Comparative Study of Sample-Preparation Techniques for Quantitative Analysis of the Mineral Composition of Humic Substances by Inductively Coupled Plasma Atomic Emission Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. HS Samples
2.2. Reference Materials of Water and Soil
2.3. Reagents
2.4. Moisture Analysis
2.5. Samples for Direct Analysis by ICP–AES
2.6. Extraction of Elements by Boiling Nitric Acid at Atmospheric Pressure
2.7. Extraction of Elements with Nitric Acid at 250 °C in a Microwave Oven
2.8. Ashing
2.9. Fusion of Samples
2.10. ICP-AES Analysis
2.11. Other Equipment
2.12. Data Treatment
3. Results and Discussion
3.1. Features of Sample Preparation for HS Analysis
3.2. Determination of Bulk Composition by Direct Injection of Colloidal Solutions of HS without Decomposition
3.3. Bulk Composition by Dry Ashing Followed by Metaborate Fusion
3.4. Water-Soluble Species of Elements in HS
3.5. Element Species Recovered by Boiling in Nitric Acid
3.6. Element Species Recovered by Nitric Acid at 250 °C
3.7. Comparison of Sample Preparation Methods and Elemental Composition of HS Samples
3.8. Mineral Composition of HS as Components of Dietary Supplements and Drugs
3.9. Reference Materials
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Trckova, M.; Matlova, L.; Hudcova, H.; Martin, F.; Zraly, Z.; Dvorska, L.; Beran, V.; Pavlik, I. Peat as a feed supplement for animals: A review. Vet. Med. 2005, 50, 361. [Google Scholar] [CrossRef] [Green Version]
- Mendez, E.P.; Havel, J.; Patočka, J. Humic substances-compounds of still unknown structure: Applications in agriculture, industry, environment, and biomedicine. J. Appl. Biomed. 2005, 3, 13–24. [Google Scholar] [CrossRef] [Green Version]
- De Melo, B.A.G.; Motta, F.L.; Santana, M.H.A. Humic acids: Structural properties and multiple functionalities for novel technological developments. Mater. Sci. Eng. C 2016, 62, 967–974. [Google Scholar] [CrossRef] [PubMed]
- Pukalchik, M.; Kydralieva, K.; Yakimenko, O.; Fedoseeva, E.; Terekhova, V. Outlining the Potential Role of Humic Products in Modifying Biological Properties of the Soil—A Review. Front. Environ. Sci. 2019, 7, 10. [Google Scholar] [CrossRef]
- Gašparovič, M.; Hrnčár, C.; Galik, B. The effect of feed additives in pheasants fattening: A review. J. Central Eur. Agric. 2017, 18, 749–761. [Google Scholar] [CrossRef]
- Pandey, A.; Pandey, S.; Misra, V.; Devi, S. Role of humic acid entrapped calcium alginate beads in removal of heavy metals. J. Hazard. Mater. 2003, 98, 177–181. [Google Scholar] [CrossRef]
- Schepetkin, I.; Khlebnikov, A.; Kwon, B.S. Medical drugs from humus matter: Focus on mumie. Drug Dev. Res. 2002, 57, 140–159. [Google Scholar] [CrossRef]
- Winkler, J.; Ghosh, S. Therapeutic Potential of Fulvic Acid in Chronic Inflammatory Diseases and Diabetes. J. Diabetes Res. 2018, 2018, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Pant, K.; Singh, B.; Thakur, N. Shilajit: A humic matter panacea for cancer. Int. J. Toxicol. Pharmacol. Res. 2012, 4, 17–25. [Google Scholar]
- Van Rensburg, C.J. The Antiinflammatory Properties of Humic Substances: A Mini Review. Phytother. Res. 2015, 29, 791–795. [Google Scholar] [CrossRef] [Green Version]
- Van Rensburg, C.; Dekker, J.; Weis, R.; Smith, T.-L.; Van Rensburg, E.J.; Schneider, J. Investigation of the Anti-HIV Properties of Oxihumate. Chemotherapy 2002, 48, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Jooné, G.K.; Dekker, J.; van Rensburg, C.E.J. Investigation of the Immunostimulatory Properties of Oxihumate. Z. Für Nat. C 2003, 58, 263–267. [Google Scholar] [CrossRef]
