp. 171–198. [Google Scholar] [CrossRef]
- Hudaib, M.; Speroni, E.; Di Pietra, A.M.; Cavrini, V. GC/MS evaluation of thyme (Thymus vulgaris L.) oil composition and variations during the vegetative cycle. J. Pharm. Biomed. Anal. 2002, 29, 691–700. [Google Scholar] [CrossRef]
- Maciąg, A.; Milaković, D.; Christensen, H.H.; Antolović, V.; Kalemba, D. Essential oil composition and plant-insect relations in Scots pine (Pinus sylvestris L.). Food Chem. Biotechnol. 2007, 71, 71–95. [Google Scholar]
- Chalchat, J.C.; Sidibé, L.; Maksimovic, Z.A.; Petrovic, S.D.; Gorunovic, M.S. Essential oil of Abies alba Mill., Pinaceae, from the pilot production in Montenegro. J. Essent. Oil Res. 2001, 13, 288–289. [Google Scholar] [CrossRef]
- Ochocka, J.R.; Asztemborska, M.; Sybilska, D.; Langa, W. Determination of enantiomers of terpenic hydrocarbons in essential oils obtained from species of Pinus and Abies. Pharm. Biol. 2002, 40, 395–399. [Google Scholar] [CrossRef]
- Judzentiene, A.; Kupcinskiene, E. Chemical composition on essential oils from needles of Pinus sylvestris L. grown in Northern Lithuania. J. Essent. Oil Res. 2008, 20, 26–29. [Google Scholar] [CrossRef]
- Alexa, E.; Sumalan, R.M.; Danciu, C.; Obistioiu, D.; Negrea, M.; Poiana, M.A.; Rus, C.; Radulov, I.; Pop, G.; Dehelean, C. Synergistic antifungal, allelopathic and anti-proliferative potential of Salvia officinalis L., and Thymus vulgaris L. essential oils. Molecules 2018, 23, 185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharif-Rad, J.; Sureda, A.; Tenore, G.C.; Daglia, M.; Sharif-Rad, M.; Valussi, M.; Tundis, R.; Sharif-Rad, M.; Loizzo, M.R.; Ademiluyi, A.O.; et al. Biological activities of essential oils: From plant chemoecology to traditional healing systems. Molecules 2017, 22, 70. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Chen, J.; Zheng, X.; Liu, Q. Thyme oil to control Alternaria alternata in vitro and in vivo as fumigant and contact treatments. Food Control 2011, 22, 78–81. [Google Scholar] [CrossRef]
- Omidbeygi, M.; Barzegar, M.; Hamidi, Z.; Naghdibadi, H. Antifungal activity of thyme, summer savory and clove essential oils against Aspergillus flavus in liquid medium and tomato paste. Food Control 2007, 18, 1518–1523. [Google Scholar] [CrossRef]
- Abo-Elyousr, K.A.M.; Seleim, M.A.A.; Abd-El-Moneem, K.M.H.; Saead, F.A. Integrated effect of Glomus mosseae and selected plant oils on the control of bacterial wilt disease of tomato. Crop Prot. 2014, 66, 67–71. [Google Scholar] [CrossRef]
- Anžlovar, S.; Likar, M.; Koce, J.D. Antifungal potential of thyme essential oil as a preservative for storage of wheat seeds. Acta Bot. Croat. 2017, 76, 64–71. [Google Scholar] [CrossRef] [Green Version]
- Ben-Jabeur, M.; Ghabri, E.; Myriam, M.; Hamada, W. Thyme essential oil as a defense inducer of tomato against gray mold and Fusarium wilt. Plant Physiol. Biochem. 2015, 94, 35–40. [Google Scholar] [CrossRef] [PubMed]
- van der Wolf, J.M.; Bimbaum, Y.; van der Zouwen, P.S.; Groot, S.P.C. Disinfection of vegetable seed by treatment with essential oils, organic acids and plant extracts. Seed Sci. Technol. 2008, 36, 76–88. [Google Scholar] [CrossRef]
- Tinivella, F.; Hirata, L.M.; Celan, M.A.; Wright, S.A.I.; Amein, T.; Schmitt, A.; Koch, E.; van der Wolf, J.M.; Groot, S.P.C.; Stephan, D.; et al. Control of seed-borne pathogens on legumes by microbial and other alternative seed treatments. Eur. J. Plant Pathol. 2009, 123, 139–151. [Google Scholar] [CrossRef]
