“Active” Weed Seed Bank: Soil Texture and Seed Weight as Key Factors of Burial-Depth Inhibition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Measurement of 1000 Seed Weight, Maximum Hypocotyl Elongation and Their Relationships
2.3. Soil Texture and Emergence Test
2.4. Calculation of Soil Depth Capable of 50% and 95% Emergence Inhibition
2.5. Evaluation of the Relationships between Soil Depth-Inhibition and Seed Weight or Soil Texture
2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Crawley, M.J. The population dynamics of plants. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1990, 330, 125–140. [Google Scholar]
- Gaba, S.; Perronne, R.; Fried, G.; Gardarin, A.; Bretagnolle, F.; Biju-Duval, L.; Colbach, N.; Cordeau, S.; Fernández-Aparicio, M.; Gauvrit, C.; et al. Response and effect traits of arable weeds in agro-ecosystems: A review of current knowledge. Weed Res. 2017, 57, 123–147. [Google Scholar] [CrossRef]
- Benvenuti, S. Weed seed movement and dispersal strategies in the agricultural environment. Weed Biol. Manag. 2007, 7, 141–157. [Google Scholar] [CrossRef]
- Sosnoskie, L.M.; Herms, C.P.; Cardina, J. Weed seedbank community composition in a 35-yr-old tillage and rotation experiment. Weed Sci. 2006, 54, 263–273. [Google Scholar] [CrossRef]
- Benvenuti, S.; Pardossi, A. Weed seedbank dynamics in Mediterranean organic horticulture. Sci. Hortic. 2017, 221, 53–61. [Google Scholar] [CrossRef]
- Burnside, O.C.; Wilson, R.G.; Weisberg, S.; Hubbard, K.G. Seed longevity of 41 weed species buried 17 years in eastern and western Nebraska. Weed Sci. 1996, 44, 74–86. [Google Scholar] [CrossRef]
- Batlla, D.; Benech-Arnold, R.L. Predicting changes in dormancy level in natural seed soil banks. Plant Mol. Biol. 2010, 73, 3–13. [Google Scholar] [CrossRef]
- Hilhorst, H.W. A critical update on seed dormancy. I. Primary dormancy. Seed Sci. Res. 1995, 5, 61–73. [Google Scholar] [CrossRef]
- Baskin, J.M.; Baskin, C.C. A classification system for seed dormancy. Seed Sci. Res. 2004, 14, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Chahtane, H.; Kim, W.; Lopez-Molina, L. Primary seed dormancy: A temporally multilayered riddle waiting to be unlocked. J. Exp. Bot. 2017, 68, 857–869. [Google Scholar] [CrossRef]
- Benech-Arnold, R.L.; Sánchez, R.A.; Forcella, F.; Kruk, B.C.; Ghersa, C.M. Environmental control of dormancy in weed seed banks in soil. Field Crop. Res. 2000, 67, 105–122. [Google Scholar] [CrossRef]
- Batlla, D.; Benech-Arnold, R.L. Weed seed germination and the light environment: Implications for weed management. Weed Biol. Manag. 2014, 14, 77–87. [Google Scholar] [CrossRef]
- Scopel, A.L.; Ballaré, C.L.; Sánchez, R.A. Induction of extreme light sensitivity in buried weed seeds and its role in the perception of soil cultivations. Plant Cell Environ. 1991, 14, 501–508. [Google Scholar] [CrossRef]
- Boyd, N.; Van Acker, R. Seed germination of common weed species as affected by oxygen concentration, light, and osmotic potential. Weed Sci. 2004, 52, 589–596. [Google Scholar] [CrossRef]
