Exogenous Application of Mg, Zn and B Influences Phyto-Nutritional Composition of Leaves and Fruits of Loquat (Eriobotrya japonica Lindl.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant and Soil Sampling
2.2. Chemical Analysis
2.2.1. Instrumentation and Reagents
2.2.2. Sample Preparation
2.2.3. Determination
2.3. Statistical Data Analysis
3. Results
3.1. Plant Leaves
3.1.1. Macronutrients
3.1.2. Micronutrients
3.1.3. Heavy Metals
3.2. Fruit Peel
3.2.1. Macronutrients
3.2.2. Micronutrients
3.2.3. Heavy Metals
3.3. Fruit Pulp
3.3.1. Macronutrients
3.3.2. Micronutrients
3.3.3. Heavy Metals
3.4. Seed
3.4.1. Macronutrients
3.4.2. Micronutrients
3.4.3. Heavy Metals
3.5. Principle Component Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Badenes, M.L.; Canyamas, T.; Romero, C.; Soriano, J.; Martinez, J.; Llacer, G. Genetic diversity in european collection of loquat (Eriobotrya japonica Lindl.). Acta Hortic. 2003, 620, 169–174. [Google Scholar] [CrossRef]
- Tian, S.; Qin, G.; Li, B. Loquat. In Postharvest Biology and Technology of Tropical and Subtropical Fruits; Woodhead Publishing Limited: Oxford, UK, 2011; p. 444. [Google Scholar]
- LaRue, R.G. Loquat Fact Sheet. Available online: http://fruitsandnuts.ucdavis.edu/dsadditions/Loquat_Fact_Sheet/ (accessed on 30 January 2020).
- Tian, S.; Li, B.; Ding, Z. Physiological properties and storage technologies of loquat fruit. Fresh Prod. 2007, 1, 76–81. [Google Scholar]
- Lu, Z.; Zhang, Z.; Wu, W.; Li, W. Effect of low temperatures on postharvest loquat fruit. Acta Hortic. 2007, 750, 483–486. [Google Scholar] [CrossRef]
- Slavin, J.L.; Lloyd, B. Health Benefits of Fruits and Vegetables. Adv. Nutr. 2012, 3, 506–516. [Google Scholar] [CrossRef] [Green Version]
- Pem, D.; Jeewon, R. Fruit and Vegetable Intake: Benefits and Progress of Nutrition Education Interventions- Narrative Review Article. Iran. J. Public Health 2015, 44, 1309–1321. [Google Scholar]
- WHO. WHO|Food Safety; WHO: Geneva, Switzerland, 2015. [Google Scholar]
- Hajeb, P.; Sloth, J.J.; Shakibazadeh, S.; Mahyudin, N.A.; Afsah-Hejri, L. Toxic Elements in Food: Occurrence, Binding, and Reduction Approaches. Compr. Rev. Food Sci. Food Saf. 2014, 13, 457–472. [Google Scholar] [CrossRef]
- Corelli-Grappadelli, L.; Lakso, A. Fruit development in deciduous tree crops as affected by physiological factors and environmental conditions (keynote). Acta Hortic. 2004, 636, 425–441. [Google Scholar] [CrossRef]
- Bálint, A.F.; Kovács, G.; Erdei, L.; Sutka, J. Comparison of the Cu, Zn, Fe, Ca and Mg contents of the grains of wild, ancient and cultivated wheat species. Cereal Res. Commun. 2001, 29, 375–382. [Google Scholar] [CrossRef]
- Hattori, H.; Chino, M. Growth, Cadmium, and Zinc Contents of Wheat Grown on Various Soils Enriched with Cadmium and Zinc. In Plant Nutrition; Springer: Berlin/Heidelberg, Germany, 2001; pp. 462–463. [Google Scholar]
- Zaman, Q.-U.; Schumann, A.W. Nutrient Management Zones for Citrus Based on Variation in Soil Properties and Tree Performance. Precis. Agric. 2006, 7, 45–63. [Google Scholar] [CrossRef]
- Guo, W.; Nazim, H.; Liang, Z.; Yang, D. Magnesium deficiency in plants: An urgent problem. Crop. J. 2016, 4, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Marschner, P. Marschner’s Mineral Nutrition of Higher Plants; Elsevier: Amsterdam, The Netherlands, 2012; ISBN 9780123849052. [Google Scholar]
