The Effect of Methyl Anthranilate-Based Repellent on Chemical Composition and Selected Physiological Parameters of Sweet Cherry (Prunus avium L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Chemical Determinations in Fruit and Leaves
2.3. Determination of Physiological Parameters
2.4. Determination of Fruit Cracking Index
2.5. Statistical Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Avery, M.L. Evaluation of methyl anthranilate as a bird repellent in fruit drops. Proc. Vertebr. Pest Conf. 1992, 15, 130–133. [Google Scholar]
- Curtis, P.D.; Merwin, I.A.; Pritts, M.P.; Peterson, D.V. Chemical repellents and plastic netting for reducing bird damage to sweet cherries, blueberries, and grapes. Hort. Sci. 1994, 29, 1151–1155. [Google Scholar] [CrossRef] [Green Version]
- Harris, R.E.; Davis, R.A. Evaluation of the efficacy of products and techniques for airport bird control. LGL Rep. Aerodr. Saf. Branch Transp. Can. 1998, 3, 107. [Google Scholar]
- Simon, G. A short overview of bird control in sweet and sour cherry orchards—Possibilities of protection of bird damage and its effectiveness. Int. J. Hort. Sci. 2008, 14, 107–111. [Google Scholar] [CrossRef]
- Avery, M.L.; Primus, T.M.; Defrancesco, J.; Cummings, J.L.; Decker, D.G.; Humphrey, J.S.; Davis, J.E.; Deacon, R. Field evaluation of methyl anthranilate for deterring birds eating blueberries. J. Wildl. Manag. 1996, 60, 929–934. [Google Scholar] [CrossRef]
- Olbricht, K.; Grafe, C.; Weiss, K.; Ulrich, D. Inheritance of aroma compounds in a model population of Fragaria × ananassa Duch. Plant Breed. 2008, 127, 87–93. [Google Scholar]
- Clark, L.; Mason, J.R. Interaction between sensory and postingestional repellents in starlings: Methyl anthranilate and sucrose. Ecol. Appl. 1993, 3, 262–270. [Google Scholar] [CrossRef]
- Eisemann, J.D.; Werner, S.J.; O’Hare, J.R. Registration considerations for chemical bird repellents in fruit crops. Outlooks Pest Manag. 2011, 22, 87–91. [Google Scholar] [CrossRef]
- Mason, J.R.; Clark, L. Evaluation of methyl anthranilate and activated charcoal as snow goose grazing deterrents. Crop Prot. 1995, 14, 467–469. [Google Scholar] [CrossRef]
- Ahmad, S.; Saleem, Z.; Jabeen, F.; Hussain, B.; Sultana, T.; Sultana, S.; Al-Ghanim, K.A.; Al-Mulhim, N.M.A.; Mahboob, S. Potential of natural repellents methylanthranilate and anthraquinone applied on maize seeds and seedlings against house sparrow (Passer domesticus) in captivity. Braz. J. Biol. 2018, 78, 667–672. [Google Scholar] [CrossRef] [Green Version]
- Falcão, L.D.; Chaves, E.S.; Burin, V.M.; Falcão, A.P.; Gris, E.F.; Bonin, V.; Bordignon-Luiz, M.T. Maturity of Cabernet Sauvignon berries from grapevines grown with two different training systems in a new grape growing region in Brazil. Cienc. Inv. Agr. 2008, 35, 321–332. [Google Scholar] [CrossRef]
- Pantelidis, G.E.; Vasilakakis, M.; Manganaris, G.A.; Diamantidis, G. Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and Cornelian cherries. Food Chem. 2007, 102, 777–783. [Google Scholar] [CrossRef]
- Yu, L.; Haley, S.; Perret, J.; Harris, M.; Wilson, J.; Qian, M. Free radical scavenging properties of wheat extracts. J. Agric. Food Chem. 2002, 50, 1619–1624. [Google Scholar] [CrossRef] [PubMed]
