Aerenchyma Formation in Adventitious Roots of Tall Fescue and Cocksfoot under Waterlogged Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seed Materials and Preparations
2.2. Experimental Design and Treatments
2.3. Measurements
2.3.1. Shoot and Root Measurements
2.3.2. Chlorophyll Content (SPAD Reading)
2.3.3. Aerenchyma Formation
2.4. Statistical Analysis
3. Results
3.1. Waterlogging Induced the Formation of Aerenchyma in Adventitious Roots of Tall Fescue and Cocksfoot Plants
3.2. Morphometric, Chlorophyll and Biomass Measurements
3.3. Shoot and Root Growth Rate
3.4. Root Responses among Cultivars following 28-Day Waterlogging
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ren, B.; Zhang, J.; Li, X.; Fan, X.; Dong, S.; Liu, P.; Zhao, B. Effects of waterlogging on the yield and growth of summer maize under field conditions. Can. J. Plant Sci. 2014, 94, 23–31. [Google Scholar] [CrossRef]
- Bakker, D.; Hamilton, G.; Houlbrooke, D.; Spann, C.; Van Burgel, A. Productivity of crops grown on raised beds on duplex soils prone to waterlogging in Western Australia. Aust. J. Exp. Agric. 2007, 47, 1368–1376. [Google Scholar] [CrossRef]
- Yaduvanshi, N.; Setter, T.; Sharma, S.; Singh, K.; Kulshreshtha, N. Influence of waterlogging on yield of wheat (Triticum aestivum), redox potentials, and concentrations of microelements in different soils in India and Australia. Soil Res. 2012, 50, 489–499. [Google Scholar] [CrossRef]
- Robertson, F.; McCaskill, M.; Suraweera, D.; Christy, B.; Armstrong, R.; Zollinger, R.; Byron, J.; Clark, S. Effects of waterlogging on wheat crops and texture-contrast soils in the high rainfall zone of Victoria. GRDC. 2019. Available online: https://grdc.com.au/__data/assets/pdf_file/0037/375985/10242-Bendigo-update-proceedings-2019-interactive-002.pdf (accessed on 6 December 2021).
- Zhang, H.; Turner, N.; Poole, M.; Simpson, N. Crop production in the high rainfall zones of southern Australia—potential, constraints and opportunities. Aust. J. Exp. Agric. 2006, 46, 1035–1049. [Google Scholar] [CrossRef]
- Setter, T.; Waters, I. Review of prospects for germplasm improvement for waterlogging tolerance in wheat, barley and oats. Plant Soil. 2003, 253, 1–34. [Google Scholar] [CrossRef]
- Hirabayashi, Y.; Mahendran, R.; Koirala, S.; Konoshima, L.; Yamazaki, D.; Watanabe, S.; Kim, H.; Kanae, S. Global flood risk under climate change. Nat. Clim. Chang. 2013, 3, 816. [Google Scholar] [CrossRef]
- Shaw, R.E.; Meyer, W.S.; McNeill, A.; Tyerman, S.D. Waterlogging in Australian agricultural landscapes: A review of plant responses and crop models. Crop Pasture Sci. 2013, 64, 549–562. [Google Scholar] [CrossRef]
- Enkhbat, G.; Ryan, M.H.; Foster, K.J.; Nichols, P.G.; Kotula, L.; Hamblin, A.; Inukai, Y.; Erskine, W. Large variation in waterlogging tolerance and recovery among the three subspecies of Trifolium subterranean L. is related to root and shoot responses. Plant Soil 2021, 464, 467–487. [Google Scholar] [CrossRef]
- Armstrong, W. Aeration in higher plants. Adv. Bot. Res. 1980, 7, 225–332. [Google Scholar] [CrossRef]
- Colmer, T. Long-distance transport of gases in plants: A perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ. 2003, 26, 17–36. [Google Scholar] [CrossRef] [Green Version]
- Toro, G.; Pinto, M. Plant respiration under low oxygen. Chil. J. Agric. Res. 2015, 75, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Herzog, M.; Striker, G.G.; Colmer, T.D.; Pedersen, O. Mechanisms of waterlogging tolerance in wheat–a review of root and shoot physiology. Plant Cell Environ. 2016, 39, 1068–1086. [Google Scholar] [CrossRef] [PubMed]
- Valipour, M. Drainage, waterlogging, and salinity. Arch. Agron. Soil Sci. 2014, 60, 1625–1640. [Google Scholar] [CrossRef]
