Bases for the Establishment of Robusta Coffee (Coffea canephora) as a New Crop for Colombia
Abstract
:1. Introduction to Difference between Robusta and Arabica Coffees
2. Possible Agro-Ecologies for Production of Robusta Coffee in Colombia
3. Marketability and Further Production Advantages of Robusta Coffee from Colombia
4. Potential Experimental Sites and Production Zones for Robusta Coffees in Colombia
5. Regional Advantages and Limitations of Robusta Coffees in Colombia
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coste, R. Coffee: The Plant and Products; Macmillan Press Ltd.: London, UK, 1992; 328p. [Google Scholar]
- Montagnon, C.; Cubry, P.; Leroy, T. Amélioration génétique du caféier Coffea canephora Pierre: Connaissances acquises, stratégies et perspectives. Cah. Agric. 2012, 21, 143–153. [Google Scholar] [CrossRef]
- Bikila, B.A.; Sakiyama, N.S.; Caixeta, E.T. SNPs Based Molecular Diversity of Coffea canephora. J. Microbiol. Exp. 2017, 5, 00136. [Google Scholar] [CrossRef] [Green Version]
- Montagnon, C.; Guyot, B.; Cilas, C.; Leroy, T. Genetic parameters of several biochemical compounds from green coffee, Coffea canephora. Plant Breed. 1998, 117, 576–578. [Google Scholar] [CrossRef]
- ICO. International Coffee Organization. Coffee Market Report 2021. Available online: https://www.ico.org/es/Market-Report-20-21-c.asp (accessed on 1 October 2021).
- Souza, C.; Rocha, R.; Alves, E.; Teixeira, A.; Dalazen, J.; Aymbiré, F.A. Characterization of beverage quality in Coffea canephora Pierre Ex A. Froehner. Coffee Sci. 2018, 13, 210–218. [Google Scholar] [CrossRef]
- Herrera, J.C.; Alvarado, G.A.; Cortina, G.H.A.; Combes, M.C.; Romero, G.G.; Lashermes, P. Genetic analysis of partial resistance to coffee leaf rust (Hemileia vastatrix Berk & Br.) introgressed into the cultivated Coffea arabica L. from the diploid C. canephora species. Euphytica 2009, 167, 57–67. [Google Scholar]
- Melese, Y.Y.; Kolech, S.A. Coffee (Coffea arabica L.): Methods, Objectives, and Future Strategies of Breeding in Ethiopia—Review. Sustainability 2021, 13, 10814. [Google Scholar] [CrossRef]
- Buck, N.; Wohlt, D.; Winter, A.R.; Ortner, E. Aroma-Active Compounds in Robusta Coffee Pulp Puree—Evaluation of Physicochemical and Sensory Properties. Molecules 2021, 26, 3925. [Google Scholar] [CrossRef] [PubMed]
- Rocha, R.B.; Ramalho, A.R.; Texeira, A.L.; Souza, F.d.F.; Cruz, C.D. Adaptability, and stability of Coffea canephora coffee bean yield. Cienc. Rural. 2015, 45, 1531–1537. [Google Scholar] [CrossRef] [Green Version]
- Leibovich, J.; Llinás, G. La Producción de Café Robusta en Colombia. Econestudio/Asesoria y estudios académicos. 2013. Available online: https://www.urosario.edu.co/Mision-Cafetera/Archivos/Produccion-de-Cafe-Robusta-Jose-Leibovich.pdf (accessed on 5 October 2021).
- Collazos, E.; Piñeros, C.; Gutierrez, W. Estudio de Viabilidad Económica Para la Producción y Comercialización de Café Robusta (Coffea Canephora) en Colombia: Caso Sabana de Torres, Santander. Universidad Católica de Colombia Facultad de ciencias económicas y administrativas, Bogotá, Colombia. 2020. Available online: https://repository.ucatolica.edu.co/bitstream/10983/24562/1/TRABAJO%20FINAL%20DE%20GRADO%20%281%29.pdf (accessed on 4 September 2021).
- Holmes, M.J.; Otero, J. A tale of two coffees? Analyzing interaction and futures market efficiency. Stud. Econ. Financ. 2020, 37, 89–109. [Google Scholar] [CrossRef]
- Alvarado, G. Atributos de valor de la especie Coffea canephora para la agricultura colombiana. 2017; Unpublished work. [Google Scholar]
- Herron, A. Producción de Café en Áreas no Tradicionales. AherO Estudios Técnicos Agrícolas S.A.S. 2013. Disponible en. Available online: https://www.urosario.edu.co/Mision-Cafetera/Archivos/Zonas-no-tradcionales-antonio-Herron.pdf (accessed on 8 October 2021).