- Kumaran, A.; Karunakaran, R.J. In vitro antioxidant activities of methanol extracts of five Phyllanthus species from India. LWT 2007, 40, 344–351. [Google Scholar] [CrossRef]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of phosphomolybdenium complex: Specific application to the determination of vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef]
- Braca, A.; Tommasi, N.D.; Bari, L.D.; Pizza, C.; Politi, M.; Morelli, I. Antioxidant principles from Bauhinia terapotensis. J. Nat. Prod. 2001, 64, 892–895. [Google Scholar] [CrossRef]
- Arnon, D.J.; Allen, M.B.; Whatley, F. Photosynthesis by isolated chloroplast. Biochim. Biphys. Acta 1956, 20, 449–461. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Wellburn, A.R. Determinations of total carotenoids and chlorophyll a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 1983, 11, 591–592. [Google Scholar] [CrossRef] [Green Version]
- Hager, A.; Mayer-Berthenrath, T. Die Isolierung und quanttaive Bestimung der Carotenoide und Chlorophyll von Blatern, Algen und isolierten Chloroplasten mit Hilfe Dunnschichtchromatographischer Methoden. Planta 1966, 69, 198–217. [Google Scholar] [CrossRef]
- Weichert, H.; von Jagemann, C.; Peschel, S.; Knoche, M. Studies on water transport through the sweet cherry fruit surface: VIII. Effect of selected cations on water uptake and fruit cracking. J. Am. Soc. Hort. Sci. 2004, 129, 781–788. [Google Scholar] [CrossRef] [Green Version]
- Aronov, E.V.; Clark, L. Degradation studies of the non-lethal bird repellent, methyl anthranilate. Pest Sci. 1996, 41, 355–362. [Google Scholar] [CrossRef]
- Askham, L.R. Efficacy of methyl anthranilate as a bird repellent on cherries, blueberries and grapes. Proc. Vertebr. Pest Conf. 1992, 15, 137–141. [Google Scholar]
- Mikiciuk, G.; Chełpiński, P.; Popiel, J. The comparision of the effectivenees of different methods of protection against birds, which are used i cherry-tree orchards. Zesz. Probl. Post. Nauk Rol. 2009, 536, 149–153. (In Polish) [Google Scholar]
- Chockchaisawasdee, S.; Golding, J.B.; Vuong, Q.V.; Papoutsis, K.; Stathopoulos, C.E. Sweet cherry: Composition, postharvest preservation, processing and trends for its future use. Trends Food Sci. Technol. 2016, 55, 72–83. [Google Scholar] [CrossRef]
- Vavoura, M.V.; Badeka, A.V.; Kontakos, M.; Kontominas, M.G. Characterization of four popular sweet cherry cultivars grown in greece by volatile compound and physicochemical data analysis and sensory evaluation. Molecules 2015, 20, 1922–1940. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, B.; Landbo, A.-K.; Knudsen, D.; Silva, A.P.; Moutinho-Pereira, J.; Rosa, E.; Meyer, A.S. Effect of ripeness and postharvest storage on the phenolic profiles of cherries (Prunus avium L.). J. Agric. Food Chem. 2004, 52, 523–530. [Google Scholar] [CrossRef]
- Kurlus, R. Growth, yield and fruit quality in eight sweet cherry cultivars grafted on ‘Tabel Edabriz’ rootstock. J. Fruit Ornam. Plant Res. 2004, 12, 35–39. [Google Scholar]
- Pérez-Sánchez, R.; Gómez-Sánchez, M.A.; Morales-Corts, M.R. Description and quality evaluation of sweet cherries cultured in Spain. J. Food Qual. 2010, 33, 490–506. [Google Scholar] [CrossRef]
- Drkenda, P.; Spahić, A.; Spahić, A.; Begić-Akagić, A. Testing of ‘Gisela 5’ and ‘Santa Lucia 64’ cherry rootstocks in Bosnia and Herzegovina. Acta Agr. Slov. 2012, 99, 129–136. [Google Scholar] [CrossRef]