- Gerendás, J.; Führs, H. The significance of magnesium for crop quality. Plant Soil 2013, 368, 101–128. [Google Scholar] [CrossRef] [Green Version]
- White, P.J.; Broadley, M.R. Biofortification of crops with seven mineral elements often lacking in human diets—Iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 2009, 182, 49–84. [Google Scholar] [CrossRef] [PubMed]
- Hermans, C.; Conn, S.J.; Chen, J.; Xiao, Q.; Verbruggen, N. An update on magnesium homeostasis mechanisms in plants. Metallomics 2013, 5, 1170–1183. [Google Scholar] [CrossRef] [PubMed]
- Cakmak, I.; Kirkby, E.A. Role of magnesium in carbon partitioning and alleviating photooxidative damage. Physiol. Plant. 2008, 133, 692–704. [Google Scholar] [CrossRef] [PubMed]
- Maathuis, F.J.M. Physiological functions of mineral macronutrients. Curr. Opin. Plant Biol. 2009, 12, 250–258. [Google Scholar] [CrossRef]
- Suri, V.K.; Choudhary, A.K.; Chander, G.; Verma, T.S. Influence of Vesicular Arbuscular Mycorrhizal Fungi and Applied Phosphorus on Root Colonization in Wheat and Plant Nutrient Dynamics in a Phosphorus-Deficient Acid Alfisol of Western Himalayas. Commun. Soil Sci. Plant Anal. 2011, 42, 1177–1186. [Google Scholar] [CrossRef]
- Shehzad, M.A.; Maqsood, M.; Wajid, S.A.; Anwar-Ul-Haq, M. Dry Matter Partitioning and Mineral Constitution Response of Sunflower (Helianthus annuus) to Integrated Nitrogen and Boron Nutrition in Calcareous Soils. Int. J. Agric. Biol. 2016, 18, 257–265. [Google Scholar] [CrossRef]
- Padbhushan, R.; Kumar, D. Yield and Nutrient Uptake of Green Gram (Vigna radiate L.) as Influenced by Boron Application in Boron-Deficient Calcareous Soils of Punjab. Commun. Soil Sci. Plant Anal. 2015, 46, 908–923. [Google Scholar] [CrossRef]
- López-Lefebre, L.R.; Rivero, R.M.; García, P.C.; Romero, L.; Sanchez, E.; Ruiz, J.M. Boron effect on mineral nutrients of tobacco. J. Plant Nutr. 2002, 25, 509–522. [Google Scholar] [CrossRef]
- Dursun, A.; Turan, M.; Ekinci, M.; Gunes, A.; Ataoglu, N.; Esringü, A.; Yildirim, E. Effects of Boron Fertilizer on Tomato, Pepper, and Cucumber Yields and Chemical Composition. Commun. Soil Sci. Plant Anal. 2010, 41, 1576–1593. [Google Scholar] [CrossRef]
- Sotiropoulos, T.E.; Therios, I.N.; Dimassi, K.N.; Bosabalidis, A.; Kofidis, G. Nutritional status, growth, CO2 assimilation, and leaf anatomical responses in two kiwifruit species under boron toxicity. J. Plant Nutr. 2002, 25, 1249–1261. [Google Scholar] [CrossRef]
- Bressy, F.C.; Brito, G.B.; Barbosa, I.S.; Teixeira, L.S.G.; Korn, M. Determination of trace element concentrations in tomato samples at different stages of maturation by ICP OES and ICP-MS following microwave-assisted digestion. Microchem. J. 2013, 109, 145–149. [Google Scholar] [CrossRef]
- Sahan, Y.; Basoglu, F.; Güçer, S. ICP-MS analysis of a series of metals (Namely: Mg, Cr, Co, Ni, Fe, Cu, Zn, Sn, Cd and Pb) in black and green olive samples from Bursa, Turkey. Food Chem. 2007, 105, 395–399. [Google Scholar] [CrossRef]
- Chudzinska, M.; Baralkiewicz, D. Application of ICP-MS method of determination of 15 elements in honey with chemometric approach for the verification of their authenticity. Food Chem. Toxicol. 2011, 49, 2741–2749. [Google Scholar] [CrossRef] [PubMed]
