The Impact of Intellectual Capital on the Profitability of Russian Agricultural Firms
Abstract
:1. Introduction
2. Background
2.1. Intellectual Capital Definition and Classification
2.2. Intellectual Capital Measurement
- (1)
- The VAIC method does not properly separate expenses from assets. Assets contribute to future benefits while expenses do not provide any benefits beyond the accounting period. Thus, labor costs (excluding training expenses and wages of R&D employees) should be recognized as expenses.
- (2)
- The VAIC method confuses stocks and flows. Under the VAIC methodology, SCE and HCE do not represent the value of structural nor human capital.
- (3)
- VAIC’ ratios do not calculate efficiency. As an example, Andriessen [16] states that HCE does not provide information about the contribution of human capital to value creation.
- (4)
- The assumption of the reverse relationship of human capital and structural capital leads to a result where HCE is bigger than SCE every time when VA is bigger than zero. Andriessen [16] claims that this result is dissatisfying and can lead to the wrong conclusion about human resource assets and structural assets effectiveness.
- (5)
- VAIC ignores the synergies between intellectual capital components.
- (6)
- Variables which are not related to intellectual capital can affect VAIC (for example, if capital employed is small to zero due to big liabilities and little net assets, CEE and VAIC will be very high).
2.3. A literature Review of VAIC Modifications
3. Introducing New Intellectual Capital Measures
3.1. Intellectual Capital of a Firm in a Perfectly Competitive Setting
3.2. Theoretical Decomposition of the Original VAIC Model
3.3. Valuation of Intellectual Capital and Its Elements
4. Materials and Methods
4.1. Sample
4.2. Measures of Firm Performance
4.3. Measures of Intellectual Capital, Hypotheses and Empirical Model
4.4. Method of Parameters Estimation
5. Results
6. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bontis, N. Intellectual capital: An exploratory study that develops measures and models. Manag. Decis. 1998, 36, 63–76. [Google Scholar] [CrossRef] [Green Version]
- Hunter, L.; Webster, E.; Wyatt, A. Measuring intangible capital: A review of current practice. Aust. Account. Rev. 2005, 15, 4–21. [Google Scholar] [CrossRef]
- Inkinen, H. Review of empirical research on intellectual capital and firm performance. J. Intellect. Cap. 2015, 16, 518–565. [Google Scholar] [CrossRef]
- Gołacka, E.G.; Jefmańska, M.K.; Jefmański, B. Can Elements of Intellectual Capital Improve Business Sustainability?—The Perspective of Managers of SMEs in Poland. Sustainability 2020, 12, 1545. [Google Scholar] [CrossRef] [Green Version]
- Cavicchi, C. Healthcare sustainability and the role of intellectual capital: Evidence from an Italian Regional Health Service. J. Intellect. Cap. 2017, 18, 544–563. [Google Scholar] [CrossRef]
- Januškaite, V.; Užien, E.L. Intellectual Capital as a Factor of Sustainable Regional Competitiveness. Sustainability 2018, 10, 4848. [Google Scholar] [CrossRef] [Green Version]
- Goebel, V. Estimating a measure of intellectual capital value to test its determinants. J. Intellect. Cap. 2015, 16, 101–120. [Google Scholar] [CrossRef]
- Osinski, M.; Selig, P.M.; Matos, F.; Roman, D.J. Methods of evaluation of intangible assets and intellectual capital. J. Intellect. Cap. 2017, 18, 470–485. [Google Scholar] [CrossRef]
- Ovechkin, D.; Boldyreva, N.; Davydenko, V. Intellectual capital and value: Testing new IC measures in Russia. J. Econ. Stud. 2020, 1, 17. [Google Scholar] [CrossRef]
- Pedro, E.; Leitão, J.; Alves, H. Back to the future of intellectual capital research: A systematic literature review. Manag. Decis. 2018, 56, 2502–2583. [Google Scholar] [CrossRef]
