Performance of Two Seashore Paspalum (Paspalum vaginatum Sw.) Varieties Growing in Shallow Green Roof Substrate Depths and Irrigated with Seawater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Turfgrass Establishment
2.3. Turfgrass Maintenance and Irrigation Regimes
2.4. Greenhouse Climate Conditions
2.5. Measurements
2.6. Experimental Design and Statistics
3. Results and Discussion
3.1. Irrigation with Seawater
3.1.1. Leaching Fraction
3.1.2. Leachate Electrical Conductivity
3.1.3. Green Turf Cover
3.2. Recovery Period
3.2.1. Leachate Electrical Conductivity
3.2.2. Green Turf Cover
3.3. Response of Green Turf Cover to Leachate Electrical Conductivity
3.3.1. Stress Period
3.3.2. Recovery Period
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fernandez-Cañero, R.; Emilsson, T.; Fernandez-Barba, C.; Machuca, M.Á.H. Green roof systems: A study of public attitudes and preferences in southern Spain. J. Environ. Manag. 2013, 128, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Savi, T.; Andri, S.; Nardini, A. Impact of different green roof layering on plant water status and drought survival. Ecol. Eng. 2013, 57, 188–196. [Google Scholar] [CrossRef]
- Bousselot, J.M.; Klett, J.E.; Koski, R.D. Moisture content of extensive green roof substrate and growth response of 15 temperate plant species during dry down. HortScience 2011, 46, 518–522. [Google Scholar] [CrossRef] [Green Version]
- Nektarios, P.A.; Ntoulas, N.; Nydrioti, E.; Kokkinou, I.; Bali, E.-M.; Amountzias, I. Drought stress response of Sedum sediforme grown in extensive green roof systems with different substrate types and depths. Sci. Hortic. 2015, 181, 52–61. [Google Scholar] [CrossRef]
- Beard, J.B.; Green, R.L. The role of turfgrasses in environmental protection and their benefits to humans. J. Environ. Qual. 1994, 23, 452–460. [Google Scholar] [CrossRef] [Green Version]
- Ntoulas, N.; Nektarios, P.A.; Kotopoulis, G.; Ilia, P.; Ttooulou, T. Quality assessment of three warm-season turfgrasses growing in different substrate depths on shallow green roof systems. Urban For. Urban Green. 2017, 26, 163–168. [Google Scholar] [CrossRef]
- Ntoulas, N.; Nektarios, P.A.; Nydrioti, E. Performance of Zoysia matrella ‘Zeon’ in shallow green roof substrates under moisture deficit conditions. HortScience 2013, 48, 929–937. [Google Scholar] [CrossRef] [Green Version]
- Ntoulas, N.; Nektarios, P.A.; Charalambous, E.; Psaroulis, A. Zoysia matrella cover rate and drought tolerance in adaptive extensive green roof systems. Urban For. Urban Green. 2013, 12, 522–531. [Google Scholar] [CrossRef]
- Nektarios, P.; Ntoulas, N.; Kotopoulis, G.; Ttoulou, T.; Ilia, P. Festuca arundinacea drought tolerance and evapotranspiration when grown on two extensive green roof substrate depths and under two irrigation regimes. Eur. J. Hortic. Sci. 2014, 79, 142–149. [Google Scholar]
- Ntoulas, N.; Nektarios, P.A. Paspalum vaginatum drought tolerance and recovery in adaptive extensive green roof systems. Ecol. Eng. 2015, 82, 189–200. [Google Scholar] [CrossRef]
- Ntoulas, N.; Nektarios, P.A. Paspalum vaginatum NDVI when grown on shallow green roof systems and under moisture deficit conditions. Crop Sci. 2017, 57, S-147–S-160. [Google Scholar] [CrossRef]