- Ayarza, M.; Alvarado, G.; Castilla, C. Coffea canephora: A promising options to intensify and diversify production system in the tropical lowlands of Colombia. 2019; Unpublished work. [Google Scholar]
- Garcia, O. Carimagua: La investigación y el desarrollo en ecosistemas de baja fertilidad. Rev. Colomb. Cienc. Pecu. 2009, 22, 74–78. [Google Scholar]
- Podestá, P. Transformación Productiva de las Sabanas de la Altillanura Colombiana [en línea]. Trabajo Final de Ingeniería en Producción Agropecuaria. Facultad de Ciencias Agrarias. Universidad Católica Argentina. 2016. Disponible en. Available online: http://bibliotecadigital.uca.edu.ar/repositorio/tesis/transformacion-productiva-altillanura-colombiana.pdf (accessed on 5 October 2021).
- Ibarra-Ruales, L.; Reyes-Cuesta, R. Crecimiento en vivero de las palmas aceiteras Elaeis oleífera × Elaeis guineensis y Elaeis guineensis × Elaeis guineensis en Tumaco Colombia. Corpoica Cienc. Tecnol. Agropecu. 2015, 16, 239–250. [Google Scholar] [CrossRef] [Green Version]
- Moraes, M.S.; Rocha, R.B.; Teixeira, A.L.; Espindula, M.C.; Silva, C.A.; Lunz, A.M.P. Adaptability and stability of Coffea canephora Pierre ex Froehner genotypes in the Western Amazon. Ciência Rural 2020, 50, e20190087. [Google Scholar] [CrossRef]
- Kufa, T. Environmental sustainability and coffee diversity in Africa. In Proceedings of the InICO World Coffee Conference, London, UK, 3–8 October 2010; pp. 26–28. [Google Scholar]
- Souza, F.D.F.; Caixeta, E.T.; Ferrão, L.F.V.; Pena, G.F.; Sakiyama, N.S.; Zambolim, E.M.; Zambolim, L.; Cruz, C.D. Molecular diversity in Coffea canephora germplasm conserved and cultivated in Brazil. Crop. Breed. Appl. Biotechnol. 2013, 13, 221–227. [Google Scholar] [CrossRef] [Green Version]
- Giles, J.A.D.; Partelli, F.L.; Ferreira, A.; Rodrigues, J.P.; Oliosi, G.; Silva, F.H. Genetic diversity of promising ‘conilon’coffee clones based on morpho-agronomic variables. An. Acad. Bras. Ciências 2018, 90, 2437–2446. [Google Scholar] [CrossRef] [PubMed]
- Prakash, N.S.; Combes, M.C.; Dussert SNaveen, S.; Lashermes, P. Analysis of genetic diversity in Indian robusta coffee genepool (Coffea canephora) in comparison with a representative core collection using SSRs and AFLPs. Genet. Resour. Crop Evol. 2005, 52, 333–343. [Google Scholar] [CrossRef]
- Herrera, J.C.; Lambot, C. The coffee tree—Genetic diversity and origin. In The Craft and Science of Coffee; Academic Press: Cambridge, MA, USA, 2017; pp. 1–16. [Google Scholar]
- Bunn, C.; Läderach, P.; Rivera, O.O.; Kirschke, D. A bitter cup: Climate change profile of global production of Arabica and Robusta coffee. Clim. Chang. 2015, 129, 89–101. [Google Scholar] [CrossRef] [Green Version]
- Van Long, N.; Ngoc, N.Q.; Dung, N.N.; Kristiansen, P.; Yunusa, I.; Fyfe, C. The effects of shade tree types on light variation and robusta coffee production in Vietnam. Engineering 2015, 7, 742. [Google Scholar] [CrossRef]
- Piato, K.; Lefort, F.; Subía, C.; Caicedo, C.; Calderón, D.; Pico, J.; Norgrove, L. Effects of shade trees on robusta coffee growth, yield and quality. A meta-analysis. Agron. Sustain. Dev. 2020, 40, 38. [Google Scholar] [CrossRef]
- Nath, C.D.; Pélissier, R.; Ramesh, B.R.; Garcia, C. Promoting native trees in shade coffee plantations of southern India: Comparison of growth rates with the exotic Grevillea robusta. Agrofor. Syst. 2011, 83, 107–119. [Google Scholar] [CrossRef]
- Kiyingi, I.; Gwali, S. Productivity and profitability of robusta coffee agroforestry systems in central Uganda. Uganda J. Agric. Sci. 2012, 13, 85–93. [Google Scholar]