- Phusavat, K.; Comepa, N.; Lutek, A.S.; Ooi, K. Interrelationships between intellectual capital and performance. Ind. Manag. Data Syst. 2011, 111, 810–829. [Google Scholar] [CrossRef]
- Ulum, I.; Ghozali, I.; Purwanto, A. Intellectual capital performance of Indonesian banking sector: A modified VAIC (M-VAIC) perspective. Asian J. Financ. Account. 2014, 6, 103–123. [Google Scholar] [CrossRef] [Green Version]
- Nimtrakoon, S. The relationship between intellectual capital, firms’ market value and financial performance—Empirical evidence from the ASEAN. J. Intellect. Cap. 2015, 16, 587–618. [Google Scholar] [CrossRef]
- Vishnu, S.; Gupta, V.K. Intellectual capital and performance of pharmaceutical firms in India. J. Intellect. Cap. 2014, 15, 83–99. [Google Scholar] [CrossRef]
- Bayraktaroglu, A.E.; Calisir, F.; Baskak, M. Intellectual capital and firm performance: An extended VAIC model. J. Intellect. Cap. 2019, 20, 406–425. [Google Scholar] [CrossRef]
- Andriessen, D. Making Sense of Intellectual Capital: Designing a Method for the Valuation of Intangibles; Elsevier Butterworth-Heinemann: Oxford, UK, 2004. [Google Scholar]
- Stahle, P.; Stahle, S.; Aho, S. Value added intellectual coefficient (VAIC): A critical analysis. J. Intellect. Cap. 2011, 12, 531–551. [Google Scholar] [CrossRef]
- Iazzolino, G.; Laise, D. Value added intellectual coefficient (VAIC)—A methodological and critical review. J. Intellect. Cap. 2013, 14, 547–563. [Google Scholar] [CrossRef]
- Bassetti, T.; dal Maso, L.; Liberatore, G.; Mazzi, F. A critical validation of the value added intellectual coefficient: Use in empirical research and comparison with alternative measures of intellectual capital. J. Manag. Gov. 2020, 24, 1115–1145. [Google Scholar] [CrossRef]
- Kowalska, M.K. Intellectual Capital: ISVA, the Alternative Way of Calculating Creating Value in Agricultural Entities—Case of Poland. Sustainability 2020, 12, 2645. [Google Scholar] [CrossRef] [Green Version]
- Scafarto, V.; Ricci, F.; Scafarto, F. Intellectual capital and firm performance in the global agribusiness industry: The moderating role of human capital. J. Intellect. Cap. 2016, 17, 530–552. [Google Scholar] [CrossRef]
- Cavicchi, C.; Vagnoni, E. Intellectual Capital in Support of Farm Businesses’ Strategic Management: A Case Study. J. Intellect. Cap. 2018, 19, 692–711. [Google Scholar] [CrossRef]
- Shakina, E.; Barajas, A.; Molodchik, M. Bridging the gap in competitiveness of Russian companies with intangible bricks. Meas. Bus. Excell. 2017, 21, 86–100. [Google Scholar] [CrossRef]
- Yound, M.; Subramaniam, M.; Snell, S. Intellectual capital profiles: An examination of investments and returns. J. Manag. Stud. 2004, 41, 335–361. [Google Scholar] [CrossRef]
- Roose, G.; Pike, S.; Fernstro, L. Managing Intellectual Capital in Practice; Elsevier: New York, NY, USA, 2005. [Google Scholar]
- Brennan, N.; Connell, B. Intellectual capital: Current issues and policy implications. J. Intellect. Cap. 2000, 1, 206–240. [Google Scholar] [CrossRef]
- Harrison, S.; Sullivan, P. Profiting from intellectual capital—Learning from leading companies. J. Intellect. Cap. 2000, 1, 33–46. [Google Scholar] [CrossRef]
- Hudson, W. Intellectual Capital: How to Build, It, Enhance It, Use It; John Wiley & Sons: New York, NY, USA, 1993. [Google Scholar]
- Bontis, N. Assessing knowledge assets: A review of the models used to measure intellectual capital. Int. J. Manag. Rev. 2001, 3, 41–60. [Google Scholar] [CrossRef]
- Nazari, J.A.; Herremans, I.M. Extended VAIC model: Measuring intellectual capital components. J. Intellect. Cap. 2007, 8, 595–609. [Google Scholar] [CrossRef]
- Edvinsson, L.; Malone, S.M. Intellectual Capital: Realizing Your Company’s True Value by Finding Its Hidden Brainpower; Harper Business: New York, NY, USA, 1997. [Google Scholar]