- Swat, M.; Rybicka, I.; Gliszczyńska-Świgło, A. Characterization of Fulvic Acid Beverages by Mineral Profile and Antioxidant Capacity. Foods 2019, 8, 605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, A.K.; Pandey, S.D.; Misra, V. Stability Constants of Metal–Humic Acid Complexes and Its Role in Environmental Detoxification. Ecotoxicol. Environ. Saf. 2000, 47, 195–200. [Google Scholar] [CrossRef]
- Perelomov, L.; Sarkar, B.; Sizova, O.; Chilachava, K.; Shvikin, A.; Perelomova, I.; Atroshchenko, Y. Zinc and lead detoxifying abilities of humic substances relevant to environmental bacterial species. Ecotoxicol. Environ. Saf. 2018, 151, 178–183. [Google Scholar] [CrossRef]
- Sierra, J.; Roig, N.; Papiol, G.G.; Pérez-Gallego, E.; Schuhmacher, M. Prediction of the bioavailability of potentially toxic elements in freshwaters. Comparison between speciation models and passive samplers. Sci. Total. Environ. 2017, 605, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Bai, H.; Wei, S.; Jiang, Z.; He, M.; Ye, B.; Liu, G. Pb (II) bioavailability to algae (Chlorella pyrenoidosa) in relation to its complexation with humic acids of different molecular weight. Ecotoxicol. Environ. Saf. 2019, 167, 1–9. [Google Scholar] [CrossRef]
- Bradl, H.B. Adsorption of heavy metal ions on soils and soils constituents. J. Colloid Interface Sci. 2004, 277, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Chassapis, K.; Roulia, M.; Tsirigoti, D. Chemistry of metal–humic complexes contained in Megalopolis lignite and potential application in modern organomineral fertilization. Int. J. Coal Geol. 2009, 78, 288–295. [Google Scholar] [CrossRef]
- Borggaard, O.K.; Holm, P.E.; Strobel, B.W. Potential of dissolved organic matter (DOM) to extract As, Cd, Co, Cr, Cu, Ni, Pb and Zn from polluted soils: A review. Geoderma 2019, 343, 235–246. [Google Scholar] [CrossRef]
- Qu, C.; Chen, W.; Hu, X.; Cai, P.; Chen, C.; Yu, X.-Y.; Huang, Q. Heavy metal behaviour at mineral-organo interfaces: Mechanisms, modelling and influence factors. Environ. Int. 2019, 131, 104995. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Tang, C.; Antonietti, M. Natural and artificial humic substances to manage minerals, ions, water, and soil microorganisms. Chem. Soc. Rev. 2021, 50, 6221–6239. [Google Scholar] [CrossRef] [PubMed]
- Talpur, M.M.A.; Pirzada, T.; Ali, W.; Arain, M.H.; Rajper, S.; Khaskheli, M. Isolation and Characterization of Soil Fulvic Acid. Pak. J. Anal. Environ. Chem. 2016, 17, 8–17. [Google Scholar] [CrossRef]
- Raspor, B.; Nürnberg, H.; Valenta, P.; Branica, M. Studies in seawater and lake water on interactions of trace metals with humic substances isolated from marine and estuarine sediments: I. Characterisation of humic substances. Mar. Chem. 1984, 15, 217–230. [Google Scholar] [CrossRef]
- Hirata, S. Trace metals in humic substances of coastal sediments of the Seto Inland Sea, Japan. Sci. Total. Environ. 1992, 118, 325–333. [Google Scholar] [CrossRef]
- Nriagu, J.O.; Coker, R.D. Trace metals in humic and fulvic acids from Lake Ontario sediments. Environ. Sci. Technol. 1980, 14, 443–446. [Google Scholar] [CrossRef]
- Tsutsuki, K.; Kuwatsuka, S. Characterization of humin-metal complexes in a buried volcanic ash soil profile and a peat soil. Soil Sci. Plant Nutr. 1992, 38, 297–306. [Google Scholar] [CrossRef]
