Influence of Soil Properties and Initial Concentration on the Fractionation of Nickel, Zinc, Copper and Lead in Soils Derived from Different Parent Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sampling and Analyses
2.2. Spiking Procedure
2.3. Metal Extraction
2.4. Data Processing and Statistical Analysis
3. Results and Discussion
3.1. Background Levels
3.2. Zinc: Extraction Results and Model Development
H2O Zn | = | (0.87 ± 0.15)ZnT | +(0.32 ± 0.16)Schist | −(0.67 ± 0.16)pH |
(p < 0.01) | (p = 0.07) | (p < 0.01) | ||
−(0.52 ± 0.18)Granite | −(0.39 ± 0.16)K | (1) | ||
(p = 0.01) | (p = 0.02) |
CaCl2 Zn | = | (0.29 ± 0.08)ZnT | −(0.52 ± 0.09)pH | −(0.32 ± 0.09)Clay |
(p < 0.01) | (p < 0.01) | (p < 0.01) | ||
−(0.38 ± 0.09)K | (2) | |||
(p < 0.01) |
DTPA Zn | = | (0.31 ± 0.07)ZnT | + (0.83 ± 0.12)Mg | + (0.47 ± 0.11)Amphibolite |
(p < 0.01) | (p < 0.01) | (p < 0.01) | ||
−(0.59 ± 0.08)pH | −(0.58 ± 0.09)K | (3) | ||
(p < 0.01) | (p < 0.01) |
3.3. Nickel: Extraction Results and Model Development
H2O Ni | = | (0.71 ± 0.11)NiT | + (0.95 ± 0.28)Sand | + (0.38 ± 0.23)FeOM |
(p < 0.01) | (p < 0.01) | (p = 0.11) | ||
−(0.73 ± 0.34)Granite | (4) | |||
(p = 0.05) |
CaCl2 Ni | = | (0.62 ± 0.02)NiT | + (0.34 ± 0.06)AlC | −(0.64 ± 0.06)pH | (5) |
(p < 0.01) | (p < 0.01) | (p < 0.01) |
DTPA Ni | = | (0.26 ± 0.06)NiT | + (0.62 ± 0.06)AlC | + (0.69 ± 0.06)Al |
(p < 0.01) | (p < 0.01) | (p < 0.01) | ||
−(0.28 ± 0.06)Clay | (6) | |||
(p < 0.01) |
3.4. Copper: Extraction Results and Model Development
H2O Cu | = | (0.67 ± 0.20)CuT | + (0.52 ± 0.21)AlC | + (0.40 ± 0.19)Schist |
(p < 0.01) | (p = 0.04) | (p = 0.07) | ||
−(0.48 ± 0.16)FeC | −(0.49 ± 0.20)DOC | (7) | ||
(p = 0.01) | (p = 0.04) |
CaCl2 Cu | = | (0.66 ± 0.14)CuT | + (0.75 ± 0.16)AlC | + (0.64 ± 0.14)Al |
(p < 0.01) | (p < 0.01) | (p < 0.01) | ||
−(0.19 ± 0.15)Clay | −(0.17 ± 0.16)C | (8) | ||
(p = 0.22) | (p = 0.33) |
DTPA Cu | = | (0.52 ± 0.10)CuT | −(0.57 ± 0.14)FeC | −(0.49 ± 0.13)P |
(p < 0.01) | (p < 0.01) | (p < 0.01) | ||
−(0.52 ± 0.10)Schist | −(0.35 ± 0.11)O.M. | (9) | ||
(p < 0.01) | (p < 0.01) |
3.5. Lead: Extraction Results and Model Development
CaCl2 Pb | = | (0.52 ± 0.15)PbT | + (0.40 ± 0.21)AlC | −(0.40 ± 0.15)pH |
(p < 0.01) | (p = 0.08) | (p = 0.02) | ||
−(0.70 ± 0.22)FeC | −(0.74 ± 0.24)P | (10) | ||
(p < 0.01) | (p < 0.01) |
DTPA Pb | = | (0.19 ± 0.07)PbT | +(0.39 ± 0.09)AlC | +(0.65 ± 0.09)Na | |
(p < 0.01) | (p < 0.01) | (p < 0.01) | |||
−(0.95 ± 0.09)AlOM | −(0.51 ± 0.11)P | −(0.46 ± 0.08)pH | (11) | ||
(p < 0.01) | (p < 0.01) | (p < 0.01) |
3.6. Relations between Metal Fractions
3.7. Models: Usage and Goodness of Fit
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Ramos, L.; Hernandez, L.M.; Gonzalez, M.J. Sequential Fractionation of Copper, Lead, Cadmium and Zinc in Soils from or near Doñana National Park. J. Environ. Qual. 1994, 23, 50–57. [Google Scholar] [CrossRef]