- Holm, R.E. Volatile metabolites controlling germination in buried weed seeds. Plant Physiol. 1972, 50, 293–297. [Google Scholar] [CrossRef] [Green Version]
- Benvenuti, S.; Macchia, M. Effect of hypoxia on buried weed seed germination. Weed Res. 1995, 35, 343–351. [Google Scholar] [CrossRef]
- Benvenuti, S.; Macchia, M.; Miele, S. Quantitative analysis of emergence of seedlings from buried weed seeds with increasing soil depth. Weed Sci. 2001, 49, 528–535. [Google Scholar] [CrossRef]
- Benvenuti, S. Soil texture involvement in germination and emergence of buried weed seeds. Agron. J. 2003, 95, 191–198. [Google Scholar] [CrossRef]
- Benvenuti, S.; Mazzoncini, M. Soil physics involvement in the germination ecology of buried weed seeds. Plants 2019, 8, 7. [Google Scholar] [CrossRef] [Green Version]
- Benvenuti, S. Natural weed seed burial: Effect of soil texture, rain and seed characteristics. Seed Sci. Res. 2007, 17, 211–219. [Google Scholar] [CrossRef]
- Santín-Montanyá, M.I.; Martín-Lammerding, D.; Zambrana, E.; Tenorio, J.L. Management of weed emergence and weed seed bank in response to different tillage, cropping systems and selected soil properties. Soil Tillage Res. 2016, 161, 38–46. [Google Scholar] [CrossRef]
- Gardarin, A.; Coste, F.; Wagner, M.H.; Dürr, C. How do seed and seedling traits influence germination and emergence parameters in crop species? A comparative analysis. Seed Sci. Res. 2016, 26, 317–331. [Google Scholar] [CrossRef]
- Dekker, J. Soil weed seed banks and weed management. J. Crop Prod. 1999, 2, 139–166. [Google Scholar] [CrossRef]
- Masin, R.; Loddo, D.; Benvenuti, S.; Otto, S.; Zanin, G. Modeling weed emergence in Italian maize fields. Weed Sci. 2012, 60, 254–259. [Google Scholar] [CrossRef] [Green Version]
- ISTA. International rules for seed testing. Seed Sci. Technol. 1999, 27, 50–52. [Google Scholar]
- Wiese, A.M.; Binning, L.K. Calculating the threshold temperature of development for weeds. Weed Sci. 1987, 32, 177–179. [Google Scholar] [CrossRef]
- Norris, R.F. Weed fecundity: Current status and future needs. Crop Prot. 2007, 26, 182–188. [Google Scholar] [CrossRef]
- Rees, M. Evolutionary ecology of seed dormancy and seed size. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1996, 351, 1299–1308. [Google Scholar]
- Thompson, B.K.; Weiner, J.; Warwick, S.I. Size-dependent reproductive output in agricultural weeds. Can. J. Bot. 1991, 69, 442–446. [Google Scholar] [CrossRef]
- Geritz, S.A.; Van der Meijden, E.; Metz, J.A. Evolutionary dynamics of seed size and seedling competitive ability. Theor. Popul. Biol. 1999, 55, 324–343. [Google Scholar] [CrossRef] [Green Version]
- Bretagnolle, F.; Matejicek, A.; Grégoire, S.; Reboud, X.; Gaba, S. Determination of fatty acids content, global antioxidant activity and energy value of weed seeds from agricultural fields in France. Weed Res. 2016, 56, 78–95. [Google Scholar] [CrossRef]
- Grundy, A.C.; Mead, A.; Bond, W. Modelling the effect of weed-seed distribution in the soil profile on seedling emergence. Weed Res. 1996, 36, 375–384. [Google Scholar] [CrossRef]