- Santamaría-Fernández, R.; Cave, M.R.; Hill, S.J. The effect of humic acids on the sequential extraction of metals in soils and sediments using ICP-AES and chemometric analysis. J. Environ. Monit. 2003, 5, 929–934. [Google Scholar] [CrossRef]
- Aster, B.; von Bohlen, A.; Burba, P. Determination of metals and their species in aquatic humic substances by using total-reflection X-ray fluorescence spectrometry. Spectrochim. Acta Part B At. Spectrosc. 1997, 52, 1009–1018. [Google Scholar] [CrossRef]
- Hiraide, M. Heavy Metals Complexed with Humic Substances in Fresh Water. Anal. Sci. 1992, 8, 453–459. [Google Scholar] [CrossRef] [Green Version]
- Shan, X.; Chen, B. Evaluation of sequential extraction for speciation of trace metals in model soil containing natural minerals and humic acid. Anal. Chem. 1993, 65, 802–807. [Google Scholar] [CrossRef]
- Petronio, B.M.; Cosma, B.; Mazzucotelli, A.; Rivaro, P. A Multi Method Approach to Study Humic Compounds and Metal Speciation in Marine Sediment Samples. Int. J. Environ. Anal. Chem. 1993, 54, 45–56. [Google Scholar] [CrossRef]
- Huljev, D. Interaction of some metals between marine-origin humic acids and aqueous solutions. Environ. Res. 1986, 40, 470–478. [Google Scholar] [CrossRef]
- Huljev, D. Trace metals in humic acids and their hydrolysis products. Environ. Res. 1986, 39, 258–264. [Google Scholar] [CrossRef]
- Guo, P.; Zhang, C.; Wang, Y.; Yu, X.; Zhang, Z.; Zhang, D. Effect of long-term fertilization on humic redox mediators in multiple microbial redox reactions. Environ. Pollut. 2018, 234, 107–114. [Google Scholar] [CrossRef]
- Pham, D.M.; Kasai, T.; Yamaura, M.; Katayama, A. Humin: No longer inactive natural organic matter. Chemosphere 2021, 269, 128697. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhang, D.; Xiao, Z.; Li, Z.; Suzuki, D.; Katayama, A. Characterization of humins from different natural sources and the effect on microbial reductive dechlorination of pentachlorophenol. Chemosphere 2015, 131, 110–116. [Google Scholar] [CrossRef]
- Sánchez-Monedero, M.Á; Roig, A.; Cegarra, J.; Bernal, M.P.; Paredes, C. Effects of HCl-HF purification treatment on chemical composition and structure of humic acids. Eur. J. Soil Sci. 2002, 53, 375–381. [Google Scholar] [CrossRef]
- Karpukhina, E.; Mikheev, I.; Perminova, I.; Volkov, D.; Proskurnin, M. Rapid quantification of humic components in concentrated humate fertilizer solutions by FTIR spectroscopy. J. Soils Sediments 2018, 19, 2729–2739. [Google Scholar] [CrossRef]
- Balcke, G.U.; Kulikova, N.A.; Hesse, S.; Kopinke, F.-D.; Perminova, I.V.; Frimmel, F.H. Adsorption of Humic Substances onto Kaolin Clay Related to Their Structural Features. Soil Sci. Soc. Am. J. 2002, 66, 1805–1812. [Google Scholar] [CrossRef] [Green Version]
- Ingamells, C. Lithium metaborate flux in silicate analysis. Anal. Chim. Acta 1970, 52, 323–334. [Google Scholar] [CrossRef]
- Santos, M.C.; Nóbrega, J.A. Direct analysis of clay and refractory materials slurries by inductively coupled plasma optical emission spectrometry with axial viewing using the simplified generalized standard additions method. J. Anal. At. Spectrom. 2007, 22, 93–96. [Google Scholar] [CrossRef]
- Volkov, D.S.; Proskurnin, M.A.; Korobov, M.V. Elemental analysis of nanodiamonds by inductively-coupled plasma atomic emission spectroscopy. Carbon 2014, 74, 1–13. [Google Scholar] [CrossRef]