- Marcum, K.B. Use of saline and non-potable water in the turfgrass industry: Constraints and developments. Agric. Water Manag. 2006, 80, 132–146. [Google Scholar] [CrossRef] [Green Version]
- Moritani, S.; Yamamoto, T.; Andry, H.; Inoue, M.; Kato, K.; Saito, H. Effect of combined water and salinity stress factors on evapotranspiration of Sedum kamtschaticum Fischer in relation to green roof irrigation. Urban For. Urban Green. 2013, 12, 338–343. [Google Scholar] [CrossRef]
- Agra, H.; Solodar, A.; Bawab, O.; Levy, S.; Kadas, G.J.; Blaustein, L.; Greenbaum, N. Comparing grey water versus tap water and coal ash versus perlite on growth of two plant species on green roofs. Sci. Total Environ. 2018, 633, 1272–1279. [Google Scholar] [CrossRef] [PubMed]
- Stratigea, D.; Makropoulos, C. Balancing water demand reduction and rainfall runoff minimisation: Modelling green roofs, rainwater harvesting and greywater reuse systems. Water Sci. Technol. Water Supply 2015, 15, 248–255. [Google Scholar] [CrossRef]
- Schaan, C.M.; Devitt, D.; Morris, R.; Clark, L. Cyclic irrigation of turfgrass using a shallow saline aquifer. Agron. J. 2003, 95, 660–667. [Google Scholar] [CrossRef] [Green Version]
- Schiavon, M.; Leinauer, B.; Serena, M.; Sallenave, R.; Maier, B. Bermudagrass and seashore paspalum establishment from seed using differing irrigation methods and water qualities. Agron. J. 2012, 104, 706–714. [Google Scholar] [CrossRef]
- Serena, M.; Leinauer, B.; Schiavon, M.; Maier, B.; Sallenave, R. Establishment and rooting response of bermudagrass propagated with saline water and subsurface irrigation. Crop Sci. 2014, 54, 827–836. [Google Scholar] [CrossRef] [Green Version]
- Sevostianova, E.; Leinauer, B.; Sallenave, R.; Karcher, D.; Maier, B. Soil salinity and quality of sprinkler and drip irrigated warm-season turfgrasses. Agron. J. 2011, 103, 1773–1784. [Google Scholar] [CrossRef]
- Carrow, R.N.; Duncan, R.R.; Huck, M.T. Turfgrass and Landscape Irrigation Water Quality: Assessment and Management, 1st ed.; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Duncan, R.R.; Carrow, R.N.; Huck, M.T. Effective use of seawater irrigation on turfgrass. USGA Green Sect. Rec. 2000, 38, 11–17. [Google Scholar]
- Borghini, M.; Bryden, H.; Schroeder, K.; Sparnocchia, S.; Vetrano, A. The Mediterranean is becoming saltier. Ocean Sci. 2014, 10, 693–700. [Google Scholar] [CrossRef] [Green Version]
- Gaetani, M.; Volterrani, M.; Magni, S.; Caturegli, L.; Minelli, A.; Leto, C.; La Bella, S.; Tuttolomondo, T.; Virga, G.; Grossi, N. Seashore paspalum in the Mediterranean transition zone: Phenotypic traits of twelve accessions during and after establishment. Ital. J. Agron. 2017, 12, 110–115. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Duncan, R.R.; Carrow, R.N. Drought-resistance mechanisms of seven warm-season turfgrasses under surface soil drying: I. Shoot response. Crop Sci. 1997, 37, 1858–1863. [Google Scholar] [CrossRef]
- Lee, G.; Carrow, R.N.; Duncan, R.R. Growth and water relation responses to salinity stress in halophytic seashore paspalum ecotypes. Sci. Hortic. 2005, 104, 221–236. [Google Scholar] [CrossRef]
- Trenholm, L.E.; Duncan, R.R.; Carrow, R.N. Wear tolerance, shoot performance, and spectral reflectance of seashore paspalum and bermudagrass. Crop Sci. 1999, 39, 1147–1152. [Google Scholar] [CrossRef]