- Manik, S.N.; Pengilley, G.; Dean, G.; Field, B.; Shabala, S.; Zhou, M. Soil and Crop Management Practices to Minimize the Impact of Waterlogging on Crop Productivity. Front. Plant Sci. 2019, 10, 140. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Shabala, S.; Koutoulis, A.; Shabala, L.; Johnson, P.; Hayes, D.; Nichols, D.S.; Zhou, M. Waterlogging tolerance in barley is associated with faster aerenchyma formation in adventitious roots. Plant Soil. 2015, 394, 355–372. [Google Scholar] [CrossRef]
- McDonald, M.; Galwey, N.; Colmer, T. Similarity and diversity in adventitious root anatomy as related to root aeration among a range of wetland and dryland grass species. Plant Cell Environ. 2002, 25, 441–451. [Google Scholar] [CrossRef]
- Cardoso, J.A.; Rincón, J.; de la Cruz Jiménez, J.; Noguera, D.; Rao, I.M. Morpho-anatomical adaptations to waterlogging by germplasm accessions in a tropical forage grass. AoB Plants 2013, 5, plt047. [Google Scholar] [CrossRef] [Green Version]
- Striker, G.G.; Insausti, P.; Grimoldi, A.A.; PLoSchuk, E.L.; Vasellati, V. Physiological and anatomical basis of differential tolerance to soil flooding of Lotus corniculatus L. and Lotus glaber Mill. Plant Soil. 2005, 276, 301–311. [Google Scholar] [CrossRef]
- Colmer, T.; Voesenek, L. Flooding tolerance: Suites of plant traits in variable environments. Funct. Plant Biol. 2009, 36, 665–681. [Google Scholar] [CrossRef]
- Bailey-Serres, J.; Lee, S.C.; Brinton, E. Waterproofing crops: Effective flooding survival strategies. Plant Physiol. 2012, 160, 1698–1709. [Google Scholar] [CrossRef] [Green Version]
- Della Rovere, F.; Fattorini, L.; D’angeli, S.; Veloccia, A.; Falasca, G.; Altamura, M. Auxin and cytokinin control formation of the quiescent centre in the adventitious root apex of Arabidopsis. Ann. Bot. 2013, 112, 1395–1407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sauter, M. Root responses to flooding. Curr. Opin. Plant Biol. 2013, 16, 282–286. [Google Scholar] [CrossRef]
- Steffens, B.; Rasmussen, A. The physiology of adventitious roots. Plant Physiol. 2016, 170, 603–617. [Google Scholar] [CrossRef] [Green Version]
- Evans, D.E. Aerenchyma formation. New Phytol. 2004, 161, 35–49. [Google Scholar] [CrossRef]
- Schussler, E.E.; Longstreth, D.J. Aerenchyma develops by cell lysis in roots and cell separation in leaf petioles in Sagittaria lancifolia (Alismataceae). Am. J. Bot. 1996, 83, 1266–1273. [Google Scholar] [CrossRef]
- Lamp, C.; Forbes, S.; Cade, J. Species descriptions. In Grasses of Temperate Australia; Pressly, M., Ed.; Inkata Press: Melbourne, Australia, 1990. [Google Scholar]
- Boschma, S.; Lodge, G.; Harden, S. Herbage mass and persistence of pasture legumes and grasses at two potentially different saline and waterlogging sites in northern New South Wales. Aust. J. Exp. Agric. 2008, 48, 553–567. [Google Scholar] [CrossRef]
- Liu, M.Y.; Hulting, A.; Mallory-Smith, C. Comparison of growth and physiological characteristics between roughstalk bluegrass and tall fescue in response to simulated waterlogging. PLoS ONE 2017, 12, 21. [Google Scholar] [CrossRef]
- Striker, G.G.; Colmer, T.D. Flooding tolerance of forage legumes. J. Exp. Bot. 2017, 68, 1851–1872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seed Force Australia. Seed Force Lazuly. Available online: https://www.seedforce.com.au/product/sf-lazuly (accessed on 20 October 2021).
- CSIRO. Register of Australian Herbage Plant Cultivars. Available online: https://research.csiro.au/cultivars/wp-content/uploads/sites/162/2017/03/cocksfoot_porto.pdf (accessed on 6 November 2020).
- Lin, J. Tall Fescue (Festuca arundinacea) cv. Hummer. Plant J. Off. J. Plant Breed. Rights Off. IP Aust. 2014, 27, 428. [Google Scholar]
- Sewell, J. Tall fescue (Festuca arundinacea) cv. Quantum II. Plant J. Off. J. Plant Breed. Rights Off. IP Aust. 2006, 31. Available online: https://www.ipaustralia.gov.au/sites/default/files/journals/pvj_31_1.pdf (accessed on 6 December 2021).