- Chang, A.C.; Warneke, J.E.; Page, A.L.; Lund, L.J. Accumulation of Heavy Metals in Sewage Sludge-Treated Soils. J. Environ. Qual. 1984, 13, 87–91. [Google Scholar] [CrossRef]
- Baláž, P.; LaCount, R.; Kern, D.; Turčániová, L. Chemical treatment of coal by grinding and aqueous caustic leaching. Fuel 2001, 80, 665–671. [Google Scholar] [CrossRef]
- Bissen, M.; Frimmel, F.H. Arsenic—A Review. Part I: Occurrence, Toxicity, Speciation, Mobility. Acta Hydrochim. Hydrobiol. 2003, 31, 9–18. [Google Scholar] [CrossRef]
- Frolova, L.N.; Kiseleva, T.L. Chemical composition of mumijo and methods for determining its authenticity and quality (a review). Pharm. Chem. J. 1996, 30, 543–547. [Google Scholar] [CrossRef]
- Oria, M.; Harrison, M.; Stallings, V.A. (Eds.) Appendix J, Dietary Reference Intakes Summary Tables. In Dietary Reference Intakes for Sodium and Potassium; National Academies Press: Washington, DC, USA, 2019. [Google Scholar]
- Dudka, S.; Miller, W.P. Accumulation of potentially toxic elements in plants and their transfer to human food chain. J. Environ. Sci. Heal. Part B 1999, 34, 681–708. [Google Scholar] [CrossRef]
- Talar-Krasa, M.; Wolski, K.; Biernacik, M. Biostimulants and possibilities of their usage in grassland. Grassl. Sci. 2019, 65, 205–209. [Google Scholar] [CrossRef]
- Guo, X.; Liu, H.-T.; Wu, S.-B. Humic substances developed during organic waste composting: Formation mechanisms, structural properties, and agronomic functions. Sci. Total. Environ. 2019, 662, 501–510. [Google Scholar] [CrossRef]
- Olivares, F.L.; Busato, J.G.; De Paula, A.M.; Lima, L.D.S.; Aguiar, N.O.; Canellas, L.P. Plant growth promoting bacteria and humic substances: Crop promotion and mechanisms of action. Chem. Biol. Technol. Agric. 2017, 4, 30. [Google Scholar] [CrossRef] [Green Version]
- Arif, M.; Alagawany, M.; Abd El-Hack, M.E.; Saeed, M.; Arain, M.A.; Elnesr, S.S. Humic acid as a feed additive in poultry diets: A review. Iran. J. Vet. Res. 2019, 20, 167–172. [Google Scholar] [PubMed]
Parameters | Values |
---|---|
Conditions | |
Power (kW) | 1.50 |
Plasma-forming flow (L min−1) | 18.0 |
Axial flow (L min−1) | 1.50 |
Nebulizer flow (L min−1) | 1.00 |
Replicate time (s) | 10 |
Stabilization time (s) | 30 |
Sample-injection parameters | |
Sample time delay (s) | 25 |
Pump rate (rpm) | 12 |
Washing time (s) | 10 |
Number of replicates | 4 |
Elements | Emission Lines, nm |
---|---|
Ag | 328.07, 338.29 |
Al | 308.22, 394.40, 396.15 |
As | 188.98, 193.70, 197.20, 234.98 |
B | 182.58, 208.89, 208.96, 249.68 |
Ba | 230.42, 233.53, 455.40, 493.41, 614.17 |
Be | 234.86, 249.47, 313.04, 313.11 |
Ca | 315.89, 317.93, 393.37, 396.85, 422.67 |
Cd | 228.80 |
Co | 230.79, 231.160, 237.863, 238.892, 258.03 |
Cr | 267.716, 276.259, 276.653, 313.205 |
Cu | 324.754, 327.400 |
Fe | 238.204, 239.563, 258.590, 259.940, 263.105 |
K | 404.72, 766.49, 769.90 |
Li | 610.37, 670.78 |
Mg | 277.98, 279.55, 279.80, 280.27, 285.21, 383.23, 383.83 |
Mn | 257.61, 259.37, 260.57, 293.305, 293.931, 294.92 |
Mo | 202.03, 281.62, 284.82, 289.10, 313.26, 379.83 |
Na | 568.82, 589.00, 589.59 |
Ni | 216.56, 221.65, 227.02, 230.299, 231.604, 231.10 |
P | 185.88, 213.62, 214.91 |
Pb | 220.35 |
S | 180.67, 181.97, 182.56 |
Sb | 206.83, 217.58, 231.15 |
Sc | 357.63, 424.68, 361.38, 357.25, 335.37 |
Se | 196.03 |
Si | 250.69, 251.43, 251.61, 252.41, 252.85, 288.16 |