- Lee, G.; Duncan, R.R.; Carrow, R.N. Salinity tolerance of seashore paspalum ecotypes: Shoot growth responses and criteria. HortScience 2004, 39, 1138–1142. [Google Scholar] [CrossRef] [Green Version]
- Carrow, R.R.; Huck, M.T.; Duncan, R.R. Leaching for salinity management on turfgrass sites. USGA Green Sect. Rec. 2000, 38, 15–24. [Google Scholar]
- Rhoades, J. Drainage for salinity control. In Drainage for Agriculture; van Schilfgaarde, J., Ed.; SSSA: Madison, WI, USA, 1974; Volume 17, pp. 433–461. [Google Scholar] [CrossRef]
- Kokkinou, I.; Ntoulas, N.; Nektarios, P.A.; Varela, D. Response of native aromatic and medicinal plant species to water stress on adaptive green roof systems. HortScience 2016, 51, 608–614. [Google Scholar] [CrossRef] [Green Version]
- Kotsiris, G.; Nektarios, P.A.; Ntoulas, N.; Kargas, G. An adaptive approach to intensive green roofs in the Mediterranean climatic region. Urban For. Urban Green. 2013, 12, 380–392. [Google Scholar] [CrossRef]
- Ntoulas, N.; Nektarios, P.A.; Spaneas, K.; Kadoglou, N. Semi-extensive green roof substrate type and depth effects on Zoysia matrella ‘Zeon’ growth and drought tolerance under different irrigation regimes. Acta Agric. Scand. B Soil Plant Sci. 2012, 62, 165–173. [Google Scholar] [CrossRef]
- Ntoulas, N.; Nektarios, P.A.; Kapsali, T.-E.; Kaltsidi, M.-P.; Han, L.; Yin, S. Determination of the physical, chemical, and hydraulic characteristics of locally available materials for formulating extensive green roof substrates. Horttechnology 2015, 25, 774–784. [Google Scholar] [CrossRef] [Green Version]
- Richardson, M.; Karcher, D.; Purcell, L. Quantifying turfgrass cover using digital image analysis. Crop Sci. 2001, 41, 1884–1888. [Google Scholar] [CrossRef]
- Motulsky, H.J.; Christopoulos, A. Fitting Models to Biological Data Using Linear and Nonlinear Regression: A Practical Guide to Curve Fitting; GraphPad Software Inc.: San Diego, CA, USA, 2003. [Google Scholar]
- Cathey, S.E.; Kruse, J.K.; Sinclair, T.R.; Dukes, M.D. Transpiration and visual appearance of warm season turfgrasses during soil drying. Environ. Exp. Bot. 2013, 89, 36–43. [Google Scholar] [CrossRef]
- VanWoert, N.D.; Rowe, D.B.; Andresen, J.A.; Rugh, C.L.; Fernandez, R.T.; Xiao, L. Green roof stormwater retention: Effects of roof surface, slope, and media depth. J. Environ. Qual. 2005, 34, 1036–1044. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, D.; Sabre, M.; Lassabatere, L.; Dal, M.; Rodriguez, F. Storm water retention and actual evapotranspiration performances of experimental green roofs in French oceanic climate. Eur. J. Environ. Civ. Eng. 2016, 20, 344–362. [Google Scholar] [CrossRef]
- Soulis, K.X.; Ntoulas, N.; Nektarios, P.A.; Kargas, G. Runoff reduction from extensive green roofs having different substrate depth and plant cover. Ecol. Eng. 2017, 102, 80–89. [Google Scholar] [CrossRef]
- Miyamoto, S.; Glenn, E.P.; Olsen, M.W. Growth, water use and salt uptake of four halophytes irrigated with highly saline water. J. Arid Environ. 1996, 32, 141–159. [Google Scholar] [CrossRef]
- Vesuviano, G.; Stovin, V. A generic hydrological model for a green roof drainage layer. Water Sci. Technol. 2013, 68, 769–775. [Google Scholar] [CrossRef] [Green Version]
- El-Haddad, E.-S.H.; Noaman, M.M. Leaching requirement and salinity threshold for the yield and agronomic characteristics of halophytes under salt stress. J. Arid Environ. 2001, 49, 865–874. [Google Scholar] [CrossRef]