- Wang, Y.-L.; Tsou, M.-C.; Liao, H.-T.; Hseu, Z.-Y.; Dang, W.; Hsi, H.-C.; Chien, L.-C. Influence of soil properties on the bioaccessibility of Cr and Ni in geologic serpentine and anthropogenically contaminated non-serpentine soils in Taiwan. Sci. Total Environ. 2020, 714, 136761. [Google Scholar] [CrossRef]
- Vega, F.A.; Covelo, E.F.; Andrade, M.L.; Marcet, P. Relationships between heavy metals content and soil properties in minesoils. Anal. Chim. Acta 2004, 524, 141–150. [Google Scholar] [CrossRef]
- Wan, Y.; Huang, Q.; Wang, Q.; Yu, Y.; Su, D.; Qiao, Y.; Li, H. Accumulation and bioavailability of heavy metals in an acid soil and their uptake by paddy rice under continuous application of chicken and swine manure. J. Hazard. Mater. 2020, 384, 121293. [Google Scholar] [CrossRef]
- Ehlers, L.J.; Luthy, R.G. Contaminant bioavailability in soil and sediment. Environ. Sci. Technol. 2003, 37, 295A–302A. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sauvé, S.; McBride, M.B.; Norvell, W.A.; Hendershot, W.H. Copper solubility and speciation of in situ contaminated soils: Effects of copper level, pH and organic matter. Water. Air. Soil Pollut. 1997, 100, 133–149. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar] [CrossRef]
- Fox, T.R.; Comerford, N.B. Low-Molecular-Weight Organic Acids in Selected Forest Soils of the Southeastern USA. Soil Sci. Soc. Am. J. 1990, 54, 1139–1144. [Google Scholar] [CrossRef]
- Ma, L.Q.; Rao, G.N. Chemical Fractionation of Cadmium, Copper, Nickel, and Zinc in Contaminated Soils. J. Environ. Qual. 1997, 26, 259–264. [Google Scholar] [CrossRef] [Green Version]
- Feng, M.-H.; Shan, X.-Q.; Zhang, S.; Wen, B. A comparison of the rhizosphere-based method with DTPA, EDTA, CaCl2, and NaNO3 extraction methods for prediction of bioavailability of metals in soil to barley. Environ. Pollut. 2005, 137, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Kwon-Rae, K.; Owens, G.; Ravi, N.; Kye-Hoon, K. Assessment Techniques of Heavy Metal Bioavailability in Soil—A critical Review. Korean J. Soil Sci. Fertil. 2007, 40, 311–325. [Google Scholar]
- Nolan, A.L.; Zhang, H.; McLaughlin, M.J. Prediction of Zinc, Cadmium, Lead, and Copper Availability to Wheat in Contaminated Soils Using Chemical Speciation, Diffusive Gradients in Thin Films, Extraction, and Isotopic Dilution Techniques. J. Environ. Qual. 2005, 34, 496–507. [Google Scholar] [CrossRef]
- Rinklebe, J.; Shaheen, S.M.; Frohne, T. Amendment of biochar reduces the release of toxic elements under dynamic redox conditions in a contaminated floodplain soil. Chemosphere 2016, 142, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Macías Vázquez, F.; Calvo de Anta, R. Niveles Genéricos de Referencia de Metales Pesados y Otros Elementos Traza en Suelos de Galicia; Consellería de Medio Ambiente e Desenvolvemento Sostible: Santiago de Compostela, Spain, 2009; ISBN 9788445346648. [Google Scholar]
