Yield Assessment of Maize Varieties under Varied Water Application in Semi-Arid Conditions of Southern Mozambique
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Analysis of Variance
3.2. Relationship among Environments and Genotype Performance
3.3. Ranking the Genotypes and Their Stability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grant, W.; Wolfaardt, A.; Louw, A. Maize Value Chain in the SADC Region; Southern Africa Trade Hub: Gaborone, Botswana, 2012. [Google Scholar]
- MINAG. Plano Estratégico para o Desenvolvimento do Sector Agrário–PEDSA 2011–2020; MINAG: Maputo, Moçambique, 2010; Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2405713 (accessed on 4 November 2021).
- Johnson, M.; Benin, S.; You, L.; Diao, X.; Chilonda, P.; Kennedy, A. Exploring Strategic Priorities for Regional Agricultural Research and Development Investments in Southern Africa. SSRN Electron. J. 2014. [Google Scholar] [CrossRef] [Green Version]
- Reddy, S.J. Agro-Limate of Mozambique as Relevant to Dry-land Agriculture; Série Terra e Água: Maputo, Mozambique, 1986. [Google Scholar]
- Fandika, I.R.; Kadyampakeni, D.; Bottomani, C.; Kakhiwa, H. Comparative response of varied irrigated maize to organic and inorganic fertilizer application. Phys. Chem. Earth Parts A/B/C 2007, 32, 1107–1116. [Google Scholar] [CrossRef]
- Gauch, H.G.; Zobel, R.W. Identifying Mega-Environments and Targeting Genotypes. Crop. Sci. 1997, 37, 311–326. [Google Scholar] [CrossRef]
- WeiKai, Y. GGE biplot vs. AMMI graphs for genotype-by-environment data analysis. J. Indian Soc. Agric. Stat. 2011, 65, 181–193. [Google Scholar]
- Boshev, D.; Jankulovska, M.; KuzManovska, B. Evaluation of Maize Hybrids for Grain Yield Stability under Rainfed and Irrigated Conditions using GGE Biplot Analysis. Bulg. J. Agric. Sci. 2014, 20, 1320–1325. [Google Scholar]
- Shrestha, J.; Tripathi, M.P. Grain Yield Stability of Quality Protein Maize Genotypes across Diverse Environments of Terai and Mid Hills in Nepal. Int. J. Agric. Syst. 2014, 2, 113–118. [Google Scholar]
- Okoth, S.; Rose, L.J.; Ouko, A.; Netshifhefhe, N.E.I.; Sila, H.; Viljoen, A. Assessing genotype-by-environment interactions in Aspergillus ear rot and pre-harvest aflatoxin accumulation in maize inbred lines. Agronomy 2017, 7, 86. [Google Scholar] [CrossRef] [Green Version]
- Haruna, A.; Adu, G.B.; Buah, S.S.; Kanton, R.A.L.; Kudzo, A.I.; Seidu, A.M.; Kwadwo, O.-A. Analysis of genotype by environment interaction for grain yield of intermediate maturing drought tolerant top-cross maize hybrids under rain-fed conditions. Cogent Food Agric. 2017, 3, 1–13. [Google Scholar] [CrossRef]
- Neisse, A.C.; Kirch, J.L.; Hongyu, K. AMMI and GGE Biplot for genotype × environment interaction: A medoid–based hierarchical cluster analysis approach for high–dimensional data. Biom. Lett. 2018, 55, 97–121. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, A. Genotype by environment interaction and yield stability analysis of open pollinated maize varieties using AMMI model in Afar Regional State, Ethiopia. J. Plant. Breed. Crop. Sci. 2020, 12, 8–15. [Google Scholar] [CrossRef]
- Wasala, S.K.; Guleria, S.K.; Sekhar, J.C.; Mahajan, V.; Srinivasan, K.; Parsad, R.; Prasanna, B.M. Analysis of yield performance and genotype environment effects on selected maize (Zea mays) landrace accessions of India. Indian J. Agric. Sci. 2013, 83, 47–53. [Google Scholar]