Sn | 189.925, 283.998, 317.503, 326.233 |
Sr | 346.445, 407.771, 416.179, 421.552 |
Ti | 334.188, 334.941, 336.122, 337.280, 368.520 |
V | 289.265, 292.401, 311.837 |
W | 207.91, 216.63, 222.59, 222.96, 224.88 |
Zn | 202.55, 206.200, 213.86, 334.56 |
Element | Sample | Powhumus | Sakhalin | Life Force | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Technique | Dir | Ash | Cen | Acid | MW | Dir | Ash | Cen | Acid | MW | Dir | Ash | Cen | Acid | MW | |
Al | g kg−1 | 25 | 27 | 14 | 6.9 | 25 | 24 | 33 | 16 | 12 | 25 | 3.6 | 9.6 | 2.9 | 4.3 | 8.4 |
As | mg kg−1 | 27 | – | 17 | 11 | 24 | 3.8 | – | 2.4 | 1.4 | 2.8 | 1.3 | – | 1.1 | 0.56 | 0.88 |
B | mg kg−1 | 12 | – | 5.2 | 3.8 | 12 | 8.1 | – | 6.8 | 5.6 | 13 | 8.1 | – | 6.8 | 5.6 | 13 |
Ba | mg kg−1 | 76 | 88 | 42 | 37 | 83 | 281 | 413 | 200 | 281 | 335 | 66 | 105 | 63 | 71 | 79 |
Be | mg kg−1 | 4.2 | 3.6 | 3.9 | 3.7 | 4.1 | 1.4 | 1.3 | 1.2 | 1.3 | 1.3 | 0.74 | 0.63 | 0.67 | 0.82 | 0.82 |
Ca | g kg−1 | 9.8 | 9.6 | 9.4 | 9.0 | 10 | 6.4 | 8.1 | 5.8 | 6.2 | 7.0 | 4.9 | 5.0 | 4.6 | 5.0 | 5.5 |
Cd | mg kg−1 | 0.60 | 0.07 | 0.45 | 0.32 | 0.72 | 0.61 | 0.08 | 0.52 | 0.39 | 0.75 | 0.27 | 0.05 | 0.23 | 0.16 | 0.37 |
Co | mg kg−1 | 9.0 | 6.9 | 7.7 | 6.4 | 9.4 | 16 | 18 | 13 | 8 | 16 | 4.6 | 3.3 | 4.3 | 3.1 | 5.9 |
Cr | mg kg−1 | 42 | 44 | 31 | 21 | 42 | 22 | 29 | 17 | 11 | 25 | 4.4 | 7.2 | 3.8 | 3.6 | 6.1 |
Cu | mg kg−1 | 30 | 26 | 28 | 11 | 30 | 32 | 50 | 27 | 8.1 | 33 | 4.0 | 7.3 | 3.7 | 2.1 | 4.6 |
Fe | g kg−1 | 9.1 | 11 | 6.6 | 5.4 | 11 | 15 | 20 | 12 | 7.4 | 16 | 2.7 | 3.2 | 2.4 | 1.9 | 3.0 |
K | g kg−1 | 83 | 104 | 81 | 88 | 86 | 79 | 125 | 76 | 80 | 76 | 1.7 | 5.8 | 1.7 | 0.53 | 0.75 |
Li | mg kg−1 | 29 | – | 8.9 | 5.5 | 32 | 14 | – | 2.0 | 2.3 | 14 | 1.2 | – | 0.18 | 0.82 | 2.8 |
Mg | g kg−1 | 1.2 | 1.2 | 0.80 | 0.95 | 1.3 | 2.0 | 2.5 | 1.5 | 1.6 | 2.2 | 0.81 | 0.94 | 0.71 | 1.0 | 1.0 |
Mn | mg kg−1 | 15 | 16 | 8.7 | 12 | 18 | 52 | 66 | 47 | 47 | 57 | 48 | 57 | 43 | 54 | 62 |
Mo | mg kg−1 | 3.2 | – | 1.7 | 0.35 | 0.52 | 0.78 | – | 0.26 | – | – | 9.6 | – | 9.4 | 0.6 | 0.6 |
Na | g kg−1 | 2.4 | 4.6 | 2.3 | 2.2 | 3.4 | 1.3 | 2.2 | 1.2 | 1.0 | 1.5 | 59 | 72 | 67 | 69 | 72 |
Ni | mg kg−1 | 38 | 37 | 32 | 27 | 37 | 51 | 59 | 49 | 42 | 50 | 23 | 27 | 21 | 18 | 25 |
P | g kg−1 | 0.12 | 0.18 | 0.05 | 0.04 | 0.11 | 1.8 | 2.4 | 1.0 | 1.9 | 2.1 | 0.05 | 0.07 | 0.04 | 0.05 | 0.05 |
Pb | mg kg−1 | 4.0 | – | 2.7 | 2.6 | 5.5 | 4.9 | – | 3.2 | 2.6 | 6.5 | 2.3 | – | 2.4 | 1.3 | 3.2 |
S | g kg−1 | 2.6 | 0.18 | 2.4 | 1.3 | 3.0 | 1.6 | 0.25 | 1.4 | 0.73 | 1.5 | 1.3 | 0.14 | 1.3 | 0.82 | 2.3 |
Si | g kg−1 | 19 | 31 | 6.6 | 1.0 | 0.30 | 22 | 35 | 4.0 | 0.65 | 0.20 | 2.8 | 14.2 | 1.1 | 0.71 | 0.27 |
Sn | mg kg−1 | 16 | 27 | 13 | 9.0 | 20 | 8.6 | 20 | 6.4 | 4.0 | 9.6 | 2.2 | 8.5 | 2.1 | 1.7 | 3.3 |
Sr | mg kg−1 | 59 | 63 | 45 | 43 | 67 | 578 | 874 | 356 | 644 | 767 | 35 | 43 | 32 | 37 | 44 |
Ti | g kg−1 | 1.9 | 2.5 | 0.58 | 0.05 | 0.11 | 1.1 | 1.8 | 0.60 | 0.13 | 0.13 | 0.19 | 0.36 | 0.15 | 0.05 | 0.17 |
V | mg kg−1 | 65 | 77 | 36 | 34 | 68 | 26 | 37 | 11 | 7.1 | 28 | 7.8 | 9.7 | 6.7 | 6.3 | 8.6 |
W | mg kg−1 | 12 | 31 | 7.7 | 4.1 | 12.2 | 13 | 33 | 9.2 | 4.6 | 14 | 6.5 | 24 | 6.2 | 3.1 | 11 |
Zn | mg kg−1 | 24 | 30 | 16 | 20 | 24 | 40 | 30 | 33 | 34 | 41 | 11 | 16 | 9.0 | 27 | 14 |
Water Extract w/Centr. | Water Extract Wo/Centr. | Nitric Acid Boiling | MW-Assisted Nitric Acid | Metaborate Fusion | |
---|---|---|---|---|---|