- Llorent-Martínez, E.; De Córdova, M.F.; Ruiz-Medina, A.; Ortega-Barrales, P. Analysis of 20 trace and minor elements in soy and dairy yogurts by ICP-MS. Microchem. J. 2012, 102, 23–27. [Google Scholar] [CrossRef]
- Bravo, I.D.B.; Castro, R.S.; Riquelme, N.L.; Díaz, C.T.; Goyenaga, D.A. Optimization of the trace element determination by ICP-MS in human blood serum. J. Trace Elem. Med. Biol. 2007, 21, 14–17. [Google Scholar] [CrossRef]
- Madejón, P.; Marañón, T.; Murillo, J.M. Biomonitoring of trace elements in the leaves and fruits of wild olive and holm oak trees. Sci. Total Environ. 2006, 355, 187–203. [Google Scholar] [CrossRef]
- Quiñones, A.; Soler, E.; Legaz, F. Determination of foliar sampling conditions and standard leaf nutrient levels to assess mineral status of loquat tree. J. Plant Nutr. 2013, 36, 284–298. [Google Scholar] [CrossRef]
- Reig, C.; Martínez-Fuentes, A.; Mesejo, C.; Agustí, M. Nutritional status in loquat trees by using the spad. Acta Hortic. 2011, 22, 139–142. [Google Scholar] [CrossRef]
- Ahmed, F.F.; Morsy, M.H. Response of “Canino” apricot trees grown in the new reclaimed land to application of some nutrients and ascorbic acid. In Proceedings of the Fifth Arabian Horticultural Conference, Ismailia, Egypt, 24 March 2001; pp. 27–34. [Google Scholar]
- Mostafa, E.A.M.; Saleh, M.M.S.; El-Migeed, M.M.M. Response of banana plants to soil and foliar application of magnesium. Am. J. Agric. Environ. Sci. 2007, 2, 141–146. [Google Scholar]
- Fawzi, M.I.F.; Shahin, F.M.; Daood, E.A.; Kandil, E.A. Effect of organic and biofertilizers and mangenesium sulphate on growth yield, chemical composition ond fruit quality of “L-conte” pear trees. Nat. Sci. 2010, 8, 273–280. [Google Scholar]
- Hanafy Ahmed, A.H.; Khalil, M.K.; Abd El-Rahman, A.M.; Nadia, A.M.H. Effect of magnesium, copper and growth regulators on growth, yield and chemical composition of Washington navel orange trees. J. Appl. Sci. Res. 2012, 8, 1271–1288. [Google Scholar]
- Salama, A.; El-Sayed, M.; Abdel-Hameed, A. Effect of Magnesium Fertilizer Sources and Rates on Yield and Fruit Quality of Date Palm cv. Hayany under Ras-Sudr Conditions. Res. J. Agric. Biol. Sci. 2014, 10, 118–126. [Google Scholar]
- Daood, E.Z.; Shahin, M. Effect of spraying magnesium, boron, ascorbic acid and vitamin B complex on yield and fruit quality of “canino” apricot. Arab. Univ. J. Agric. Sci. 2006, 14, 337–347. [Google Scholar] [CrossRef]
- Neilsen, G.H.; Neilsen, D. Consequences of potassium, magnesium sulphate fertilization of high density Fuji apple orchards. Can. J. Soil Sci. 2011, 91, 1013–1027. [Google Scholar] [CrossRef]
- Marcelo, M.; Jordão, P.; Soveral-Dias, J.; Matias, H.; Rogado, B. Effect of nitrogen and magnesium application on yield and leaf-N and mg concentrations of olive trees cv. picual. Acta Hortic. 2002, 64, 329–332. [Google Scholar] [CrossRef]
- Li, M.; Liang, Y. Li Shizhen and the Grand Compendium of Materia Medica. J. Tradit. Chin. Med. Sci. 2015, 2, 215–216. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Zhao, X.; Sun, C.; Li, X.; Chen, K. Phenolic Composition from Different Loquat (Eriobotrya japonica Lindl.) Cultivars Grown in China and Their Antioxidant Properties. Molecules 2015, 20, 542–555. [Google Scholar] [CrossRef]