- Baggio, A.J.; Caramori, P.H.; Androcioli Filho, A.; Montoya, L. Productivity of southern Brazilian coffee plantations shaded by different stockings of Grevillea robusta. Agrofor. Syst. 1997, 37, 111–120. [Google Scholar] [CrossRef]
- Cubry, P.; de Bellis, F.; Avia, K.; Bouchet, S.; Pot, D.; Dufour, M.; Legnate, H.; Leroy, T. An initial assessment of linkage disequilibrium (LD) in coffee trees: LD patterns in groups of Coffea canephora Pierre using microsatellite analysis. BMC Genom. 2013, 14, 10. [Google Scholar] [CrossRef]
- Gomez, C.; Dussert, S.; Hamon, P.; Hamon, S.; de Kochko, A.; Poncet, V. Current genetic differentiation of Coffea canephora Pierre ex A. Froehn in the Guineo-Congolian African zone: Cumulative impact of ancient climatic changes and recent human activities. BMC Evol. Biol. 2009, 9, 167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akpertey, A.; Padi, F.K.; Meinhardt, L.; Zhang, D. Effectiveness of Single Nucleotide Polymorphism Markers in Genotyping Germplasm Collections of Coffea canephora Using KASP Assay. Front. Plant Sci. 2020, 11, 612593. [Google Scholar] [CrossRef] [PubMed]
Specie | C. arabica, Arabica | C. canephora, Robusta |
---|---|---|
Origin | Ethiopia, Sudan, Kenya | Guinea and Congo |
Altitude of origin in meters above sea level (masl) | 1300–2000 | 0–1000 |
Genetic variability | Low, due to its origin from few plants and its self-pollinating condition. | High, due to outcrossing (natural interbreeding between and within populations). |
Genetic structure | Segmental allotetraploid (cross C. eugenioides × C. canephora). Amphidiploid | True Diploid with polymorphic populations and highly heterozygous heterotic groups |
Number of chromosomes | 2n = 4x = 44 | 2n = 2x = 22 |
Fertilization and compatibility | Self-pollinated (more than 90% autogamous) and self-compatible | Self-incompatible gametophytic type of monogenic nature and synchronized flowering |
Plant type | Shrub | Tree and/or shrub |
Growth habit | Erect | Umbrella shape |
Propagation type | Sexual (seed) | Asexual (cuttings-clonal) and sexual (seed) |
Canopy structure | Pyramidal | Irregular |
Root type | Deep-rooted | Shallow-rooted |
Symbiotic associations | Dependent to obligate | Dependent, mycorrhizae obligate |
Stem type | Uni-caulate (woody) | Multi-caulate (woody) |
Grain-color (before roasting) | Greenish tone | Pale and yellowish tone |
Grain-shape (dry) | Larger, oval, flat and elongated | Small, rounded, oval or elliptical; notable tips; domed or convex |
Retention of grain by the plant | Lower | Higher |
Inflorescences (number) | Lower (2–3 peaks/crotch) | Higher (3–5 peaks/crotch) |
Flowering (regularity) | Regular (after rains) | Irregular |
Flowering (months) | 9 | 10–11 |
Photoperiod sensitivity (hours) | Short days (13.5) | Shorter days (11.0) |
Grain earliness (months from anthesis to fully ripe) | 6–8 (earlier) | 9–11 (later) |
Time to induce the inactive flowering-period (months) | 2–4 | 2–4 |
Biannual production | Present | Absent |
Latitude range (degrees) | Less than 10 N and 10 S | Between 10 N and 10 S |
Optimal temperature (°C) | 18–21 | 22–30 |
Optimum precipitation (mm) | 1500–2000 | 2000–3000 |
Relative humidity required (%) | 70% | 85% |
Altitude for cultivation in meters above sea level (masl) | 1000–2000 | 0–700 |
Genetic improvement scheme | Hybridization, inbreed, backcross (per autogamy) | Reciprocal recurrent selection (per allogamy) |
Yield (kg/ha) of green coffee | Usually lower performing (1500–3000) | Higher performing (2300–4000) with intensive production 6000 |
Cherry (fresh): green coffee | Lower (4:1 to 5:1) | Higher (5:1 or above) |