- Koch, E.; Schmitt, A.; Stephan, D.; Kromphardt, C.; Jahn, M.; Krauthausen, H.J.; Forsberg, G.; Werner, S.; Amein, T.; Wright, S.A.I.; et al. Evaluation of non-chemical seed treatment methods for the control of Alternaria dauci and A. radicina on carrot seeds. Eur. J. Plant Pathol. 2010, 127, 99–112. [Google Scholar] [CrossRef]
- Kritzinger, Q.; Aveling, T.A.S.; Marasas, W.F.O. Effect of essential plant oils on storage fungi, germination and emergence of cowpea seeds. Seed Sci. Technol. 2002, 30, 609–619. [Google Scholar]
- Schmitt, A.; Koch, E.; Stephan, D.; Kromphardt, C.; Jahn, M.; Krauthausen, H.-J.; Forsberg, G.; Werner, S.; Amein, T.; Wright, S.A.I.; et al. Evaluation of non-chemical treatment methods for the control of Phoma valerianellae on lamb’s lettuce seeds. J. Plant Dis. Protect. 2009, 116, 200–207. [Google Scholar] [CrossRef]
- Garzoli, S.; Masci, V.L.; Caradonna, V.; Tiezzi, A.; Giacomello, P.; Ovidi, E. Liquid and vapor phase of four conifer-derived essential oils: Comparison of chemical compositions and antimicrobial and antioxidant properties. Pharmaceuticals 2021, 14, 134. [Google Scholar] [CrossRef]
- Salamon, I.; Kryvtsov, M.; Bucko, D.; Tarawneh, A.H. Chemical characterization and antimicrobial activity of some essential oils after their industrial large scale distillation. J. Microbiol. Biotechnol. Food Sci. 2019, 8, 984–988. [Google Scholar] [CrossRef] [Green Version]
- Şerban, E.S.; Ionescu, M.; Matinca, D.; Maier, C.S.; Bojiţă, M.T. Screening of the antibacterial and antifungal activity of eight volatile essential oils. Pharmacia 2011, 59, 440–446. [Google Scholar]
- Marjanovic-Balaban, Z.; Gojkovic Cvjetkovic, V.; Stanojevic, L.; Stanojevic, J.; Nikolic, L.; Danilovic, B. Quality testing of industrially produced essential oil of fir (Abies alba L.) from the Republic of Srpska. J. Essent. Oil-Bear. Plants 2020, 23, 503–513. [Google Scholar] [CrossRef]
- Lanzerstorfer, A.; Hackl, M.; Schlömer, M.; Rest, B.; Deutsch-Grasl, E.; Lanzerstorfer, C. The influence of air-dispersed essential oils from lemon (Citrus limon) and silver fir (Abies alba) on airborne bacteria and fungi in hospital rooms. J. Environ. Sci. Health A 2019, 54, 256–260. [Google Scholar] [CrossRef]
- Motiejūnaitė, O.; Pečiulytė, D. Fungicidal properties of Pinus sylvestris L. for improvement of air quality. Medicina 2004, 40, 787–794. [Google Scholar]
- Oyewole, K.A.; Oyedara, O.O.; Awojide, S.H.; Olawade, M.O.; Adetunji, C.O. Chemical constituents and antibacterial activity of essential oils of needles of Pinus sylvestris (Scots pine) from South West Nigeria. Res. Sq. 2021, 1–15. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oils Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corp.: Carol Stream, IL, USA, 2007; p. 804. [Google Scholar]
- Skalicka-Wozniak, K.; Los, R.; Glowniak, K.; Malm, A. Comparison of hydrodistillation and headspace solid-phase microextraction techniques for antibacterial volatile compounds from the fruits of Seseli libanotis. Nat. Prod. Commun. 2010, 5, 1427–1430. [Google Scholar] [CrossRef] [Green Version]
- International Rules for Seed Testing; International Seed Testing Association (ISTA): Bassersdorf, Switzerland, 2014.