- Forcella, F. Prediction of weed seedling densities from buried seed reserves. Weed Res. 1992, 32, 29–38. [Google Scholar] [CrossRef]
- Traba, J.; Azcárate, F.M.; Peco, B. From what depth do seeds emerge? A soil seed bank experiment with Mediterranean grassland species. Seed Sci. Res. 2004, 14, 297–303. [Google Scholar] [CrossRef]
- Colbach, N.; Roger-Estrade, J.; Chauvel, B.; Caneill, J. Modelling vertical and lateral seed bank movements during mouldboard ploughing. Eur. J. Agron. 2000, 13, 111–124. [Google Scholar] [CrossRef]
- Swanton, C.J.; Shrestha, A.; Knezevic, S.Z.; Roy, R.C.; Ball-Coelho, B.R. Influence of tillage type on vertical weed seedbank distribution in a sandy soil. Can. J. Plant Sci. 2000, 80, 455–457. [Google Scholar] [CrossRef]
- Rahman, A.; James, T.K.; Grbavac, N.I.K. Correlation between the soil seed bank and weed populations in maize fields. Weed Biol. Manag. 2006, 6, 228–234. [Google Scholar] [CrossRef]
- Batlla, D.; Benech-Arnold, R.L. Predicting changes in dormancy level in weed seed soil banks: Implications for weed management. Crop Prot. 2007, 26, 189–197. [Google Scholar] [CrossRef]
- Werle, R.; Sandell, L.D.; Buhler, D.D.; Hartzler, R.G.; Lindquist, J.L. Predicting emergence of 23 summer annual weed species. Weed Sci. 2014, 62, 267–279. [Google Scholar] [CrossRef]
- Moldrup, P.; Olesen, T.; Yoshikawa, S.; Komatsu, T.; Rolston, D.E. Three-porosity model for predicting the gas diffusion coefficient in undisturbed soil. Soil Sci. Soc. Am. J. 2004, 68, 750–759. [Google Scholar] [CrossRef]
- Wiebach, J.; Nagel, M.; Börner, A.; Altmann, T.; Riewe, D. Age-dependent loss of seed viability is associated with increased lipid oxidation and hydrolysis. Plant Cell Environ. 2020, 43, 303–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailly, C. Active oxygen species and antioxidants in seed biology. Seed Sci. Res. 2004, 14, 93–107. [Google Scholar] [CrossRef]
- Grundy, A.C.; Mead, A.; Burston, S. Modelling the emergence response of weed seeds to burial depth: Interactions with seed density, weight and shape. J. Appl. Ecol. 2003, 40, 757–770. [Google Scholar] [CrossRef]
- Gardarin, A.; Dürr, C.; Colbach, N. Effects of seed depth and soil aggregates on the emergence of weeds with contrasting seed traits. Weed Res. 2010, 50, 91–101. [Google Scholar] [CrossRef]
- Gardarin, A.; Colbach, N. How much of seed dormancy in weeds can be related to seed traits? Weed Res. 2015, 55, 14–25. [Google Scholar] [CrossRef]
- Travlos, I.; Gazoulis, I.; Kanatas, P.; Tsekoura, A.; Zannopoulos, S.; Papastylianou, P. Key factors affecting weed seeds’ germination, weed emergence and their possible role for the efficacy of false seedbed technique as weed management practice. Front. Agron. 2020, 2, 1. [Google Scholar] [CrossRef]
Weed Species | Botanic Family | 1000 Seed Weight (mg) | Maximum Hypocotyl Elongation (cm) |
---|---|---|---|
Abutilon theophrasti Medicus | Malvaceae | 9.23 ± 0.12 | 14.34 ± 1.3 |
Amaranthus retroflexus L. | Amaranthaceae | 0.48 ± 0.06 | 6.05 ± 1.0 |
Datura stramonium L. | Solanaceae | 8.21 ± 0.11 | 13.45 ± 1.7 |