- Medina, C.C.; Cabrales, A.L.; Cabrera, R.V. Leveraging the innovative performance of human capital through HRM and social capital in Spanish firms. Int. J. Hum. Resour. Manag. 2011, 22, 807–828. [Google Scholar] [CrossRef]
- Mouritsen, J. Classification, measurement and the ontology of intellectual capital entities. J. Hum. Resour. Costing Account. 2009, 13, 154–162. [Google Scholar] [CrossRef]
- Kooistra, J.V.d.M.; Zijlstra, S.M. Reporting on intellectual capital. Account. Audit. Account. J. 2001, 14, 456–476. [Google Scholar] [CrossRef] [Green Version]
- Penman, S.H. Accounting for Intangible Assets: There is Also an Income Statement. Abacus 2009, 45, 358–371. [Google Scholar] [CrossRef]
- Pulic, A. Intellectual capital—Does it create of destroy value? Meas. Bus. Excell. 2004, 8, 62–68. [Google Scholar] [CrossRef] [Green Version]
- Clarke, M.; Seng, D.; Whiting, R.H. Intellectual capital and firm performance in Australia. J. Intellect. Cap. 2011, 12, 505–530. [Google Scholar] [CrossRef] [Green Version]
- Firer, S.; Williams, S.M. Intellectual capital and traditional measures of corporate performance. J. Intellect. Cap. 2003, 4, 348–360. [Google Scholar] [CrossRef]
- Pulic, A. VAIC—An accounting tool for IC management. Int. J. Technol. Manag. 2000, 20, 702–714. [Google Scholar] [CrossRef]
- Chang, W.S.; Hsieh, J.J. Intellectual capital and value creation is innovation capital a missing link? Int. J. Bus. Manag. 2011, 6, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Anifowose, M.; Rashid, H.A.; Annuar, H.; Ibrahim, H. Intellectual capital efficiency and corporate book value: Evidence from Nigerian economy. J. Intellect. Cap. 2018, 19, 644–668. [Google Scholar] [CrossRef] [Green Version]
- Shakina, E.; Barajas, A. Value creation through intellectual capital in developed European markets. J. Econ. Stud. 2014, 41, 272–291. [Google Scholar] [CrossRef] [Green Version]
- Pal, K.; Soriya, S. IC performance of Indian pharmaceutical and textile industry. J. Intellect. Cap. 2012, 13, 120–137. [Google Scholar] [CrossRef]
- Fama, E.F.; French, K.R. A five-factor asset pricing model. J. Financ. Econ. 2015, 116, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Marx, R.N. The other side of value: The gross profitability premium. J. Financ. Econ. 2013, 108, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Molodchik, M.; Jardon, C.F.; Barajas, A. Intangible-driven performance: Company size matters. Int. J. Knowl. Based Dev. 2016, 7, 225–239. [Google Scholar] [CrossRef]
- Arellano, M.; Bond, S. Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Rev. Econ. Stud. 1991, 58, 277–297. [Google Scholar] [CrossRef] [Green Version]
- Blundell, R.; Bond, S. GMM estimation with persistent panel data: An application to production functions. Econom. Rev. 2000, 19, 321–340. [Google Scholar] [CrossRef] [Green Version]
- Roodman, D. How to do xtabond2: An introduction to difference and system GMM in Stata. Stata J. 2008, 9, 86–136. [Google Scholar] [CrossRef] [Green Version]
- Arellano, M.; Bover, O. Another look at the instrumental variable estimation of error-components models. J. Econom. 1995, 68, 29–51. [Google Scholar] [CrossRef] [Green Version]
- Schultz, E.L.; Tan, D.T.; Walsh, K.D. Endogeneity and the corporate governance-performance relation. Aust. J. Manag. 2010, 35, 145–163. [Google Scholar] [CrossRef]
- Xu, X.L.; Chen, H.H.; Zhang, R.R. The Impact of Intellectual Capital Efficiency on Corporate Sustainable Growth-Evidence from Smart Agriculture in China. Agriculture 2020, 10, 199. [Google Scholar] [CrossRef]
The VAIC Approach (the Most Popular Financial Approach to IC Estimation) | The Authors’ Approach | |
---|---|---|