- Mathur, S.B.; Kongsdal, O. Common Laboratory Seed Health Testing Methods for Detecting Fungi; International Seed Testing Association: Bassersdorf, Switzerland, 2003. [Google Scholar]
- Machado, J.C.; Langerak, C.J.; Jaccoud-Filho, D.S. Seed-borne Fungi: A Contribution to Routine Seed Health Analysis; International Seed Testing Association: Bassersdorf, Switzerland, 2002. [Google Scholar]
- Jalink, H.; Van der Schoor, R. Seed Calculator 2.1. License Number: 100200122; Plant Research International: Wageningen, The Netherlands, 1999. [Google Scholar]
- Dorman, H.J.D.; Deans, S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 2000, 88, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential oils’ chemical characterization and investigation of some biological activities: A critical review. Medicines (Basel) 2016, 3, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zambonelli, A.; D’Aulerio, A.; Severi, A.; Benvenuti, S.; Maggi, L.; Bianchi, A. Chemical composition and fungicidal activity of commercial essential oils of Thymus vulgaris L. J. Essent. Oil Res. 2004, 16, 69–74. [Google Scholar] [CrossRef]
- Soylu, E.M.; Soylu, S.; Kurt, S. Antimicrobial activities of the essential oils of various plants against tomato late blight disease agent Phytophthora infestans. Mycopathologia 2006, 161, 119–128. [Google Scholar] [CrossRef]
- Daferera, D.J.; Ziogas, B.N.; Polissiou, M.G. The effectiveness of plant essential oils on the growth of Botrytis cinerea, Fusarium sp. and Clavibacter michiganensis subsp. michiganensis. Crop Prot. 2003, 22, 39–44. [Google Scholar] [CrossRef]
- Barrera-Necha, L.L.; Garduno-Pizana, C.; Garcia-Barrera, L.J. In vitro antifungal activity of essential oils and their compounds on mycelial growth of Fusarium oxysporum f. sp. gladioli (Massey) Snyder and Hansen. Plant Pathol. J. 2009, 8, 17–21. [Google Scholar] [CrossRef] [Green Version]
- Feng, W.; Zheng, X. Essential oils to control Alternaria alternata in vitro and in vivo. Food Control 2007, 18, 1126–1130. [Google Scholar] [CrossRef]
- Soto-Mendívil, E.A.; Moreno-Rodríguez, J.F.; Estarrón-Espinosa, M.; García-Fajardo, J.A.; Obledo-Vázquez, E.N. Chemical composition and fungicidal activity of the essential oil of Thymus vulgaris against Alternaria Citri. e-Gnosis 2006, 4, 16. [Google Scholar]
- Lopez-Reyes, J.G.; Gilardi, G.; Garibaldi, A.; Gullino, M.L. In vivo evaluation of essential oils and biocontrol agents combined with hot water treatments on carrot seeds against Alternaria radicina. J. Phytopathol. 2016, 164, 131–135. [Google Scholar] [CrossRef]
- Werrie, P.Y.; Durenne, B.; Delaplace, P.; Fauconnier, M.L. Phytotoxicity of essential oils: Opportunities and constraints for the development of biopesticides. A review. Foods 2020, 9, 1291. [Google Scholar] [CrossRef] [PubMed]