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Cardona, A. Fiji: An open-source platform for biological-image analysis. Nature Methods. Nat. Methods. 2012, 9, 676–682. [Google Scholar] [CrossRef] [Green Version]
- R Core Team, R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019.
- Xu, X.; Ji, J.; Ma, X.; Xu, Q.; Qi, X.; Chen, X. Comparative proteomic analysis provides insight into the key proteins involved in cucumber (Cucumis sativus L.) adventitious root emergence under waterlogging stress. Front. Plant Sci. 2016, 7, 1515. [Google Scholar] [CrossRef] [Green Version]
- Vidoz, M.L.; Loreti, E.; Mensuali, A.; Alpi, A.; Perata, P. Hormonal interplay during adventitious root formation in flooded tomato plants. Plant J. 2010, 63, 551–562. [Google Scholar] [CrossRef]
- Eysholdt-Derzsó, E.; Sauter, M. Hypoxia and the group VII ethylene response transcription factor HRE2 promote adventitious root elongation in Arabidopsis. Plant Biol. 2019, 21, 103–108. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.A.; Uddin, S.N. Mechanisms of waterlogging tolerance in wheat: Morphological and metabolic adaptations under hypoxia or anoxia. Aust. J. Crop Sci. 2011, 5, 1094–1101. [Google Scholar]
- Takahashi, H.; Yamauchi, T.; Colmer, T.D.; Nakazono, M. Aerenchyma formation in plants. In Low-Oxygen Stress in Plants; Springer: Berlin/Heidelberg, Germany, 2014; pp. 247–265. [Google Scholar]
- Mano, Y.; Omori, F.; Takamizo, T.; Kindiger, B.; Bird, R.M.; Loaisiga, C. Variation for root aerenchyma formation in flooded and non-flooded maize and teosinte seedlings. Plant Soil. 2006, 281, 269–279. [Google Scholar] [CrossRef]
- Wang, Y.-C.; Mao, J.-X.; Wang, S.-Q.; Yuan, Y.; Fan, Y.; Zhang, J.; Jiang, L.-F.; Li, M.-Y.; Yang, X.-Y.; Zhang, J. A study on the evaluation of waterlogging tolerance of different Dactylis glomerata L. Germplasm resources and the difference in root microstructure under waterlogging stress. Pak. J. Bot 2021, 53, 1583–1592. [Google Scholar] [CrossRef]
- Malik, A.I.; Colmer, T.D.; Lambers, H.; Schortemeyer, M. Changes in physiological and morphological traits of roots and shoots of wheat in response to different depths of waterlogging. Funct. Plant Biol. 2001, 28, 1121–1131. [Google Scholar] [CrossRef]
- McDonald, M.; Galwey, N.; Colmer, T. Waterlogging tolerance in the tribe Triticeae: The adventitious roots of Critesion marinum have a relatively high porosity and a barrier to radial oxygen loss. Plant Cell Environ. 2001, 24, 585–596. [Google Scholar] [CrossRef]
- Pan, J.; Sharif, R.; Xu, X.; Chen, X. Mechanisms of Waterlogging Tolerance in Plants: Research Progress and Prospects. Front. Plant Sci. 2020, 11, 627331. [Google Scholar] [CrossRef]
- Gomathi, R.; Rao, P.G.; Chandran, K.; Selvi, A. Adaptive responses of sugarcane to waterlogging stress: An over view. Sugar Tech. 2015, 17, 325–338. [Google Scholar] [CrossRef]
- Irfan, M.; Hayat, S.; Hayat, Q.; Afroz, S.; Ahmad, A. Physiological and biochemical changes in plants under waterlogging. Protoplasma 2010, 241, 3–17. [Google Scholar] [CrossRef]
- McFarlane, N.; Ciavarella, T.; Smith, K.F. The effects of waterlogging on growth, photosynthesis and biomass allocation in perennial ryegrass (Lolium perenne L.) genotypes with contrasting root development. J. Agric. Sci. 2003, 141, 241–248. [Google Scholar] [CrossRef]