- Paz-González, A.; Taboada-Castro, T.; Taboada-Castro, M. Levels of Heavy metals (Co, Cu, Cr, Ni, Pb, and Zn) in agricultural soils of Northwest Spain. Commun. Soil Sci. Plant Anal. 2000, 31, 1773–1783. [Google Scholar] [CrossRef]
- Campillo-Cora, C.; Soto-Gómez, D.; Arias-Estévez, M.; Bååth, E.; Fernández-Calviño, D. Bacterial community tolerance to Cu in soils with geochemical baseline concentrations (GBCs) of heavy metals: Importance for Pollution Induced Community Tolerance (PICT) determinations using the leucine incorporation method. Soil Biol. Biochem. 2021, 108157. [Google Scholar] [CrossRef]
- Campillo-Cora, C.; Conde-Cid, M.; Arias-Estévez, M.; Fernández-Calviño, D.; Alonso-Vega, F. Specific Adsorption of Heavy Metals in Soils: Individual and Competitive Experiments. Agronomy 2020, 10, 1113. [Google Scholar] [CrossRef]
- Wuana, R.A.; Okieimen, F.E. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. ISRN Ecol. 2011, 2011, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Hosseinpur, A.R.; Motaghian, H. Evaluating of many chemical extractants for assessment of Zn and Pb uptake by bean in polluted soils. J. Soil Sci. Plant Nutr. 2015, 15, 24–34. [Google Scholar] [CrossRef] [Green Version]
- Kashem, M.A.; Singh, B.R.; Kondo, T.; Imamul Huq, S.M.; Kawai, S. Comparison of extractability of Cd, Cu, Pb and Zn with sequential extraction in contaminated and non-contaminated soils. Int. J. Environ. Sci. Technol. 2007, 4, 169–176. [Google Scholar] [CrossRef] [Green Version]
- Néel, C.; Soubrand-Colin, M.; Piquet-Pissaloux, A.; Bril, H. Mobility and bioavailability of Cr, Cu, Ni, Pb and Zn in a basaltic grassland: Comparison of selective extractions with quantitative approaches at different scales. Appl. Geochem. 2007, 22, 724–735. [Google Scholar] [CrossRef]
- Houba, V.J.G.; Van der Lee, J.J.; Novozamsky, I.; Walinga, I. Soil and Plant Analysis, a series of syllabi, Part 5. In Soil Analysis Procedures; Wageningen Agricultural University: Wageningen, The Netherlands, 1989. [Google Scholar] [CrossRef]
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA Soil Test for Zinc, Iron, Manganese, and Copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Müller, A.; Nothman, J.; Louppe, G.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2012, 12, 2825–2830. [Google Scholar]
- Tibshirani, R. The lasso method for variable selection in the cox model. Stat. Med. 1997, 16, 385–395. [Google Scholar] [CrossRef] [Green Version]
- Python Core Team. Python: A Dynamic, Open Source Programming Language [WWW Document]. 2015. Available online: https://www.python.org/psf/ (accessed on 8 February 2021).