- Aktaş, H.; Abak, K.; Öztürk, L.; Çakmak, I. The effect of zinc on growth and shoot concentrations of sodium and potassium in pepper plants under salinity stress. Turk. J. Agric. For. 2006, 30, 407–412. [Google Scholar] [CrossRef]
- Aboyeji, C.M.; Dunsin, O.; Adekiya, A.O.; Chinedum, C.; Suleiman, K.O.; Okunlola, F.O.; Aremu, C.O.; Owolabi, I.O.; Olofintoye, T.A.J. Zinc Sulphate and Boron-Based Foliar Fertilizer Effect on Growth, Yield, Minerals, and Heavy Metal Composition of Groundnut (Arachis hypogaea L.) Grown on an Alfisol. Int. J. Agron. 2019, 2019, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Arif, M. Evaluation of Different Levels of Potassium and Zinc Fertilizer on the Growth and Yield of Wheat. Int. J. Biosens. Bioelectron. 2017, 3, 1–5. [Google Scholar] [CrossRef]
- Merrill, S.; Potter, G.F.; Brown, R.T. Responses of tung trees on Lakeland fine sand to less common elements. In Proceedings of the American Society of Horticultural Science; American Society for Horticultural Science: College Park, MD, USA, 1953; Volume 62, pp. 94–102. [Google Scholar]
- Kalyanasundaram, N.K.; Mehta, B.V. Availability of zinc, phosphorus and calcium in soils treated with varying levels of zinc and phosphate—A soil incubation study. Plant Soil 1970, 33, 699–706. [Google Scholar] [CrossRef]
- Zhou, G.F.; Peng, S.; Liu, Y.Z.; Wei, Q.J.; Han, J.; Islam, Z. The physiological and nutritional responses of seven different citrus rootstock seedlings to boron deficiency. Trees 2013, 28, 295–307. [Google Scholar] [CrossRef]
- Bahadur, L.; Malhi, C.S.; Singh, Z. Effect of foliar and soil applications of zinc sulphate on zinc uptake, tree size, yield, and fruit quality of mango. J. Plant Nutr. 1998, 21, 589–600. [Google Scholar] [CrossRef]
- Dwivedi, R.; Srivastva, P.C. Effect of zinc sulphate application and the cyclic incorporation of cereal straw on yields, the tissue concentration and uptake of Zn by crops and availability of Zn in soil under rice–wheat rotation. Int. J. Recycl. Org. Waste Agric. 2014, 3, 53. [Google Scholar] [CrossRef] [Green Version]
- Rossi, L.; Fedenia, L.N.; Sharifan, H.; Ma, X.; Lombardini, L. Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (Coffea arabica L.) plants. Plant Physiol. Biochem. 2019, 135, 160–166. [Google Scholar] [CrossRef]
- Doolette, C.; Read, T.L.; Li, C.; Scheckel, K.G.; Donner, E.; Kopittke, P.M.; Schjoerring, J.K.; Lombi, E. Foliar application of zinc sulphate and zinc EDTA to wheat leaves: Differences in mobility, distribution, and speciation. J. Exp. Bot. 2018, 69, 4469–4481. [Google Scholar] [CrossRef]
- Calonego, J.C.; Ocani, K.; Ocani, M.; Dos Santos, C.H. Adubação boratada foliar na cultura da soja. Colloq. Agrar. 2010, 5, 20–26. [Google Scholar] [CrossRef]
- Naz, T.; Akhtar, J.; Iqbal, M.M.; Haq, M.A.U.; Saqib, M. Boron Toxicity in Salt-Affected Soils and Effects on Plants. In Soil Science: Agricultural and Environmental Prospectives; Springer: Cham, Switzerland, 2016; pp. 259–286. [Google Scholar]
- Macedo, L.O.; Júnior, D.M.; Jacobassi, R.; Hippler, F.W.R.; Quaggio, J.A.; Boaretto, R.M. Efficiency of foliar application of sparingly soluble sources of boron and zinc in citrus. Sci. Agric. 2021, 78, 78. [Google Scholar] [CrossRef]