- Al-Naggar, A.M.M.; Shafik, M.M.; Musa, R.Y.M. Genetic Diversity Based on Morphological Traits of 19 Maize Genotypes Using Principal Component Analysis and GT Biplot. Annu. Res. Rev. Biol. 2020, 35, 68–85. [Google Scholar] [CrossRef] [Green Version]
- Chimonyo, V.G.; Mutengwa, C.S.; Chiduza, C. Genotype × environment interactions and yield stability of stress-tolerant open-pollinated maize varieties in the Eastern Cape province, South Africa. South. Afr. J. Plant. Soil 2014, 31, 61–68. [Google Scholar] [CrossRef]
- Brankovic-Radojcic, D.; Babic, V.; Girek, Z.; Zivanovic, T.; Radojĉic, A.; Filipovic, M.; Srdic, J. Evaluation of maize grain yield and yield stability by AMMI analysis. Genetika 2018, 50, 1067–1080. [Google Scholar] [CrossRef]
- Yan, W.; Hunt, L.A.; Sheng, Q.; Szlavnics, Z. Cultivar Evaluation and Mega-Environment Investigation Based on the GGE Biplot. Crop. Sci. 2000, 40, 597–605. [Google Scholar] [CrossRef]
- Samonte, S.O.P.; Wilson, L.T.; McClung, A.M.; Medley, J.C. Targeting Cultivars onto Rice Growing Environments Using AMMI and SREG GGE Biplot Analyses. Crop. Sci. 2005, 45, 2414–2424. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, R.; Haghparast, R.; Amri, A.; Ceccarelli, S. Yield stability of rainfed durum wheat and GGE biplot analysis of multi-environment trials. Crop. Pasture Sci. 2010, 61, 92–101. [Google Scholar] [CrossRef]
- Kumar, R.; Singode, A.; Chikkappa, G.K.; Mukri, G.; Dubey, R.B.; Komboj, M.C.; Singh, H.C.; Olakh, D.S.; Ahmad, B.; Krishna, M.; et al. Assessment of genotype × environment interactions for grain Yield in maize hybrids in rainfed environments. SABRAO J. Breed. Genet. 2014, 46, 284–292. [Google Scholar]
- Hongyu, K.; de Silva, F.L.; de Oliveira, A.C.S.; Sarti, D.A.; de Araujo, L.B.; dos Dias, C.T.S. Comparação entre os modelos AMMI e GGE biplot para os dados de ensaios multi-ambientais. Rev. Brasileira Biometria 2015, 33, 139–155. [Google Scholar]
- Kajisa, K.; Payongayong, E. Potential of and constraints to the rice Green Revolution in Mozambique: A case study of the Chokwe irrigation scheme. Food Policy 2011, 36, 615–626. [Google Scholar] [CrossRef]
- Chilundo, M.; Joel, A.; Wesström, I.; Brito, R.; Messing, I. Response of maize root growth to irrigation and nitrogen management strategies in semi-arid loamy sandy soil. F. Crop. Res. 2017, 200, 143–162. [Google Scholar] [CrossRef]
- Smith, M. CLIMWAT for CROPWAT: A Climatic Database for Irrigation Planning and Management; FAO: Rome, Italy, 1993. [Google Scholar]
- Magaia, E.; Famba, S.; Wesström, I.; Brito, R.; Joel, A. Modelling maize yield response to plant density and water and nitrogen supply in a semi-arid region. Field Crop. Res. 2017, 205, 170–181. [Google Scholar] [CrossRef]
- Menete, M.Z.L.; van Es, H.M.; Brito, R.M.L.; DeGloria, S.D.; Famba, S. Evaluation of system of rice intensification (SRI) component practices and their synergies on salt-affected soils. Field Crop. Res. 2008, 109, 34–44. [Google Scholar] [CrossRef]
- Morgan, D.D.V.; Carr, M.K. V Analysis of Experiments Involving Line Source Sprinkler Irrigation. Exp. Agric. 1988, 24, 169–176. [Google Scholar] [CrossRef]
- Popat, R.; Banakara, K. Doebioresearch: Analysis of Design of Experiments for Biological Research. R Package Version 0.1.0. Available online: https://CRAN.R-project.org/package=doebioresearch (accessed on 4 November 2021).