- Stojanovic, M.; Milatovic, D.; Kulina, M.; Alic–Dzanovic, Z. Pomological properties of sweet cherry cultivars on Gisela 5 rootstock in the region of Sarajevo. In Proceedings of the 3rd International Scientific Symposium “Agrosym 2012”, Jahorina, Bosnia and Herzegovina, 15–17 November 2012; University of East Sarajevo: East Sarajevo, Republika Srpska, Bosnia and Herzegovina, 2012; pp. 183–187. [Google Scholar]
- Sen, F.; Oksar, R.E.; Golkarian, M.; Yaldiz, S. Quality changes of different sweet cherry cultivars at various stages of the supply chain. Not Bot. Horti Agrobot. Cluj Napoca 2014, 42, 501–506. [Google Scholar] [CrossRef] [Green Version]
- Maglakelidze, E.; Bobokasvili, Z.; Kakashvili, V.; Tsigriasvili, L. Biological and agricultural properties of sweet cherry (Prunus avium L.) cultivars in Georgia. Int. J. Sci. Res. 2017, 6, 796–803. [Google Scholar]
- Girard, B.; Kopp, T.G. Physicochemical characteristics of selected sweet cherry cultivars. J. Agric. Food Chem. 1998, 46, 471–476. [Google Scholar] [CrossRef] [PubMed]
- Sîrbu, S.; Niculaua, M.; Chiriţă, O. Physico-chemical and antioxidant properties of new sweet cherry cultivars from Iaşi, Romania. Agron. Res. 2012, 10, 341–350. [Google Scholar]
- Prvulović, D.; Malenčić, D.; Popović, M.; Ljubojević, M.; Ognjanov, V. Antioxidant properties of sweet cherries (Prunus avium L.)–role of phenolic compounds. Int. J. Agric. Biosyst. Engin. 2011, 59, 687–690. [Google Scholar]
- Legua, P.; Domenech, A.; Martínez, J.J.; Sánchez-Rodríguez, L.; Hernández, F.; Carbonell-Barrachina, A.A.; Melgarejo, P. Bioactive and volatile compounds in sweet cherry cultivars. J. Food Nutr. Res. 2017, 5, 844–851. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.O.; Heo, H.J.; Kim, Y.J.; Yang, H.S.; Lee, C.Y. Sweet and sour cherry phenolics and their protecive effects on neuronal cells. J. Agric. Food Chem. 2005, 53, 9921–9927. [Google Scholar] [CrossRef]
- Usenik, V.; Fabcic, J.; Stampar, F. Sugars, organic acids, phenolic composition and antioxidant activity of sweet cherry (Prunus avium L.). Food Chem. 2008, 107, 185–192. [Google Scholar] [CrossRef]
- Nizioł-Łukaszewska, Z.; Skrzyński, J.; Leja, M.; Zawiska, I. Comparison of several cherry cultivars grown in Małopolska in terms of phenolic compounds content. Episteme 2012, 15, 445–451. (In Polish) [Google Scholar]
- Telesiński, A.; Mikiciuk, G.; Mikiciuk, M.; Stręk, M.; Płatkowski, M.; Statkiewicz, M. Effect of preharvest use of anti-cracking preparations on changes in selected parameters of sweet cherry fruits during frozen storage. Folia Pomer. Univ. Technol. Stetin. Agric. Aliment. Pisc. Zootech. 2016, 330, 179–186. [Google Scholar] [CrossRef]
- Serrano, M.; Guilleän, F.; Martinez-Romero, D.; Castillo, S.; Valero, D. Chemical constituents and antioxidant activity of sweet cherry at different ripening stages. J. Agric. Food Chem. 2005, 53, 2741–2745. [Google Scholar] [CrossRef]
- Koumanov, K.S.; Staneva, I.N.; Kornov, G.D.; Germanova, D.R. Sweet cherry fruit quality under fertigation. Acta Hort. 2016, 1139, 551–558. [Google Scholar] [CrossRef]
- Stachowiak, A.; Bosiacki, M.; Świerczyński, S.; Kolasiński, M. Influence of rootstocks on different sweet cherry cultivars and accumulation of heavy metals in leaves and fruit. Hort. Sci. 2015, 42, 193–202. [Google Scholar] [CrossRef] [Green Version]