- Mathew, J.; Krishnakumar, V.; Srinivasan, V.; Bhat, R.; Namboothiri, C.N.; Haris, A.A. Standardization of critical boron level in soil and leaves of coconut palms grown in a tropical Entisol. J. Soil Sci. Plant Nutr. 2018, 18, 376–387. [Google Scholar] [CrossRef]
- Galindo, F.S.; Filho, M.T.; Buzetti, S.; Boleta, E.H.M.; Rodrigues, W.L.; Rosa, A.R.M. Do the application forms and doses of boron affect wheat crops? Rev. Bras. Eng. Agríc. Ambient. 2018, 22, 597–603. [Google Scholar] [CrossRef]
- Sarki, M.S.; Yusop, M.K.; Ishak, F.; Wahid, S.B.A.; Hafeez, B. Boron fertilizers borax and colemanite application on rice and their residual effect on the following crop cycle. Soil Sci. Plant Nutr. 2011, 57, 403–410. [Google Scholar] [CrossRef] [Green Version]
- Asad, A.; Blamey, F.P.C.; Edwards, D.G. Effects of Boron Foliar Applications on Vegetative and Reproductive Growth of Sunflower. Ann. Bot. 2003, 92, 565–570. [Google Scholar] [CrossRef] [Green Version]
- Morgan, J.B.; Connolly, E.L. Plant—Soil Interactions: Nutrient Uptake. In Nature Education Knowledge; Nature Education: Cambridge, MA, USA, 2013; Volume 4, p. 2. [Google Scholar]
- Stein, R.J.; Höreth, S.; De Melo, J.R.F.; Syllwasschy, L.; Lee, G.; Garbin, M.L.; Clemens, S.; Krämer, U. Relationships between soil and leaf mineral composition are element-specific, environment-dependent and geographically structured in the emerging model Arabidopsis halleri. New Phytol. 2016, 213, 1274–1286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oosterhuis, D. Foliar fertilization: Mechanisms and magnitude of nutrient uptake. In Proceedings of the Fluid Forum, Scottsdale, AZ, USA, 15–17 February 2009; pp. 1–4. [Google Scholar]
- Schroeder, H.A.; Balassa, J.J. Cadmium: Uptake by Vegetables from Superphosphate in Soil. Science 1963, 140, 819–820. [Google Scholar] [CrossRef]
- Chen, Y.; Li, T.; Han, X.; Ding, Z.-L.; Yang, X.-E.; Jin, Y.-F. Cadmium accumulation in different pakchoi cultivars and screening for pollution-safe cultivars. J. Zhejiang Univ. Sci. B 2012, 13, 494–502. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.A.; Hasegawa, H. High levels of inorganic arsenic in rice in areas where arsenic-contaminated water is used for irrigation and cooking. Sci. Total Environ. 2011, 409, 4645–4655. [Google Scholar] [CrossRef] [Green Version]
- Chary, N.S.; Kamala, C.; Raj, D.S.S. Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicol. Environ. Saf. 2008, 69, 513–524. [Google Scholar] [CrossRef]
- Lebeau, T.; Bagot, D.; Jézéquel, K.; Fabre, B. Cadmium biosorption by free and immobilised microorganisms cultivated in a liquid soil extract medium: Effects of Cd, pH and techniques of culture. Sci. Total Environ. 2002, 291, 73–83. [Google Scholar] [CrossRef]
- Kudo, H.; Kudo, K.; Uemura, M.; Kawai, S. Magnesium inhibits cadmium translocation from roots to shoots, rather than the uptake from roots, in barley. Botany 2015, 93, 345–351. [Google Scholar] [CrossRef]
- Burló-Carbonell, F.; Carbonell-Barrachina, A.; Vidal-Roig, A.; Mataix-Beneyto, J. Effects of irrigation water quality on loquat plant nutrition: Sensitivity of loquat plant to salinity. J. Plant Nutr. 1997, 20, 119–130. [Google Scholar] [CrossRef]