- Ajayi, O.E.; Appel, A.G.; Fadamiro, H.Y. Phytotoxicity of some essential oil components to cowpea (Vigna unguiculata (L.) Walp.) seeds. Int. J. Plant Biol. Res. 2014, 2, 1024. [Google Scholar]
- Mirmostafaee, S.; Azizi, M.; Fujii, Y. Study of allelopathic interaction of essential oils from medicinal and aromatic plants on seed germination and seedling growth of lettuce. Agronomy 2020, 10, 163. [Google Scholar] [CrossRef] [Green Version]
Components | Abies alba (%) | Pinus sylvestris (%) | Thymus vulgaris (%) | RI * |
---|---|---|---|---|
santene | 0.2 | 0.1 | - ** | 882 |
tricyclene | 0.3 | 0.1 | - | 920 |
α-pinene | 15.6 | 35.5 | 3.7 | 931 |
camphene | 3.5 | 1.3 | 0.1 | 946 |
sabinene | - | 0.2 | - | 972 |
β-pinene | 4.4 | 18.6 | 0.7 | 975 |
β-myrcene | 0.2 | 1.5 | 0.2 | 993 |
α-phellandrene | - | 0.2 | 0.1 | 1005 |
δ-3-carene | 6.1 | 15.6 | 3.2 | 1010 |
α-terpinene | - | 0.4 | 0.1 | 1017 |
p-Menth-3-ene | - | - | 0.1 | 1021 |
p-cymene | 0.1 | 0.6 | 26.2 | 1025 |
limonene | 7.6 | 11.3 | 6.0 | 1028 |
1,8-cineole | 1.4 | - | 11.9 | 1030 |
γ-terpinene | - | 0.1 | 0.2 | 1060 |
isoterpinolene | - | 0.1 | - | 1087 |
terpinolene | 1.0 | 3.0 | 0.1 | 1090 |
β-linalool | - | - | 0.5 | 1104 |
camphor | 0.3 | - | - | 1147 |
cis-β-terpineol | - | - | 0.1 | 1149 |
isoborneol | - | - | 0.5 | 1159 |
borneol | 0.3 | - | 2.0 | 1168 |
α-terpineol | 0.4 | 0.2 | 2.4 | 1198 |
γ-terpineol | - | - | 0.7 | 1202 |
linalyl acetate | - | - | 1.2 | 1259 |
bornyl acetate | 57.5 | 4.5 | - | 1288 |
thymol | - | - | 34.2 | 1301 |
carvacrol | - | - | 2.5 | 1311 |
cedr-8-ene | - | 0.1 | - | 1351 |
α-copaene | - | 0.1 | 0.1 | 1376 |
longifolene | - | 0.1 | 0.2 | 1405 |
β-caryophyllene | 0.9 | 5.3 | 2.6 | 1420 |
α-humulene | 0.1 | 0.6 | 0.2 | 1455 |
δ-cadinene | - | 0.1 | - | 1527 |
caryophyllene oxide | - | - | 0.1 | 1587 |
Total | 99.9 | 99.5 | 99.9 |
Oil | Concentration (µL cm−3) | Treatment Duration (h) | Gmax 1 | Germination | Abnormal Seedlings | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
First Count | Final Count | Diseased | Deformed | |||||||||
Fir | 0.2 | 6 | 96.7 | a–e 2 | 49.3 | jk | 80.0 | kl | 10.3 | ab | 7.7 | a |
12 | 98.3 | a–e | 54.3 | jk | 80.7 | l | 10.3 | a | 7.7 | a | ||
24 | 96.3 | a–e | 45.0 | g–j | 73.7 | g–l | 11.7 | a–d | 8.0 | ab | ||
48 | 96.7 | a–e | 39.3 | e–h | 67.3 | g–l | 14.3 | a–f | 11.0 | ab | ||
72 | 93.3 | a | 50.0 | jk | 76.0 | i–l | 12.3 | a–d | 8.3 | a-c | ||
0.4 | 3 | 98.0 | c–e | 13.7 | b | 63.3 | b–f | 19.7 | e–h | 14.0 | c-g | |
6 | 98.3 | c–e | 20.7 | bc | 72.6 | f–l | 16.7 | b–g | 7.0 | a | ||
12 | 97.3 | a–e | 30.7 | d–f | 66.0 | d–h | 17.3 | c–g | 10.0 | a-e | ||
Pine | 0.2 | 6 | 97.3 | a–e | 37.0 | e–h | 70.7 | e–j | 15.3 | a–f | 12.3 | a-f |
12 | 97.7 | a–e | 55.3 | k | 79.3 | j–l | 11.7 | a–d | 8.0 | ab | ||
24 | 96.7 | a–e | 37.0 | e–h | 68.7 | e–i | 13.7 | a–e | 11.7 | a-e | ||