Ag | n.d. | n.d. | n.d. | n.d. | n.d. |
Al | + | + | + | ||
As | + | + | x | ||
B | + | + | x | ||
Ba | + | + | |||
Be | + | + | |||
Ca | + | + | + | + | + |
Cd | + | x | |||
Co | + | + | |||
Cr | + | + | + | ||
Cu | + | + | + | ||
Fe | + | + | + | ||
K | + | + | + | + | |
Li | + | + | x | ||
Mg | + | + | + | ||
Mn | + | + | + | ||
Mo | + | x | |||
Na | + | + | |||
Ni | + | + | + | ||
P | + | ||||
Pb | + | ||||
S | + | x | |||
Sb | n.d. | n.d. | n.d. | n.d. | n.d. |
Se | n.d. | n.d. | n.d. | n.d. | n.d. |
Si | + | ||||
Sn | + | ||||
Sr | + | + | |||
Ti | + | ||||
V | + | ||||
W | + | ||||
Zn | + |
Amount, mg kg−1 | |||||||||
---|---|---|---|---|---|---|---|---|---|
Material | Soil FA [23] | HS from Sediments [24] | HS from Sediments [25] | HS from Sediments [26] | Humin from a Buried Volcanic Ash Soil Profile and a Peat Soil [27] | Aquatic HS [29] | HA from Soil [31] | HS from Sediments [32] | This Study (the Maximum Conc. among Selected Approaches) |
Al | n.d./3100 | 60/656 | 3000/6890 | 552 | 322/668 | 9600/33,000 | |||
As | 200/400 | 1.3/27 | |||||||
B | n.d./17 | 9/13 | |||||||
Ba | 2/29 | 88/410 | |||||||
Be | 0.7/4 | ||||||||
Ca | 2.9/5.6 | n.d./84 | n.d./24,600 | 560 | 5500/10,200 | ||||
Cd | 0.3/2.9 | 0.5/1.3 | 4.7/1290 | 3 × 10−5/8 × 10−5 | 0.4/0.8 | ||||
Co | n.d./19 | 8/33 | n.d. | 0.02/0.04 | 6/16 | ||||
Cr | n.d./59 | 10/31 | 22 | 0.3/0.9 | 7/44 | ||||
Cu | 118/433 | 126/1264 | 900/1706 | n.d./800 | 17.2/224 | 304 | 0.5/1.06 | 5/33 | |
Fe | n.d./0.720 | 26/786 | 9270/17,720 | 200/41,900 | 345/29,020 | 2800 | 200/428 | 3200/33,000 | |
K | 4.9/8.8 | 60/470 | 1700/83,000 | ||||||
Li | 3/32 | ||||||||
Mg | n.d./57 | 100/29,600 | 1000/2200 | ||||||
Mn | n.d./60 | n.d./136 | n.d./3200 | 4/1094 | 225 | 0.07/0.15 | 16/66 | ||
Mo | 109/981 | 0.8/10 | |||||||
Na | 4.6/14 | 1469/72,000 | |||||||
Ni | 1/87 | n.d./240 | 6/178 | n.d. | 1.4/3.2 | 27/59 | |||
P | 694/2727 | 480/1890 | 48/2400 | ||||||
Pb | 3.9/28.1 | n.d./12 | n.d./102 | 17/360 | n.d. | 0.8/2.0 | 3/7 | ||
S | 600/3300 | 1500/3000 | |||||||
Si | 3300/6700 | 14,200/34,900 | |||||||
Sn | 9/27 | ||||||||
Sr | 5.2 | 44/770 | |||||||
Ti | 11/98 | n.d./40,200 | 360/2500 | ||||||
V | n.d./11 | 700/7900 | n.d. | 10/77 | |||||
W | 24/33 | ||||||||
Zn | 0.01/0.05 | 56/363 | 11/462 | 39/146 | 32/1479 | 67 | 1/2.4 | 16/30 |
Procedure | ICP-AES in Aqueous Samples 1 | Direct Analysis of Aqueous Extracts | Nitric Acid Boiling | MW-Assisted Nitric-Acid | Metaborate Fusion |
---|---|---|---|---|---|
Element | mg L−1 | mg kg−1 | |||
Ag | 0.005 | 0.25 | 0.125 | 0.625 | 0.625 |
Al | 0.01 | 0.5 | 0.25 | 1.25 | 1.25 |
As | 0.005 | 0.25 | 0.125 | 0.625 | 0.625 |
B | 0.01 | 0.5 | 0.25 | 1.25 | 1.25 |
Ba | 0.001 | 0.05 | 0.025 | 0.125 | 0.125 |
Be | 0.0001 | 0.005 | 0.0025 | 0.0125 | 0.0125 |
Ca | 0.01 | 0.5 | 0.25 | 1.25 | 1.25 |
Cd | 0.0001 | 0.005 | 0.0025 | 0.0125 | 0.0125 |
Co | 0.001 | 0.05 | 0.025 | 0.125 | 0.125 |
Cr | 0.001 | 0.05 | 0.025 | 0.125 | 0.125 |
Cu | 0.001 | 0.05 | 0.025 | 0.125 | 0.125 |
Fe | 0.05 | 2.5 | 1.25 | 6.25 | 6.25 |
K | 0.05 | 2.5 | 1.25 | 6.25 | 6.25 |
Li | 0.01 | 0.5 | 0.25 | 1.25 | 1.25 |
Mg | 0.05 | 2.5 | 1.25 | 6.25 | 6.25 |
Mn | 0.001 | 0.05 | 0.025 | 0.125 | 0.125 |
Mo | 0.001 | 0.05 | 0.025 | 0.125 | 0.125 |
Na | 0.5 | 25 | 12.5 | 62.5 | 62.5 |
Ni | 0.001 | 0.05 | 0.025 | 0.125 | 0.125 |
P | 0.02 | 1 | 0.5 | 2.5 | 2.5 |
Pb | 0.001 | 0.05 | 0.025 | 0.125 | 0.125 |
S | 0.05 | 2.5 | 1.25 | 6.25 | 6.25 |