- Chowdhury, R.K.; Abaya, J.S. An experimental study of greywater irrigated green roof systems in an arid climate. J. Water Manag. Model. 2018, 26, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Lee, G.; Carrow, R.N.; Duncan, R.R. Criteria for assessing salinity tolerance of the halophytic turfgrass seashore paspalum. Crop Sci. 2005, 45, 251–258. [Google Scholar] [CrossRef]
- Marcum, K.B. Salinity tolerance mechanisms of grasses in the subfamily Chloridoideae. Crop Sci. 1999, 39, 1153–1160. [Google Scholar] [CrossRef]
- Berndt, W.L. Salinity affects quality parameters of ‘SeaDwarf’ seashore paspalum. HortScience 2007, 42, 417–420. [Google Scholar] [CrossRef]
- Pompeiano, A.; Di Patrizio, E.; Volterrani, M.; Scartazza, A.; Guglielminetti, L. Growth responses and physiological traits of seashore paspalum subjected to short-term salinity stress and recovery. Agric. Water Manag. 2016, 163, 57–65. [Google Scholar] [CrossRef]
- Uddin, M.K.; Juraimi, A.S.; Ismail, M.R.; Hossain, M.A.; Othman, R.; Abdul Rahim, A.A. Physiological and growth responses of six turfgrass species relative to salinity tolerance. Sci. World J. 2012, 905468. [Google Scholar] [CrossRef] [Green Version]
- Shahba, M.A. Comparative responses of bermudagrass and seashore paspalum cultivars commonly used in Egypt to combat salinity stress. Hortic. Environ. Biotechnol. 2010, 51, 383–390. [Google Scholar] [CrossRef] [Green Version]
- Marcum, K.B.; Murdoch, C.L. Growth responses, ion relations, and osmotic adaptations of eleven C4 turfgrasses to salinity. Agron. J. 1990, 82, 892–896. [Google Scholar] [CrossRef]
- Lee, G.; Carrow, R.N.; Duncan, R.R. Salinity tolerance of selected seashore paspalums and bermudagrasses: Root and verdure responses and criteria. HortScience 2004, 39, 1143–1147. [Google Scholar] [CrossRef] [Green Version]
- Maas, E.V.; Hoffman, G.J. Crop salt tolerance–current assessment. J. Irrig. Drain. Div. 1977, 103, 115–134. [Google Scholar]
- Guo, H.; Wang, Y.; Li, D.; Chen, J.; Zong, J.; Wang, Z.; Chen, X.; Liu, J. Growth response and ion regulation of seashore paspalum accessions to increasing salinity. Environ. Exp. Bot. 2016, 131, 137–145. [Google Scholar] [CrossRef]
- Pessarakli, M.; Breshears, D.D.; Walworth, J.; Field, J.P.; Law, D.J. Candidate halophytic grasses for addressing land degradation: Shoot responses of Sporobolus airoides and Paspalum vaginatum to weekly increasing NaCl concentration. Arid Land Res. Manag. 2017, 31, 169–181. [Google Scholar] [CrossRef] [Green Version]
- Shahba, M.A.; Alshammary, S.F.; Abbas, M.S. Effects of salinity on seashore paspalum cultivars at different mowing heights. Crop Sci. 2012, 52, 1358–1370. [Google Scholar] [CrossRef]
Parameter | Value (±SE) | Mechanical Analysis | |
---|---|---|---|
Particle Size | Percent Retained | ||
mm | % (w/w) | ||
pH | 7.2 (±0.02) | 9.5–6.3 | 1.9 |
Electrical conductivity, dS m–1 | 0.60 (±0.02) | 6.3–3.2 | 23.6 |
Dry bulk density, kg L–1 | 0.80 (±0.02) | 3.2–2.0 | 17.3 |
Saturated bulk density, kg L–1 | 1.30 (±0.05) | 2.0–1.0 | 25.9 |
Weight at maximum field capacity, kg L–1 | 1.20 (±0.03) | 1.0–0.25 | 20.4 |
Maximum water holding capacity, % (v/v) | 54.2 (±1.65) | 0.25–0.05 | 4.4 |
Total pore volume, % | 63.8 (±2.30) | 0.05–0.002 | 5.4 |