- Oliphant, T.E. Python for Scientific Computing. Comput. Sci. Eng. 2007, 9, 10–20. [Google Scholar] [CrossRef] [Green Version]
- McKinney, W. Data Structures for Statistical Computing in Python. In Proceedings of the 9th Python in Science Conference, Austin, TA, USA, 9–15 July 2010; pp. 51–56. [Google Scholar]
- Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Fernández-Calviño, D.; Pérez-Novo, C.; Nóvoa-Muñoz, J.C.; Arias-Estévez, M. Copper fractionation and release from soils devoted to different crops. J. Hazard. Mater. 2009, 167, 797–802. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Yu, S.; Li, X. The mobility, bioavailability, and human bioaccessibility of trace metals in urban soils of Hong Kong. Appl. Geochem. 2012, 27, 995–1004. [Google Scholar] [CrossRef]
- Yu, S.; He, Z.L.; Huang, C.Y.; Chen, G.C.; Calvert, D.V. Copper fractionation and extractability in two contaminated variable charge soils. Geoderma 2004, 123, 163–175. [Google Scholar] [CrossRef]
- Sanders, J.R.; El Kherbawy, M.I. The effect of pH on zinc adsorption equilibria and exchangeable zinc pools in soils. Environ. Pollut. 1987, 44, 165–176. [Google Scholar] [CrossRef]
- Chukwuma, M.C.; Eshett, E.T.; Onweremadu, E.U.; Okon, M.A. Zinc availability in relation to selected soil properties in a crude oil polluted eutric tropofluvent. Int. J. Environ. Sci. Technol. 2010, 7, 261–270. [Google Scholar] [CrossRef] [Green Version]
- McBride, M.B.; Pitiranggon, M.; Kim, B. A comparison of tests for extractable copper and zinc in metal-spiked and field-contaminated soil. Soil Sci. 2009, 174, 439–444. [Google Scholar] [CrossRef]
- Zhu, B.; Alva, A.K. Differential adsorption of trace metals by soils as influenced by exchangeable cations and ionic strength. Soil Sci. 1993, 155, 61–66. [Google Scholar] [CrossRef]
- Weng, L.P.; Wolthoorn, A.; Lexmond, T.M.; Temminghoff, E.J.M.; van Riemsdijk, W.H. Understanding the Effects of Soil Characteristics on Phytotoxicity and Bioavailability of Nickel Using Speciation Models. Environ. Sci. Technol. 2004, 38, 156–162. [Google Scholar] [CrossRef]
- Shuman, L.M. Comparison of exchangeable Al, extractable Al, and Al in soil fractions. Can. J. Soil Sci. 1990, 70, 263–275. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Li, Y.C.; Calvert, D.V.; Alva, A.K. Fractionation of Iron, Managanese, Aluminum, and Phosphorus in Selected Sandy Soils under Citrus Production. Soil Sci. Soc. Am. J. 1997, 61, 794–801. [Google Scholar] [CrossRef]
- Smith, K.S. Metal Sorption on Mineral Surfaces. In The Environmental Geochemistry of Mineral Deposits; Society of Economic Geologists: Littleton, CO, USA, 1997; pp. 161–182. ISBN 1-887483-50-0. [Google Scholar]
- Trivedi, P.; Axe, L. Ni and Zn Sorption to Amorphous versus Crystalline Iron Oxides: Macroscopic Studies. J. Colloid Interface Sci. 2001, 244, 221–229. [Google Scholar] [CrossRef]
- Burachevskaya, M. Copper and zinc fractional distribution in chernozem haplic under model experimental conditions. In Proceedings of the International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, Albena, Bulgaria, 2–8 July 2018; pp. 87–94. [Google Scholar]
- Bibak, A. Copper retention by Danish Spodosols in relation to contents of organic matter and aluminum, iron, and manganese oxides. Commun. Soil Sci. Plant Anal. 1997, 28, 939–948. [Google Scholar] [CrossRef]
- Yin, H.; Tan, N.; Liu, C.; Wang, J.; Liang, X.; Qu, M.; Feng, X.; Qiu, G.; Tan, W.; Liu, F. The associations of heavy metals with crystalline iron oxides in the polluted soils around the mining areas in Guangdong Province, China. Chemosphere 2016, 161, 181–189. [Google Scholar] [CrossRef]