Simplicity | Simple approach. Only financial ratios are calculated. | Complicated approach. IC elements are calculated with ordinary least squares (OLS) applied to the special production function. |
Separating stock and flow entities | Stock and flow entities are confused. HCE and SCE mix the stock of IC elements and the cost of IC elements. | Stock and flow entities are separated. The suggested method allows calculating both the stock and the cost of structural and human capital. |
Information about the contribution of IC elements to value creation | VAIC ratios does not provide such information. HCE and SCE does not separate stocks and flows. Moreover, SCE and HCE duplicate each other and show just the income from the use of structural capital relative to the income from the use of human capital. | Full information about the contribution of IC elements to value creation can be provided. Separated stock and efficiency measures allow investigating how the stock of IC elements and the cost of IC elements contribute to value creation. |
Variable | Approximation (Balance Sheet and P&L Account) |
---|---|
Y | Total revenue (in millions of RUB) |
K | Book value of total assets (in millions of RUB) |
L | Total personnel, millions of people |
I | Total revenue minus personnel expenses, operating profit, amortization and depreciation (in millions of RUB) |
Variable | Obs. | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
GP | 320 | 0.051 | 0.0332 | −0.116 | 0.1474 |
OP | 320 | 0.028 | 0.0218 | −0.0484 | 0.1299 |
khc | 320 | 1,092,286 | 2,872,187 | 1 | 9,683,171 |
ksc | 320 | 0.233 | 0.128 | 0.0568 | 0.45203 |
rhc | 320 | 265,48 | 773,085 | 0.0082 | 4872,76 |
rsc | 320 | 0.257 | 0.5296 | −0.166 | 6823 |
SCE | 320 | 0.66 | 0.3063 | −1.39 | 1845 |
HCE | 320 | 7.12 | 12,152 | −1.18 | 75.87 |
a | 320 | 0.103 | 0.2996 | 3.97 × 10−7 | 1 |
size | 320 | 10,405 | 16,138 | 7204 | 12,634 |
Model Number | Model 1 | Model 2 |
---|---|---|
Firm performance measure | OP | GP |
b0 (const) | −0.011 ** | −0.014 ** |
(t-stat.) | (−2.69) | (−2.96) |
b1 (Pt−1) | 0.774 *** | 0.947 *** |
(t-stat.) | (22.69) | (19.74) |
b2 (rHC) | −2.94 × 10−7 | −1.05 × 10−6 |
(t-stat.) | (−0.34) | (−0.56) |
b3 (rSC) | 0.0091 *** | 0.0096 *** |
(t-stat.) | (14.65) | (8.5) |
b4 (SCE) | −0.0082 | 0.0028 |
(t-stat.) | (1.54) | (0.55) |
b5 (HCE) | 0.00025 ** | 0.00009 |
(t-stat.) | (2.78) | (1.02) |
b6 (kHC) | 2.09 × 10−10 ** | 2.64 × 10−10 * |
(t-stat.) | (2.27) | (2.07) |
b7 (kSC) | 0.0052 | 0.0042 |
(t-stat.) | (0.75) | (0.78) |
b8 (a) | −0.0115 ** | −0.0003 |
(t-stat.) | (−2.63) | (−0.04) |
b9 (size) | 0.00076 | 0.0009 |
(t-stat.) | (1.52) | (1.48) |
AR(1) p value | 0.137 | 0.075 |
AR(2) p value | 0.264 | 0.263 |
F-value | 5899.1 | 7144.91 |
Prob > F | 0.000 | 0.000 |
Hansen test for overid. restrictions | 0.999 | 0.999 |
Hansen test of exogeneity of instrument subsets (p value): | ||
| 0.999 | 0.999 |
| 0.999 | 0.999 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ovechkin, D.V.; Romashkina, G.F.; Davydenko, V.A. The Impact of Intellectual Capital on the Profitability of Russian Agricultural Firms. Agronomy 2021, 11, 286. https://doi.org/10.3390/agronomy11020286
Ovechkin DV, Romashkina GF, Davydenko VA. The Impact of Intellectual Capital on the Profitability of Russian Agricultural Firms. Agronomy. 2021; 11(2):286. https://doi.org/10.3390/agronomy11020286
Chicago/Turabian StyleOvechkin, Danila V., Gulnara F. Romashkina, and Vladimir A. Davydenko. 2021. "The Impact of Intellectual Capital on the Profitability of Russian Agricultural Firms" Agronomy 11, no. 2: 286. https://doi.org/10.3390/agronomy11020286
APA StyleOvechkin, D. V., Romashkina, G. F., & Davydenko, V. A. (2021). The Impact of Intellectual Capital on the Profitability of Russian Agricultural Firms. Agronomy, 11(2), 286. https://doi.org/10.3390/agronomy11020286