Rust resistance | Susceptible | Wide resistance spectrum (source of resistance in Timor hybrid) |
Nematode resistance | Susceptible | Source of genetic resistance |
Planting density | High | Low |
Cup quality | Subtle taste, aromatic | Stronger taste, fragrant |
Caffeine content average (%) | 1.7 | 3.4 (2× more content) |
Isoflavones (micrograms) | 40 | 285 (7× more concentrated) |
Total reducing sugars (%) | 0.10 | 0.40 (4× higher) |
Saccharose (%) | 8.0 | 4.0 (less than 50%) |
Chlorogenic acid (%) | Green grain (6.4–7.1); semi-ripe grain (4.7–7.9); ripe grain (5.5–6.9) | Semi-ripe grain (7.8–8.0); ripe grain (8.2–10.6) |
Trigonellin (dry matter basis) | 0.79–1.06 | 0.66–0.68 |
Market segment | Premium and mainstream | Instant, blended coffees, washed |
Production cost | Higher | Lower (17%) (no irrigation costs) |
Price | High | Low |
Year | Imports | Domestic Consumption | Total | |
---|---|---|---|---|
Arabica Coffee | Robusta Coffee | |||
2021 | 924,000 | 990,000 | 286,000 | 2,200,200 |
2022 | 921,140 | 998,086 | 417,764 | 2,332,000 |
2023 | 903,774 | 1039,217 | 519,609 | 2,462,600 |
2024 | 869,550 | 1,106,700 | 658,750 | 2,635,000 |
2025 | 712,500 | 1,425,000 | 712,500 | 2,850,000 |
Species or Variety | Year of Production | Accumulated Production | % | ||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |||
Robustas | 130 | 327 | 344 | 149 | 261 | 1209.8 | 139 |
Caturra 1 | 159 | 176 | 175 | 68.7 | 109 | 688.9 | 79 |
Mundo Novo 1 | 134 | 246 | 185 | 169 | 138 | 871.9 | 100 |
L.S.D. 2 (0.05) | 25.7 | 43.4 | 45.9 | 29.3 | 38.9 | 114.1 |
Research Center | Altitude (m) | Minimum Average Temperature (° C) | Maximum Mean Temperature (°C) | Radiation (μmol photon m−2 s−1) | Potential Production |
---|---|---|---|---|---|
Carimagua | 149 | 22.5 | 30.9 | 862.5–958.3 | high |
El Mira | 21 | 22.6 | 29.3 | 670.8–766.6 | high |
La Libertad | 340 | 21.5 | 29.6 | 862.5–958.3 | high |
Motilonia | 111 | 23.3 | 33.5 | 958.3–1054.1 | high |
Nataima | 377 | 22.1 | 32.8 | 862.5–958.3 | high |
Taluma | 168 | 22.3 | 31.0 | 862.5–958.3 | high |
Turipaná | 11 | 23.5 | 32.4 | 766.6–862.5 | high |
Caribia | 11 | 22.8 | 32.8 | 958.3–1054.1 | medium |
El Nus | 828 | 19.4 | 28.9 | 862.5–958.3 | medium |
Palmira | 996 | 18.3 | 28.7 | 862.5–958.3 | medium |
Cimpa | 1572 | 15.1 | 25.6 | n/a | unsuitable |
La Selva | 2120 | 12.3 | 22.0 | n/a | unsuitable |
La Suiza | 1628 | 15.6 | 23.3 | n/a | unsuitable |
Productive System | Yield (Mt/ha) | Producer Price, 2011 (USD/Mt) | Income (USD/ha) |
---|---|---|---|
Robusta Coffee (DPC) | 0.91 | 4225 | 3845 |
Maize/Corn | 4.50 | 434 | 1953 |
Soybeans | 2.40 | 632 | 1517 |
Palm oil | 3.1 | 1148 | 3100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campuzano-Duque, L.F.; Herrera, J.C.; Ged, C.; Blair, M.W. Bases for the Establishment of Robusta Coffee (Coffea canephora) as a New Crop for Colombia. Agronomy 2021, 11, 2550. https://doi.org/10.3390/agronomy11122550
Campuzano-Duque LF, Herrera JC, Ged C, Blair MW. Bases for the Establishment of Robusta Coffee (Coffea canephora) as a New Crop for Colombia. Agronomy. 2021; 11(12):2550. https://doi.org/10.3390/agronomy11122550
Chicago/Turabian StyleCampuzano-Duque, Luis F., Juan Carlos Herrera, Claire Ged, and Matthew Wohlgemuth Blair. 2021. "Bases for the Establishment of Robusta Coffee (Coffea canephora) as a New Crop for Colombia" Agronomy 11, no. 12: 2550. https://doi.org/10.3390/agronomy11122550
APA StyleCampuzano-Duque, L. F., Herrera, J. C., Ged, C., & Blair, M. W. (2021). Bases for the Establishment of Robusta Coffee (Coffea canephora) as a New Crop for Colombia. Agronomy, 11(12), 2550. https://doi.org/10.3390/agronomy11122550