- Heitkemper, D.; Kubachka, K.; Halpin, P.; Allen, M.; Shockey, N. Survey of total arsenic and arsenic speciation in US-produced rice as a reference point for evaluating change and future trends. Food Addit. Contam. Part B 2009, 2, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Farid, A.T.M.; Roy, K.C.; Hossain, K.M.; Sen, R. A Study of Arsenic Contaminated Irrigation Water and its Carried Over Effect on Vegetable. In Proceedings of the International Symposium on Fate of Arsenic in the Environment, Dhaka, Bangladesh, January 2003; pp. 113–121. [Google Scholar]
Nutrients | Soil | Fruit Pulp | Seed | Leaf Blade | Optimum Ranges (Leaves) |
---|---|---|---|---|---|
Na (mg kg−1) | 421.6 | 73.16 | 92.83 | 154.15 | 61–115 |
Mg (mg kg−1) | 2935.56 | 2466.47 | 1350.65 | 342.27 | 2700–3800 |
K (mg kg−1) | 21,499.12 | 5941.8 | 21,376.39 | 2823.17 | 7500–12,000 |
Ca (mg kg−1) | 2740.1 | 20,412.75 | 10,651.17 | 130.77 | 19,000–28,900 |
Zn (mg kg−1) | 326.56 | 41.74 | 22.83 | 23.19 | 20–72 |
B (mg kg−1) | 57.23 | 12.13 | 18.72 | 2.45 | 25–35 |
Mo (µg kg−1) | 738.59 | 11,232.68 | 307.3 | 603.28 | - |
Mn (mg kg−1) | 91.37 | 283.53 | 52.34 | 126.56 | 15–23 |
Fe (mg kg−1) | 6569.07 | 68.91 | 45.96 | 11,390.06 | 53–76 |
Co (µg kg−1) | 1360.8 | 272.23 | 231.01 | 4457.18 | - |
Ni (µg kg−1) | 766,314.86 | 493.58 | 1690.06 | 4052.05 | - |
Cu (mg kg−1) | 205.93 | 2.52 | 1.81 | 2.85 | 5–7 |
Cd (µg kg−1) | 191.75 | 298.08 | 187.43 | 63.16 | - |
As (µg kg−1) | 333.51 | 30.62 | 87.24 | 55,291.61 | - |
Hg (µg kg−1) | 19.59 | 1.49 | 1.09 | 16.13 | - |
Pb (µg kg−1) | 623.18 | 4432.19 | 160.23 | 101,903.25 | - |
Working Parameters | Set Value |
---|---|
Radio frequency power (W) | 1550 |
Plasma gas flow (L min−1) | 15 |
Carrier gas flow (L min−1) | 1.07 |
Compensation airflow (L min−1) | 0.00 |
Spray chamber temperature (°C) | 2 |
Octopole reaction cell mode | Helium |
Oxide (%) | <3 |
Double charge (%) | <1.5 |
Sampling cone and intercepting cone | Nickel |
Sampling depth (mm) | 10.0 |
Step | Power (W) | Heating Rate (°C/min) | Temperature/°C | Hold Time (/min) |
---|---|---|---|---|
1 | 1200 | 12 | 120 | 5 |
2 | 1200 | 30 | 150 | 5 |
3 | 1200 | 19 | 190 | 35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, M.M.; Anwar, R.; Shafique, M.W.; Yousef, A.F.; Chen, F. Exogenous Application of Mg, Zn and B Influences Phyto-Nutritional Composition of Leaves and Fruits of Loquat (Eriobotrya japonica Lindl.). Agronomy 2021, 11, 224. https://doi.org/10.3390/agronomy11020224
Ali MM, Anwar R, Shafique MW, Yousef AF, Chen F. Exogenous Application of Mg, Zn and B Influences Phyto-Nutritional Composition of Leaves and Fruits of Loquat (Eriobotrya japonica Lindl.). Agronomy. 2021; 11(2):224. https://doi.org/10.3390/agronomy11020224
Chicago/Turabian StyleAli, Muhammad Moaaz, Raheel Anwar, Muhammad Waleed Shafique, Ahmed Fathy Yousef, and Faxing Chen. 2021. "Exogenous Application of Mg, Zn and B Influences Phyto-Nutritional Composition of Leaves and Fruits of Loquat (Eriobotrya japonica Lindl.)" Agronomy 11, no. 2: 224. https://doi.org/10.3390/agronomy11020224
APA StyleAli, M. M., Anwar, R., Shafique, M. W., Yousef, A. F., & Chen, F. (2021). Exogenous Application of Mg, Zn and B Influences Phyto-Nutritional Composition of Leaves and Fruits of Loquat (Eriobotrya japonica Lindl.). Agronomy, 11(2), 224. https://doi.org/10.3390/agronomy11020224