Sb | 0.005 | 0.25 | 0.125 | 0.625 | 0.625 |
Se | 0.005 | 0.25 | 0.125 | 0.625 | 0.625 |
Si | 0.05 | 2.5 | 1.25 | 6.25 | 6.25 |
Sn | 0.005 | 0.25 | 0.125 | 0.625 | 0.625 |
Sr | 0.001 | 0.05 | 0.025 | 0.125 | 0.125 |
Ti | 0.001 | 0.05 | 0.025 | 0.125 | 0.125 |
V | 0.001 | 0.05 | 0.025 | 0.125 | 0.125 |
W | 0.01 | 0.5 | 0.25 | 1.25 | 1.25 |
Zn | 0.005 | 0.25 | 0.125 | 0.625 | 0.625 |
Element | Wavelength, nm | LOD, µg L−1 * | Water Extract/Wo Centr. | Nitric-Acid Boiling | MW-Assisted Nitric Acid | Metaborate Fusion |
---|---|---|---|---|---|---|
LOD, mg kg−1 | ||||||
Ag | 328.068 | 0.3 | 0.015 | 0.008 | 0.038 | 0.038 |
Al | 396.153 | 1.1 | 0.055 | 0.028 | 0.138 | 0.138 |
As | 193.759 | 4.9 | 0.245 | 0.123 | 0.613 | 0.613 |
B | 208.956 | 2.1 | 0.105 | 0.053 | 0.263 | 0.263 |
Ba | 455.403 | 0.03 | 0.002 | 0.001 | 0.004 | 0.004 |
Be | 313.042 | 0.06 | 0.003 | 0.002 | 0.008 | 0.008 |
Ca | 393.366 | 0.07 | 0.004 | 0.002 | 0.009 | 0.009 |
Cd | 228.802 | 0.09 | 0.005 | 0.002 | 0.011 | 0.011 |
Co | 230.786 | 0.2 | 0.010 | 0.005 | 0.025 | 0.025 |
Cr | 267.716 | 0.8 | 0.040 | 0.020 | 0.100 | 0.100 |
Cu | 327.395 | 0.5 | 0.025 | 0.013 | 0.063 | 0.063 |
Fe | 238.204 | 0.4 | 0.020 | 0.010 | 0.050 | 0.050 |
K | 766.491 | 20 | 1.000 | 0.500 | 2.500 | 2.500 |
Li | 670.784 | 0.3 | 0.015 | 0.008 | 0.038 | 0.038 |
Mg | 279.553 | 0.5 | 0.025 | 0.013 | 0.063 | 0.063 |
Mn | 257.61 | 0.4 | 0.020 | 0.010 | 0.050 | 0.050 |
Mo | 202.032 | 0.6 | 0.030 | 0.015 | 0.075 | 0.075 |
Na | 589.592 | 10 | 0.500 | 0.250 | 1.250 | 1.250 |
Ni | 221.648 | 0.2 | 0.010 | 0.005 | 0.025 | 0.025 |
P | 214.914 | 7.2 | 0.360 | 0.180 | 0.900 | 0.900 |
Pb | 220.353 | 0.9 | 0.045 | 0.023 | 0.113 | 0.113 |
S | 180.669 | 5 | 0.250 | 0.125 | 0.625 | 0.625 |
Sb | 206.833 | 1.4 | 0.070 | 0.035 | 0.175 | 0.175 |
Se | 196.09 | 2.2 | 0.110 | 0.055 | 0.275 | 0.275 |
Si | 251.611 | 3.1 | 0.155 | 0.078 | 0.388 | 0.388 |
Sn | 189.989 | 2.8 | 0.140 | 0.070 | 0.350 | 0.350 |
Sr | 407.771 | 0.1 | 0.005 | 0.003 | 0.013 | 0.013 |
Ti | 334.941 | 0.3 | 0.015 | 0.008 | 0.038 | 0.038 |
V | 292.401 | 0.9 | 0.045 | 0.023 | 0.113 | 0.113 |
W | 207.911 | 5.3 | 0.265 | 0.133 | 0.663 | 0.663 |
Zn | 213.856 | 0.06 | 0.003 | 0.002 | 0.008 | 0.008 |
Element | Minimal Risk Levels (MRLs) for Hazardous Substances, Oral | Dietary Reference Intakes (DRIs) [48] | The Maximum Amount Found in HS, mg kg−1 * | Daily Intake with the Supplement (600 mg HS), mg ** | ||
---|---|---|---|---|---|---|
mg kg−1 day−1 | Recalc. to a 70-kg Male | Recommended Dietary Allowances and Adequate Intakes, mg day−1 | Tolerable Upper Intake Levels, mg day−1 | |||
Al | 1 | 70 | 33 | 0.02 | ||
As | 3 × 10−4/5 × 10−3 *** | 0.4 | 27 | 0.02 | ||
B | 0.2 | 14 | 13 | 0.01 | ||
Ba | 0.2 (soluble) | 14 | 410 | 0.3 | ||
Be | 0.02 | 1.4 | 4.2 | 3 × 10−3 | ||
Ca | 1000 | 2500 | 10,200 | 6 | ||
Cd | 10−4/5 × 10−4 *** | 0.04 | 0.8 | 5 × 10−4 | ||
Co | 0.01 | 0.7 | 18 | 0.01 | ||
Cr | 9 × 10−4/5 × 10−3 *** | 0.4 | 0.7 | 4 × 10−4 | ||
Cu | 0.01 | 0.7 | 32 | 0.02 | ||
Fe | 8 | 45 | 20,400 | 12 | ||
K | 3400 | n.d. | 83,000 | 50.0 | ||
Mg | 420 | 350 | 2500 | 1.5 | ||
Mn | 2.3 | 11 | 62 | 0.04 | ||
Mo | 8 × 10−3/0.05 *** | 3.5 | 10 | 0.01 | ||
Na | 1500 | n.d. | 72,000 | 43 | ||
Ni | - | 1 | 60 | 0.04 | ||
P | 700 | 4000 | 2400 | 1.5 | ||
Sb | 6 × 10–4/1 *** | 70 | n.d. | n.d. | ||
Se | 5·10−3 | 0.4 | n.d. | n.d. | ||
Si | - | n.d. | 35,000 | 21 | ||
Sn | 0.3 | 21 | 27 | 0.02 | ||