- Hare, M.; Saengkham, M.; Tatsapong, P.; Wongpichet, K.; Tudsri, S. Waterlogging tolerance of some tropical pasture grasses. Trop. Grassl. 2004, 38, 227–233. [Google Scholar]
- Scott, A.; Evans, D. Dissolved oxygen in saturated soil. Soil Sci. Soc. Am. J. 1955, 19, 7–12. [Google Scholar] [CrossRef]
- Ponnamperuma, F.N. The chemistry of submerged soils. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 1972; Volume 24, pp. 29–96. [Google Scholar]
- Drew, M.C. Oxygen deficiency and root metabolism: Injury and acclimation under hypoxia and anoxia. Annu. Rev. Plant Biol. 1997, 48, 223–250. [Google Scholar] [CrossRef]
Common (Genus Species) | Cultivar | Reference |
---|---|---|
Cocksfoot (Dactylis glomerata L.) | Lazuly | [31] |
Porto | [32] | |
Tall fescue (Lolium arundinaceum Schreb.) | Hummer | [33] |
Quantum II MaxP | [34] |
Species | Treatment | Day-0 | Day-7 | Day-14 | Day-21 | Day-28 | Reduction Ratio * (%) |
---|---|---|---|---|---|---|---|
Number of live tillers | |||||||
Cocksfoot | Control | 3.50 | 7.56 ab | 10.44 ab | 13.88 b | 14.56 b | |
Waterlogging | 3.56 | 6.63 b | 9.25 b | 11.75 c | 11.81 c | −18.9 | |
Tall fescue | Control | 4.31 | 9.25 a | 11.94 a | 17.75 a | 22.81 a | |
Waterlogging | 4.13 | 8.50 ab | 11.25 a | 14.81 b | 16.31 b | −28.5 | |
SPAD reading | |||||||
Cocksfoot | Control | 26.07 b | 36.17 b | 41.13 a | 40.43 a | 38.38 a | |
Waterlogging | 27.21 ab | 36.30 b | 36.47 b | 32.02 b | 30.02 c | −21.8 | |
Tall fescue | Control | 29.57 a | 39.84 a | 41.14 a | 41.61 a | 39.99 a | |
Waterlogging | 29.19 a | 37.49 ab | 37.68 b | 35.26 c | 33.50 b | −16.2 | |
Root length (cm) | |||||||
Cocksfoot | Control | 18.84 | 23.03 | 22.81 a | 24.47 a | 26.75 a | |
Waterlogging | 18.66 | 22.72 | 18.59 b | 19.88 b | 18.53 c | −30.7 | |
Tall fescue | Control | 18.00 | 21.59 | 21.75 a | 24.63 a | 24.94 ab | |
Waterlogging | 17.00 | 21.03 | 18.91 b | 22.63 a | 24.22 b | −2.9 | |
Shoot dry matter (g/plant) | |||||||
Cocksfoot | Control | 0.08 | 0.25 | 0.44 | 0.61 c | 0.83 b | |
Waterlogging | 0.12 | 0.27 | 0.49 | 0.63 c | 0.83 b | 0.0 | |
Tall fescue | Control | 0.14 | 0.33 | 0.50 | 0.84 a | 0.98 a | |
Waterlogging | 0.14 | 0.33 | 0.49 | 0.73 b | 0.91 ab | −7.1 | |
Root dry matter (g/plant) | |||||||
Cocksfoot | Control | 0.04 | 0.16 | 0.30 a | 0.44 b | 0.68 b | |
Waterlogging | 0.06 | 0.12 | 0.19 b | 0.24 d | 0.30 d | −55.8 | |
Tall fescue | Control | 0.05 | 0.17 | 0.29 a | 0.49 a | 0.74 a | |
Waterlogging | 0.05 | 0.13 | 0.19 b | 0.30 c | 0.46 c | −37.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mui, N.T.; Zhou, M.; Parsons, D.; Smith, R.W. Aerenchyma Formation in Adventitious Roots of Tall Fescue and Cocksfoot under Waterlogged Conditions. Agronomy 2021, 11, 2487. https://doi.org/10.3390/agronomy11122487
Mui NT, Zhou M, Parsons D, Smith RW. Aerenchyma Formation in Adventitious Roots of Tall Fescue and Cocksfoot under Waterlogged Conditions. Agronomy. 2021; 11(12):2487. https://doi.org/10.3390/agronomy11122487
Chicago/Turabian StyleMui, Nguyen Thi, Meixue Zhou, David Parsons, and Rowan William Smith. 2021. "Aerenchyma Formation in Adventitious Roots of Tall Fescue and Cocksfoot under Waterlogged Conditions" Agronomy 11, no. 12: 2487. https://doi.org/10.3390/agronomy11122487
APA StyleMui, N. T., Zhou, M., Parsons, D., & Smith, R. W. (2021). Aerenchyma Formation in Adventitious Roots of Tall Fescue and Cocksfoot under Waterlogged Conditions. Agronomy, 11(12), 2487. https://doi.org/10.3390/agronomy11122487