48 | 94.0 | a | 37.0 | f–i | 73.7 | e–i | 15.0 | a–f | 8.0 | a-e | ||
72 | 94.0 | a | 47.7 | i–k | 75.3 | h–l | 12.3 | a–d | 7.7 | a | ||
0.4 | 3 | 98.0 | b–e | 15.7 | b | 70.0 | e–i | 17.3 | c–g | 11.3 | a-e | |
6 | 98.7 | c–e | 20.7 | c–e | 72.7 | cg | 16.7 | gh | 7.0 | ab | ||
12 | 96.3 | a–e | 15.0 | b | 56.3 | a–c | 29.3 | i | 10.0 | a-e | ||
Thyme | 0.2 | 6 | 99.0 | e | 46.7 | h–k | 76.0 | i–l | 11.3 | a–c | 11.3 | a-e |
12 | 96.3 | a–e | 46.7 | h–k | 71.7 | e–k | 15.7 | a–f | 10.7 | a-e | ||
24 | 94.3 | ab | 27.0 | cd | 64.0 | b–e | 15.0 | a–f | 15.3 | e-g | ||
48 | 97.0 | a–e | 35.5 | d–g | 75.0 | h–l | 14.7 | a–f | 8.3 | a-c | ||
72 | 96.3 | a–e | 34.7 | d–f | 65.7 | d–h | 20.3 | e–h | 10.3 | a-e | ||
0.4 | 3 | 96.0 | a–d | 7.0 | a | 57.0 | b–d | 17.7 | d–g | 23.0 | h | |
6 | 99.0 | de | 15.7 | b | 67.0 | e–i | 21.0 | f–h | 9.3 | a-d | ||
12 | 98.0 | b–e | 6.0 | a | 47.7 | a | 25.3 | hi | 15.0 | d-g | ||
Control—untreated seeds | 96.0 | a–c | 38.3 | f–i | 76.3 | i–l | 14.3 | a–f | 7.0 | a |
Oil | Concentration (µL cm−3) | Treatment Duration (h) | T25 1 | T75 | MGT | U75-25 | ||||
---|---|---|---|---|---|---|---|---|---|---|
Fir | 0.2 | 6 | 2.42 | a–d 2 | 3.55 | a–c | 3.19 | ab | 1.13 | a-c |
12 | 2.59 | b–f | 4.07 | gh | 3.41 | b–f | 1.49 | de | ||
24 | 2.30 | a | 3.64 | a–e | 3.00 | a | 1.34 | a-d | ||
48 | 2.43 | a–e | 3.68 | a–f | 3.13 | ab | 1.24 | a-c | ||
72 | 2.60 | b–f | 3.91 | d–g | 3.35 | c–f | 1.30 | a-d | ||
0.4 | 3 | 2.68 | d–g | 3.73 | a–f | 3.25 | a–e | 1.05 | a | |
6 | 2.62 | c–g | 3.70 | c–g | 3.34 | b–f | 1.79 | a-c | ||
12 | 2.37 | a–c | 3.57 | a–c | 3.02 | a | 1.19 | a-c | ||
Pine | 0.2 | 6 | 2.36 | ab | 3.45 | ab | 3.22 | a–c | 1.08 | a-c |
12 | 2.80 | f–h | 4.13 | g–i | 3.54 | e–g | 1.33 | a-d | ||
24 | 2.53 | a–e | 3.83 | b–g | 3.20 | a–d | 1,.31 | b-d | ||
48 | 2.25 | a | 3.49 | a | 3.01 | a | 1.24 | a-d | ||
72 | 2.78 | f–h | 3.81 | a–g | 3.32 | b–f | 1.03 | a | ||
0.4 | 3 | 2.56 | b–f | 3.70 | a–f | 3.21 | a–c | 1.14 | ab | |
6 | 2.73 | f–h | 3.91 | c–g | 3.36 | b–f | 1.18 | ab | ||
12 | 2.38 | a–c | 3.63 | a–c | 3.02 | a | 1.25 | a-c | ||
Thyme | 0.2 | 6 | 2.47 | a–e | 3.48 | ab | 3.20 | a–c | 1.01 | a |
12 | 2.82 | f–h | 4.24 | hi | 3.56 | fg | 1.42 | cd | ||
24 | 2.69 | e–g | 4.42 | i | 3.71 | g | 1.72 | e | ||
48 | 2.62 | e–g | 4.00 | f–h | 3.48 | d–g | 1.33 | a-d | ||
72 | 2.99 | h | 4.08 | gh | 3.73 | g | 1.09 | ab | ||
0.4 | 3 | 2.50 | a–e | 3.57 | a–c | 3.15 | ab | 1.06 | ab | |
6 | 2.92 | gh | 3.92 | e–h | 3.48 | c–g | 1.00 | ab | ||
12 | 2.64 | c–g | 3.82 | b–g | 3.27 | a–e | 1.18 | a-c | ||
Control—untreated seeds | 2.34 | ab | 3.52 | ab | 2.96 | a | 1.18 | a–c |
Oil |
Concentration (µL cm−3) |
Treatment Duration (h) | The Percentage of Seeds Infested with Fungi | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Alternaria alternata | Botrytis allii | Botrytis cinerea | Cladosporium spp. | Fusarium spp. | ||||||||