Erigeron canadensis L. | Asteraceae | 0.07 ± 0.01 | 5.23 ± 1.0 |
Euphorbia helioscopia L. | Euphorbiaceae | 4.02 ± 0.05 | 11.27 ± 1.1 |
Polygonum convolvulus L. | Polygonaceae | 6.23 ± 0.12 | 14.03 ± 1.3 |
Polygonum persicaria L. | Polygonaceae | 3.13 ± 0.09 | 11.95 ± 1.6 |
Rumex crispus L. | Polygonaceae | 3.55 ± 0.02 | 12.48 ± 1.3 |
Setaria viridis (L.) Beauv. | Poaceae | 2.41 ± 0.08 | 8.52 ± 1.4 |
Sinapis arvensis L. | Brassicaceae | 1.82 ± 0.07 | 7.15 ± 1.2 |
Solanum nigrum L. | Solanaceae | 0.84 ± 0.08 | 6.62 ± 1.1 |
Sorghum halepense (L.) Pers. | Poaceae | 5.58 ± 0.14 | 12.55 ± 1.2 |
Average | 3.57 ± 0.35 | 10.30 ± 1.14 |
Weed Species | Unburied Seed Germination (%) | Soil Texture | Depth of 50% Emergence Inhibition 1 (cm) | Depth of 95% Emergence Inhibition 1 (cm) |
---|---|---|---|---|
Abutilon theophrasti | 86.2 ± 3.3 | Sand | 6.62 a | 9.88 a |
Loam | 6.05 b | 8.28 b | ||
Clay | 5.22 c | 7.35 c | ||
Amaranthus retroflexus | 88.5 ± 2.2 | Sand | 5.66 a | 6.28 a |
Loam | 3.67 b | 6.52 b | ||
Clay | 3.73 c | 5.94 c | ||
Datura stramonium | 65.6 ± 3.3 | Sand | 6.04 a | 8.45 a |
Loam | 6.35 b | 8.12 b | ||
Clay | 5.01 c | 6.62 c | ||
Erigeron canadensis | 78.2 ± 3.1 | Sand | 2.44 a | 4.24 a |
Loam | 2.57 b | 3.01 b | ||
Clay | 1.52 c | 2.26 c | ||
Euphorbia helioscopia | 73.4 ± 3.5 | Sand | 4.52 a | 6.62 a |
Loam | 4.14 b | 6.73 b | ||
Clay | 3.24 c | 6.04 c | ||
Polygonum convolvulus | 65.8 ± 3.5 | Sand | 5.53 a | 8.32 a |
Loam | 5.85 b | 7.92 b | ||
Clay | 5.15 c | 6.88 c | ||
Polygonum persicaria | 63.2 ± 2.8 | Sand | 4.18 a | 6.55 a |
Loam | 4.88 b | 7.05 b | ||
Clay | 3.28 c | 6.21 c | ||
Rumex crispus | 82.6 ± 4.1 | Sand | 5.08 a | 7.23 a |
Loam | 4.42 b | 6.95 b | ||
Clay | 4.23 c | 6.62 c | ||
Setaria viridis | 72.8 ± 3.5 | Sand | 5.22 a | 7.02 a |
Loam | 3.98 b | 6.26 b | ||
Clay | 3.85 c | 6.01 c | ||
Sinapis arvensis | 85.2 ± 3.5 | Sand | 4.98 a | 7.25 a |
Loam | 4.56 b | 6.73 b | ||
Clay | 4.02 c | 6.02 c | ||
Solanum nigrum | 70.2 ± 2.6 | Sand | 5.04 a | 6.12 a |
Loam | 4.16 b | 6.56 b | ||
Clay | 3.15 c | 5.82 c | ||
Sorghum halepense | 73.4 ± 3.5 | Sand | 5.23 a | 7.56 a |
Loam | 4.55 b | 7.03 b | ||
Clay | 4.04 c | 6.02 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benvenuti, S.; Mazzoncini, M. “Active” Weed Seed Bank: Soil Texture and Seed Weight as Key Factors of Burial-Depth Inhibition. Agronomy 2021, 11, 210. https://doi.org/10.3390/agronomy11020210
Benvenuti S, Mazzoncini M. “Active” Weed Seed Bank: Soil Texture and Seed Weight as Key Factors of Burial-Depth Inhibition. Agronomy. 2021; 11(2):210. https://doi.org/10.3390/agronomy11020210
Chicago/Turabian StyleBenvenuti, Stefano, and Marco Mazzoncini. 2021. "“Active” Weed Seed Bank: Soil Texture and Seed Weight as Key Factors of Burial-Depth Inhibition" Agronomy 11, no. 2: 210. https://doi.org/10.3390/agronomy11020210
APA StyleBenvenuti, S., & Mazzoncini, M. (2021). “Active” Weed Seed Bank: Soil Texture and Seed Weight as Key Factors of Burial-Depth Inhibition. Agronomy, 11(2), 210. https://doi.org/10.3390/agronomy11020210