- Mikiciuk, G.; Mikiciuk, M.; Możdżer, E.; Statkiewicz, M.; Chylewska, U. The effects of foliar nutrition with InCa fertilizer on the chemical composition of leaves and fruits of sweet cherry. J. Ecol. Eng. 2015, 16, 116–119. [Google Scholar] [CrossRef]
- Malik, I.A.; Peer, F.A.; Ahmad, M. Influence of different nutrient sprays on fruit quality of cherry (Prunus avium L.). Res. J. Chem. Environ. Sci. 2018, 6, 68–76. [Google Scholar]
- Mikiciuk, G.; Możdżer, E.; Mikiciuk, M.; Chełpiński, P. The effect of antitranspirant on the content of microelements and trace elements in sweet cherry leaves and fruits. J. Ecol. Eng. 2013, 14, 36–38. [Google Scholar] [CrossRef]
- Gonçalves, B.; Moutinho-Pereira, J.; Santos, A.; Silva, A.P.; Bacelar, E.; Correia, C.; Rosa, E. Scion-rootstock interaction affects the physiology and fruit quality of sweet cherry. Tree Physiol. 2005, 26, 93–104. [Google Scholar] [CrossRef] [Green Version]
- Viljevac, M.; Dugalić, K.; Mihaljewić, I.; Šimić, D.; Sudar, R.; Jurković, Z.; Lepeduš, H. Chlorophyll content, photosynthetic efficiency and genetic marcers in two sour cherry (Prunus cerasus L.) genotypes under drought stress. Acta Bot. Croat. 2013, 72, 221–235. [Google Scholar] [CrossRef] [Green Version]
- Pilarski, J.; Tokarz, K.; Kocurek, M. Comparison of photosynthetic pigment contents in stems and leaves of fruit trees: Cherry, sweet cherry. Folia Hort. 2007, 19, 53–65. [Google Scholar]
- Lenahan, O.M.; Whiting, M.D. Physiological and horticultural effects of sweet cherry chemical blossom thinners. Hort. Sci. 2006, 41, 1547–1551. [Google Scholar] [CrossRef] [Green Version]
- Lichev, V.; Berova, M. Effects of rootstock on photosynthetic activity and productivity in the sweet cherry cultivar ‘Stella’. J. Fruit Ornam. Plant Res. 2004, 12, 287–293. [Google Scholar]
- Simon, G. Review on rain induced fruit cracking of sweet cherries (Prunus avium L.), its causes and the possibilities of prevention. Int. J. Hort. Sci. 2006, 12, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, T.; Satoh, H.; Wanatabe, S. The effects of calcium and naphthalene acetic acid sprays on cracking index and natural rain cracking in sweet cherry fruits. J. Jpn. Soc. Hort. Sci. 1992, 61, 507–511. [Google Scholar] [CrossRef]
Feature | Control | Methyl Anthranilate | Feature | Control | Methyl Anthranilate |
---|---|---|---|---|---|
Total soluble solids (TSS) (%) | 13.5 ± 0.49 a * | 13.5 ± 1.28 a | L-ascorbic acid (mg (100 g)−1 FW) | 22.6 ± 2.93 a | 23.3 ± 2.52 a |
Total acidity (TA) (g malic acid (100 g)−1 FW) | 0.77 ± 0.10 a | 0.74 ± 0.10 a | Total polyphenols (mg gallic acid (100 g)−1 FW) | 81.8 ± 4.67 a | 82.6 ± 3.26 a |
Maturity index (MI) | 17.5 ± 1.90 a | 18.2 ± 2.27 a | Total flavonoids (mg quercetin (100 g)−1 FW) | 15.6 ± 0.74 a | 15.3 ± 1.31 a |
N-NO3 (mg (100 cm)−3 juice) | 2.49 ± 0.51 a | 2.33 ± 0.60 a | Antioxidant capacity (mg equivalent of ascorbic acid (100 g) −1 FW) | 158.1 ± 9.16 a | 160.6 ± 8.72 a |
N-NO2 (mg (100 cm)−3 juice) | 0.43 ± 0.12 a | 0.40 ± 0.11 a | Antioxidant activity (%DPPH) | 39.7 ± 2.24 a | 39.0 ± 3.54 a |
Feature | Leaves | Fruit | ||
---|---|---|---|---|
Control | Methyl Anthranilate | Control | Methyl Anthranilate | |
Dry matter (%) | ||||
37.4 ± 1.99 a * | 37.9 ± 2.48 a | 13.1 ± 0.63 a | 13.8 ± 0.41 a | |
Macronutrient (g·kg−1 DM **) | ||||
N | 31.8 ± 3.86 a | 33.5 ± 3.12 a | 9.18 ± 1.69 a | 9.05 ± 1.35 a |
P | 3.71 ± 0.21 a | 3.86 ± 0.20 a | 3.14 ± 0.31 a | 3.12 ± 0.17 a |