Fir | 0.2 | 6 | 68.5 | d–f 1 | 3.5 | a | 3.0 | a–e | 15.0 | c–g | 1.5 | ab |
12 | 69.0 | d–f | 11.5 | b–i | 5.0 | b–f | 21.5 | gh | 2.0 | ab | ||
24 | 55.5 | bc | 9.0 | a–g | 12.0 | ef | 35.0 | i | 4.0 | b | ||
48 | 63.0 | b–e | 16.5 | f–j | 2.5 | a–c | 19.0 | f–h | 2.0 | ab | ||
72 | 58.0 | b–d | 6.0 | a–f | 5.5 | c–f | 18.5 | f–h | 2.5 | ab | ||
0.4 | 3 | 64.5 | b–e | 4.5 | ab | 1,5 | a–c | 9.0 | a–e | 0.5 | a | |
6 | 59.0 | b–e | 6.0 | a–f | 1.5 | a–d | 14.5 | c–g | 1.5 | ab | ||
12 | 67.5 | c–f | 6.5 | a–e | 0 | a | 5.5 | ab | 1.5 | ab | ||
Pine | 0.2 | 6 | 64.0 | b–e | 8.0 | a–h | 1.5 | a–c | 19.5 | f–h | 1.5 | ab |
12 | 60.0 | b–e | 17.0 | g–j | 11.0 | d–f | 16.0 | d–g | 2.0 | ab | ||
24 | 54.0 | b | 9.5 | b–i | 5.5 | b–f | 12.0 | b–g | 1.0 | ab | ||
48 | 53.5 | b | 21.5 | ij | 4.0 | b–f | 21.0 | gh | 2.0 | ab | ||
72 | 53.5 | b | 15.0 | e–i | 6.5 | c–f | 17.0 | d–g | 1.5 | ab | ||
0.4 | 3 | 61.5 | b–e | 7.0 | a–g | 1.5 | a–c | 5.0 | a | 1.5 | ab | |
6 | 61.5 | b–e | 7.5 | a–g | 2.0 | a–c | 11.5 | b–g | 0 | a | ||
12 | 71.5 | ef | 11.0 | b–i | 2.5 | a–d | 18.0 | e–h | 1.5 | ab | ||
Thyme | 0.2 | 6 | 65.5 | b–f | 3.5 | a–c | 0 | a | 13.5 | c–g | 0.5 | a |
12 | 54.0 | b | 4.0 | a–d | 0.5 | ab | 10.0 | a–f | 0.5 | a | ||
24 | 38.5 | a | 9.5 | b–i | 3.0 | a–e | 15.5 | d–g | 1.0 | ab | ||
48 | 38.5 | a | 12.5 | b–i | 1.5 | a–c | 10.0 | a–f | 0.5 | a | ||
72 | 28.5 | a | 19.0 | h–j | 0.5 | ab | 21.0 | gh | 1.5 | ab | ||
0.4 | 3 | 38.5 | a | 4.5 | a–d | 1.0 | a–c | 7.0 | a–c | 0 | a | |
6 | 38.0 | a | 14.5 | e–i | 3.0 | a–d | 8.5 | a–d | 0 | a | ||
12 | 55.5 | b–d | 29.5 | j | 2.5 | a–d | 28.0 | hi | 1.5 | ab | ||
Control—untreated seeds | 76.5 | f | 18.0 | g–j | 13.0 | f | 21.0 | gh | 9.5 | c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dorna, H.; Szopińska, D.; Rosińska, A.; Górski, R. Chemical Composition of Fir, Pine and Thyme Essential Oils and Their Effect on Onion (Allium cepa L.) Seed Quality. Agronomy 2021, 11, 2445. https://doi.org/10.3390/agronomy11122445
Dorna H, Szopińska D, Rosińska A, Górski R. Chemical Composition of Fir, Pine and Thyme Essential Oils and Their Effect on Onion (Allium cepa L.) Seed Quality. Agronomy. 2021; 11(12):2445. https://doi.org/10.3390/agronomy11122445
Chicago/Turabian StyleDorna, Hanna, Dorota Szopińska, Agnieszka Rosińska, and Romuald Górski. 2021. "Chemical Composition of Fir, Pine and Thyme Essential Oils and Their Effect on Onion (Allium cepa L.) Seed Quality" Agronomy 11, no. 12: 2445. https://doi.org/10.3390/agronomy11122445
APA StyleDorna, H., Szopińska, D., Rosińska, A., & Górski, R. (2021). Chemical Composition of Fir, Pine and Thyme Essential Oils and Their Effect on Onion (Allium cepa L.) Seed Quality. Agronomy, 11(12), 2445. https://doi.org/10.3390/agronomy11122445