Hydraulic conductivity, mm·min–1 | 7.62 (±0.67) | <0.002 | 1.1 |
Parameter | Value |
---|---|
pH | 8.16 |
Electrical conductivity (25 °C), dS m–1 | 59.6 |
Total dissolved solids, mg L–1 | 38,100 |
Total hardness, mg CaCO3 L–1 | 6543 |
Sulphate (SO42−), mg L–1 | 2140 |
Carbonate (CO32−), mg L–1 | 31.2 |
Bicarbonate (HCO3−), mg L–1 | 118 |
Chloride (Cl-), mg L–1 | 22,200 |
Calcium (Ca2+), mg L–1 | 461 |
Magnesium (Mg2+), mg L–1 | 1310 |
Potassium (Κ+), mg L–1 | 433 |
Sodium (Na+), mg L–1 | 10,800 |
Copper (Cu), mg L–1 | <0.04 |
Zinc (Zn2+), mg L–1 | <0.03 |
Iron (Fe), μg L–1 | 216 |
Sodium adsorption ratio (SAR) | 58.2 |
Source of Variation | Stress Period | Recovery Period | ||||||||||
Marina | Platinum TE | Marina | Platinum TE | |||||||||
GTC | ECL | LF | GTC | ECL | LF | GTC | ECL | LF | GTC | ECL | LF | |
Irrigation regime (I) | NS † | ** | *** | NS | *** | *** | ** | NS | NS | *** | * | NS |
Substrate depth (D) | * | *** | ** | * | *** | * | NS | *** | NS | NS | *** | NS |
I × D | NS | *** | ** | NS | ** | * | NS | NS | NS | NS | NS | NS |
Sampling date (Τ) | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** |
I × T | *** | *** | *** | *** | *** | *** | *** | *** | NS | *** | *** | NS |
D × T | *** | *** | * | *** | *** | * | * | *** | NS | * | *** | NS |
I × D × T | NS | *** | * | NS | *** | * | NS | NS | NS | NS | NS | NS |
Treatment means | ||||||||||||
Irrigation regime | ||||||||||||
7 mm | 42.96 a | 50.27 b | 0.46 c | 54.79 a | 48.25 c | 0.42 c | 48.98 b | 39.78 a | 0.56 a | 56.68 b | 45.35 a | 0.54 a |
15 mm | 41.31 a | 54.49 a | 0.74 b | 47.29 a | 53.16 b | 0.74 b | 52.63 b | 37.69 a | 0.56 a | 56.73 b | 42.02 ab | 0.55 a |
45 mm | 46.25 a | 55.36 a | 0.88 a | 50.82 a | 55.39 a | 0.87 a | 64.24 a | 36.45 a | 0.53 a | 70.40 a | 39.60 b | 0.52 a |
LSD | 6.48 | 2.79 | 0.03 | 9.02 | 1.00 | 0.04 | 7.63 | 4.16 | 0.04 | 4.68 | 3.48 | 0.03 |
Substrate depth | ||||||||||||
7.5 cm | 40.32 b | 56.55 a | 0.71 a | 46.86 b | 55.17 a | 0.69 a | 55.32 a | 32.29 b | 0.55 a | 60.95 a | 35.91 b | 0.54 a |
15 cm | 46.70 a | 50.19 b | 0.67 b | 55.07 a | 49.37 b | 0.67 b | 55.24 a | 43.66 a | 0.55 a | 61.59 a | 48.74 a | 0.54 a |
LSD | 4.92 | 1.20 | 0.02 | 8.09 | 1.78 | 0.01 | 4.04 | 2.34 | 0.02 | 5.13 | 2.10 | 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ntoulas, N.; Varsamos, I. Performance of Two Seashore Paspalum (Paspalum vaginatum Sw.) Varieties Growing in Shallow Green Roof Substrate Depths and Irrigated with Seawater. Agronomy 2021, 11, 250. https://doi.org/10.3390/agronomy11020250
Ntoulas N, Varsamos I. Performance of Two Seashore Paspalum (Paspalum vaginatum Sw.) Varieties Growing in Shallow Green Roof Substrate Depths and Irrigated with Seawater. Agronomy. 2021; 11(2):250. https://doi.org/10.3390/agronomy11020250
Chicago/Turabian StyleNtoulas, Nikolaos, and Ioannis Varsamos. 2021. "Performance of Two Seashore Paspalum (Paspalum vaginatum Sw.) Varieties Growing in Shallow Green Roof Substrate Depths and Irrigated with Seawater" Agronomy 11, no. 2: 250. https://doi.org/10.3390/agronomy11020250
APA StyleNtoulas, N., & Varsamos, I. (2021). Performance of Two Seashore Paspalum (Paspalum vaginatum Sw.) Varieties Growing in Shallow Green Roof Substrate Depths and Irrigated with Seawater. Agronomy, 11(2), 250. https://doi.org/10.3390/agronomy11020250