K | 16.3 ± 0.84 a | 16.5 ± 0.58 a | 11.2 ± 1.10 a | 11.7 ± 0.60 a |
Ca | 19.4 ± 0.75 a | 21.8 ± 3.16 a | 2.03 ± 0.28 a | 1.86 ± 0.13 a |
Mg | 4.91 ± 0.37 a | 4.96 ± 0.30 a | 1.45 ± 0.23 a | 1.43 ± 0.32 a |
S | 0.88 ± 0.015 a | 0.89 ± 0.014 a | 0.02 ± 0.001 a | 0.02 ± 0.002 a |
Element | Leaves | Fruit | ||
---|---|---|---|---|
Control | Methyl Anthranilate | Control | Methyl Anthranilate | |
(mg kg−1 DM **) | ||||
Mn | 14.3 ± 0.49 a* | 14.4 ± 0.37 a | 2.42 ± 0.29 a | 2.56 ± 0.27 a |
Zn | 14.1 ± 1.13 a | 14.7 ± 0.51 a | 2.71 ± 0.34 a | 2.68 ± 0.22 a |
Cu | 7.41 ± 0.44 a | 7.75 ± 0.32 a | 4.36 ± 0.69 a | 4.32 ± 0.45 a |
Ni | 1.89 ± 0.09 a | 1.85 ± 0.05 a | 2.15 ± 0.33 a | 2.14 ± 0.31 a |
Pb | 2.50 ± 0.28 a | 2.57 ± 0.24 a | 1.28 ± 0.04 a | 1.28 ± 0.10 a |
Cd | 0.02 ± 0.002 a | 0.03 ± 0.005 a | 0.02 ± 0.002 a | 0.02 ± 0.002 a |
Assimilation Pigment | I Term of Measurement | II Term of Measurement | ||
---|---|---|---|---|
Control | Methyl Anthranilate | Control | Methyl Anthranilate | |
Chlorophyll a (mg g−1 FW) | 1.87 ± 0.196 a * | 1.82 ± 0.182 a | 1.90 ± 0.091 a | 1.97 ± 0.108 a |
Chlorophyll b (mg g−1 FW) | 0.79 ± 0.058 a | 0.83 ± 0.053 a | 0.82 ± 0.068 a | 0.89 ± 0.196 a |
Chlorophyll a/b | 2.37 ± 0.075 a | 2.19 ± 0.079 a | 2.32 ± 0.244 a | 2.21 ± 0.358 a |
Chlorophyll a + b (mg g−1 FW) | 2.66 ± 0.255 a | 2.65 ± 0.235 a | 2.72 ± 0.064 a | 2.86 ± 0.290 a |
Carotenoids (mg g−1 FW) | 1.16 ± 0.083 a | 1.10 ± 0.111 a | 1.17 ± 0.161 a | 1.20 ± 0.147 a |
Parameter of Gas Exchange | I Term of Measurement | II Term of Measurement | ||
---|---|---|---|---|
Control | Methyl Anthranilate | Control | Methyl Anthranilate | |
A * (μmol m−2 s−1) | 11.2 ± 0.74 a ** | 11.9 ± 0.86 a | 10.4 ± 1.09 a | 11.1 ± 0.82 a |
E (mmol m−2 s−1) | 1.86 ± 0.12 a | 2.01 ± 0.18 a | 1.97 ± 0.21 a | 1.84 ± 0.11 a |
gs (mol m−2 s−1) | 0.040 ± 0.003 a | 0.051 ± 0.015 a | 0.062 ± 0.014 a | 0.059 ± 0.011 a |
ci (μmol mol−1) | 145.2 ± 10.55 a | 152.4 ± 8.51 a | 164.2 ± 7.94 a | 158.4 ± 9.21 a |
ωF (mmol mol−1) | 6.02 ± 0.41 a | 5.92 ± 0.55 a | 5.28 ± 0.65 a | 6.03 ± 0.37 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikiciuk, G.; Chełpiński, P.; Mikiciuk, M.; Możdżer, E.; Telesiński, A. The Effect of Methyl Anthranilate-Based Repellent on Chemical Composition and Selected Physiological Parameters of Sweet Cherry (Prunus avium L.). Agronomy 2021, 11, 256. https://doi.org/10.3390/agronomy11020256
Mikiciuk G, Chełpiński P, Mikiciuk M, Możdżer E, Telesiński A. The Effect of Methyl Anthranilate-Based Repellent on Chemical Composition and Selected Physiological Parameters of Sweet Cherry (Prunus avium L.). Agronomy. 2021; 11(2):256. https://doi.org/10.3390/agronomy11020256
Chicago/Turabian StyleMikiciuk, Grzegorz, Piotr Chełpiński, Małgorzata Mikiciuk, Ewa Możdżer, and Arkadiusz Telesiński. 2021. "The Effect of Methyl Anthranilate-Based Repellent on Chemical Composition and Selected Physiological Parameters of Sweet Cherry (Prunus avium L.)" Agronomy 11, no. 2: 256. https://doi.org/10.3390/agronomy11020256
APA StyleMikiciuk, G., Chełpiński, P., Mikiciuk, M., Możdżer, E., & Telesiński, A. (2021). The Effect of Methyl Anthranilate-Based Repellent on Chemical Composition and Selected Physiological Parameters of Sweet Cherry (Prunus avium L.). Agronomy, 11(2), 256. https://doi.org/10.3390/agronomy11020256