- Olivoto, T.; Lúcio, A.D. Metan: An R package for multi-environment trial analysis. Methods Ecol. Evol. 2020, 11, 783–789. [Google Scholar] [CrossRef]
- Kassambara, A.; Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Analyses. R Package Version 1.0.7. Available online: https://cran.r-project.org/web/packages/factoextra/readme/README.html (accessed on 4 November 2021).
- Yan, W.; Cornelius, P.L.; Crossa, J.; Hunt, L.A. Two Types of GGE Biplots for Analyzing Multi-Environment Trial Data. Crop. Sci. 2001, 41, 656–663. [Google Scholar] [CrossRef] [Green Version]
- Shiri, M.R. Grain yield stability analysis of maize (Zea mays L.) hybrids under different drought stress conditions using GGE biplot analysis. Crop. Breed. J. 2013, 3, 107–112. [Google Scholar]
- Yan, W.; Frégeau-Reid, J.; Pageau, D.; Martin, R.; Mitchell-Fetch, J.; Etienne, M.; Rowsell, J.; Scott, P.; Price, M.; de Haan, B.; et al. Identifying Essential Test Locations for Oat Breeding in Eastern Canada. Crop. Sci. 2010, 50, 504–515. [Google Scholar] [CrossRef] [Green Version]
- Dhasarathan, M.; Geetha, S.; Karthikeyan, A.; Sassikumar, D.; Meenakshiganesan, N. Development of Novel Blackgram (Vigna mungo (L.) Hepper) Mutants and Deciphering Genotype × Environment Interaction for Yield-Related Traits of Mutants. Agronomy 2021, 11, 1287. [Google Scholar] [CrossRef]
- Yan, W.; Kang, M.; Ma, B.; Woods, S.; Cornelius, P.L. AMMI analysis of genotype-by-environment data. Crop. Sci. 2007, 47, 643–653. [Google Scholar] [CrossRef]
- Gauch, H.G., Jr.; Piepho, H.-P.; Annicchiarico, P. Statistical Analysis of Yield Trials by AMMI and GGE: Further Considerations. Crop. Sci. 2008, 48, 866–889. [Google Scholar] [CrossRef]
Env Code | Water Regime | Irr + R | Cropping Season | Average Meteorological Conditions [25] | ||
---|---|---|---|---|---|---|
(mm) | Parameter | Chókwe | Sabie * | |||
Ws | Well-watered | 714–804 | Summer (October to March) | Total rainfall (mm): ETo (mm/day): Minimum temperature (°C): Maximum temperature (°C): Sun hours (h): | 482 5.1 17.5 33.7 7.0 | 514 5.2 17.3 34.1 6.8 |
Ms | Moderately-watered | 343–659 | ||||
Ds | Poorly-watered | 327–567 | ||||
Ww | Well-watered | 575–707 | Winter (April to September) | Total rainfall (mm): ETo (mm/day): Minimum temperature (°C): Maximum temperature (°C): Sun hours (h): | 175 3.1 10.9 30.7 7.2 | 120 3.6 10.7 31.4 7.4 |
Mw | Moderately-watered | 475–690 | ||||
Dw | Poorly-watered | 151–340 |
# | Genotype | Code | Origin | Type | Main Trait | Maturity (Days) | Potential Yield (ton ha−1) | Maturity Category |
---|---|---|---|---|---|---|---|---|
1 | Matuba | G1 | IIAM | OPV | Flint, good resistance for Downy mildew and maize streak virus | 100–120 | 1–6 | Early |
2 | Chinaca | G2 | IIAM | OPV | Flint, good resistance for maize streak virus and gray leaf spot, drought resistant and low N | 110–120 | 2.5–7 | Medium |
3 | Tsangano | G3 | IIAM | OPV | Flint, good resistance for maize streak virus and gray leaf spot, drought resistant and low N | 120–130 | 3–8 | Medium to late |
4 | Gogoma | G4 | IIAM | OPV | Very susceptible to downy mildew | 90–120 | 2–5 | Early |