Sr(2+) | 2 | 140 | 870 | 0.5 | ||
V | 0.01 | 0.7 | 77 | 0.05 | ||
Zn(2+) | 0.3 | 21 | 41 | 0.02 |
Element | Surface Water | Wastewater | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Certified Value, μg L−1 | Measured Value, μg L−1 | Certified Value, μg L−1 | Measured Value, μg L−1 | |||||||||
Al | 250 | ± | 1 | 268 | ± | 64 | 2000 | ± | 10 | 2328 | ± | 372 |
As | 50.0 | ± | 0.3 | 60.7 | ± | 19.4 | 100.0 | ± | 0.5 | 116 | ± | 37 |
B | 250 | ± | 219 | ± | 53 | - | ||||||
Ca | 10,000 | ± | 50 | 10,550 | ± | 2530 | - | |||||
Cd | - | - | 20.0 | ± | 0.1 | 23.9 | ± | 7.7 | ||||
Co | 10.00 | ± | 0.05 | 9.7 | ± | 2.5 | 60.0 | ± | 0.3 | 59.3 | ± | 11.9 |
Cr | 10.00 | ± | 0.05 | 9.5 | ± | 2.5 | 200 | ± | 1 | 198 | ± | 40 |
Cu | 100 | ± | 1 | 81 | ± | 21 | 400 | ± | 2 | 344 | ± | 90 |
Fe | 100 | ± | 1 | 96 | ± | 23 | 1000 | ± | 5 | 926 | ± | 139 |
K | 1000 | ± | 5 | 1258 | ± | 302 | - | |||||
Mg | 2000 | ± | 10 | 1958 | ± | 470 | - | |||||
Mn | 50.0 | ± | 0.3 | 44.5 | ± | 14.2 | 400 | ± | 2 | 389 | ± | 93 |
Mo | 50.0 | ± | 0.3 | 43.3 | ± | 11.2 | - | |||||
Na | 10,000 | ± | 50 | 10,340 | ± | 2480 | - | |||||
Ni | 50.0 | ± | 0.3 | 51.1 | ± | 13.3 | 1000 | ± | 5 | 1107 | ± | 177 |
Pb | 25.0 | ± | 0.1 | 25.1 | ± | 10.5 | 100.0 | ± | 0.5 | 94.6 | ± | 30.3 |
Si | 5000 | ± | 30 | 4663 | ± | 700 | - | |||||
V | 50.0 | ± | 0.3 | 44.6 | ± | 10.7 | 100.0 | ± | 0.5 | 89.9 | ± | 18.0 |
Zn | 100 | ± | 2 | 113 | ± | 27 | 600 | ± | 6 | 725 | ± | 131 |
Reference Soil Aterial | Element | Certified Value, mg kg−1 | Measured Value, mg kg−1 | ||
---|---|---|---|---|---|
SAZP-2011 | Cu | 19.1 | 22.3 | ± | 6.7 |
Mn | 405 | 455 | ± | 137 | |
Ni | 37.6 | 32.7 | ± | 9.8 | |
ILCS | Cr | 24 | 20 | ± | 6 |
Cu | 42 | 41 | ± | 12 | |
Fe | 44,200 | 38,000 | ± | 11,000 | |
Mn | 181 | 188 | ± | 56 | |
Zn | 124 | 121 | ± | 36 | |
SADPP-10/5 | Cd | 0.35 | 0.43 | ± | 0.13 |
Cu | 28.6 | 32.9 | ± | 9.9 | |
Fe | 18,917 | 18,675 | ± | 5603 | |
Mn | 923 | 1072 | ± | 322 | |
Ni | 39.3 | 36.4 | ± | 10.9 | |
Pb | 13.6 | 11.0 | ± | 3.3 | |
Zn | 55.9 | 59.2 | ± | 17.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karpukhina, E.A.; Vlasova, E.A.; Volkov, D.S.; Proskurnin, M.A. Comparative Study of Sample-Preparation Techniques for Quantitative Analysis of the Mineral Composition of Humic Substances by Inductively Coupled Plasma Atomic Emission Spectroscopy. Agronomy 2021, 11, 2453. https://doi.org/10.3390/agronomy11122453
Karpukhina EA, Vlasova EA, Volkov DS, Proskurnin MA. Comparative Study of Sample-Preparation Techniques for Quantitative Analysis of the Mineral Composition of Humic Substances by Inductively Coupled Plasma Atomic Emission Spectroscopy. Agronomy. 2021; 11(12):2453. https://doi.org/10.3390/agronomy11122453
Chicago/Turabian StyleKarpukhina, Evgeniya A., Elena A. Vlasova, Dmitry S. Volkov, and Mikhail A. Proskurnin. 2021. "Comparative Study of Sample-Preparation Techniques for Quantitative Analysis of the Mineral Composition of Humic Substances by Inductively Coupled Plasma Atomic Emission Spectroscopy" Agronomy 11, no. 12: 2453. https://doi.org/10.3390/agronomy11122453
APA StyleKarpukhina, E. A., Vlasova, E. A., Volkov, D. S., & Proskurnin, M. A. (2021). Comparative Study of Sample-Preparation Techniques for Quantitative Analysis of the Mineral Composition of Humic Substances by Inductively Coupled Plasma Atomic Emission Spectroscopy. Agronomy, 11(12), 2453. https://doi.org/10.3390/agronomy11122453