5 | ZM523 | G5 | Phoenix | OPV | White grain, open pollinated variety. maize streak virus, gray leaf spot, Turcicum and Rusts and moderate resistant to downy mildew, drought tolerant. Good under low soil fertility | 110–120 | 3–7 | Early |
6 | PAN53 | G6 | PANNAR | Hybrid | Flint, resistant to major leaf diseases including northern leaf blight and maize streak virus, resistant to cob diseases, high yield potential | 130–140 | 10 | Medium |
7 | Molócue | G7 | IIAM | Hybrid | White grain, drought tolerant and good under low soil fertility. Resistant to gray leaf spot, Turcicum and Rusts and moderate resistant to maize streak virus and downy mildew | 120–135 | 4–9 | Medium |
8 | SP1 | G8 | IIAM | hybrid | White grain, drought tolerant and good under low soil fertility. resistant to gray leaf spot, Turcicum and Rusts and moderate resistant to maize streak virus | 126–150 | 2–10 | Medium to late |
9 | PRIS 601 | G9 | Klein Karro | Hybrid | Semi-flint, drought tolerant, resistant to gray leaf spot, maize streak virus, cob rots and has good stability | 120–140 | 3–10 | Medium |
10 | PAN 3M-01 | G10 | PANNAR | Hybrid | Flint, resistant to major leaf diseases | 110 | 4–6 | Extra early |
11 | MRI 624 | G11 | Sygenta | Hybrid | Semi dent-like, resistant to major leaf diseases | 130–140 | 12 | Medium |
12 | MRI 514 | G12 | Sygenta | Hybrid | Semi dent-like, drought tolerant, resistant to gray leaf spot, resistant to major leaf diseases, maize streak virus and gray leaf spot | 125–130 | 10 | Early |
13 | PAN 12 | G13 | PANNAR | Hybrid | Flint, drought tolerant, resistant to major cob and leaf diseases, | 120–130 | 10 | Medium |
14 | MRI 744 | G14 | Sygenta | Hybrid | Dent-like, resistant to gray leaf spot, resistant to major leaf diseases, maize streak virus, and gray leaf spot | 140–145 | 12 | Late |
15 | Namuli | G15 | IIAM | Hybrid | Flint, drought tolerant, resistant to major leaf diseases, maize streak virus, and gray leaf spot | 125–140 | 4–10 | Late |
Sources of Variance | Df | SS | MSS |
---|---|---|---|
Block | 19 | 215.2 | 11.3 *** |
Gen | 14 | 141.2 | 10.3 *** |
Error A | 266 | 386.9 | 1.5 |
Env | 5 | 4742.6 | 948.5 *** |
Error B | 35 | 105.8 | 3.0 |
Gen:Env | 70 | 209.9 | 3.0 *** |
Error C | 490 | 475.1 | 0.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nhantumbo, A.; Famba, S.; Fandika, I.; Cambule, A.; Phiri, E. Yield Assessment of Maize Varieties under Varied Water Application in Semi-Arid Conditions of Southern Mozambique. Agronomy 2021, 11, 2541. https://doi.org/10.3390/agronomy11122541
Nhantumbo A, Famba S, Fandika I, Cambule A, Phiri E. Yield Assessment of Maize Varieties under Varied Water Application in Semi-Arid Conditions of Southern Mozambique. Agronomy. 2021; 11(12):2541. https://doi.org/10.3390/agronomy11122541
Chicago/Turabian StyleNhantumbo, Alfredo, Sebastião Famba, Isaac Fandika, Armindo Cambule, and Elijah Phiri. 2021. "Yield Assessment of Maize Varieties under Varied Water Application in Semi-Arid Conditions of Southern Mozambique" Agronomy 11, no. 12: 2541. https://doi.org/10.3390/agronomy11122541
APA StyleNhantumbo, A., Famba, S., Fandika, I., Cambule, A., & Phiri, E. (2021). Yield Assessment of Maize Varieties under Varied Water Application in Semi-Arid Conditions of Southern Mozambique. Agronomy, 11(12), 2541. https://doi.org/10.3390/agronomy11122541