- Kabala, C.; Singh, B.R. Fractionation and Mobility of Copper, Lead, and Zinc in Soil Profiles in the Vicinity of a Copper Smelter. J. Environ. Qual. 2001, 30, 485–492. [Google Scholar] [CrossRef] [Green Version]
- Harter, R.D. Effect of Soil pH on Adsorption of Lead, Copper, Zinc, and Nickel. Soil Sci. Soc. Am. J. 1983, 47, 47–51. [Google Scholar] [CrossRef]
- Mengel, K.; Kirkby, E.A.; Kosegarten, H.; Appel, T. Soil Copper. In Principles of Plant Nutrition; Springer: Dordrecht, The Netherlands, 2001; pp. 599–611. [Google Scholar]
- Guan, T.X.; He, H.B.; Zhang, X.D.; Bai, Z. Cu fractions, mobility and bioavailability in soil-wheat system after Cu-enriched livestock manure applications. Chemosphere 2011, 82, 215–222. [Google Scholar] [CrossRef]
- Ali, F.; Sadiq, A.; Ali, I.; Amin, M.; Amir, M. Effect of Applied Phosphorus on the Availability of Micronutrients in Alkaline-Calcareous Soil. J. Environ. Earth Sci. 2014, 4, 143–147. [Google Scholar]
- Lang, F.; Kaupenjohann, M. Effect of dissolved organic matter on the precipitation and mobility of the lead compound chloropyromorphite in solution. Eur. J. Soil Sci. 2003, 54, 139–148. [Google Scholar] [CrossRef]
- Pérez-Novo, C.; Fernández-Calviño, D.; Bermúdez-Couso, A.; López-Periago, J.E.; Arias-Estévez, M. Phosphorus effect on Zn adsorption–desorption kinetics in acid soils. Chemosphere 2011, 83, 1028–1034. [Google Scholar] [CrossRef] [PubMed]
- Strawn, D.G.; Scheidegger, A.M.; Sparks, D.L. Kinetics and Mechanisms of Pb(II) Sorption and Desorption at the Aluminum Oxide−Water Interface. Environ. Sci. Technol. 1998, 32, 2596–2601. [Google Scholar] [CrossRef]
- Xian, X.; In Shokohifard, G. Effect of pH on chemical forms and plant availability of cadmium, zinc, and lead in polluted soils. Water. Air. Soil Pollut. 1989, 45, 265–273. [Google Scholar] [CrossRef]
- Ashworth, D.; Alloway, B. Soil mobility of sewage sludge-derived dissolved organic matter, copper, nickel and zinc. Environ. Pollut. 2004, 127, 137–144. [Google Scholar] [CrossRef]
- Larios Bayona, M. Niveles de Cd, Co, Cr, Cu, Ni, Pb y Zn en los Suelos de Ribera de la Cuenca del rio Turia, Universidad de Lleida. CSIC-GV-UV—Centro de Investigaciones sobre Desertificación (CIDE). 2014. Available online: http://hdl.handle.net/10459.1/69296 (accessed on 8 February 2021).
- Sanders, J.R.; McGrath, S.P.; Adams, T.M. Zinc, copper and nickel concentrations in soil extracts and crops grown on four soils treated with metalloaded sewage sludges. Environ. Pollut. 1987, 44, 193–210. [Google Scholar] [CrossRef]
- Hodgson, J.F.; Lindsay, W.L.; Trierweiler, J.F. Micronutrient Cation Complexing in Soil Solution: II. Complexing of Zinc and Copper in Displaced Solution from Calcareous Soils. Soil Sci. Soc. Am. J. 1966, 30, 723–726. [Google Scholar] [CrossRef]
- Dinić, Z.; Maksimović, J.; Stanojković-Sebić, A.; Pivić, R. Prediction Models for Bioavailability of Mn, Cu, Zn, Ni and Pb in Soils of Republic of Serbia. Agronomy 2019, 9, 856. [Google Scholar] [CrossRef] [Green Version]
SAND (%) | SILT (%) | CLAY (%) | USDA TEXTURE | PH | PHK | P (MG KG−1) | OM (%) | C (%) | N (%) | DOC (G KG−1) | |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 71.1 | 12.6 | 16.3 | Sandy Loam | 3.96 | 2.97 | 18.7 | 13.6 | 7.0 | 0.5 | 0.62 |
2 | 61.9 | 19.0 | 19.1 | Sandy Loam | 4.63 | 3.80 | 105.5 | 14.1 | 6.7 | 0.4 | 0.70 |
3 | 50.2 | 24.7 | 25.1 | Sandy Clay Loam | 4.79 | 4.23 | 6.5 | 11.6 | 8.2 | 0.6 | 0.33 |
4 | 47.3 | 35.3 | 17.4 | Loam | 4.85 | 4.47 | 2.0 | 12.0 | 3.7 | 0.3 | 0.14 |
5 | 68.2 | 16.2 | 15.7 | Sandy Loam | 4.85 | 4.24 | 101.1 | 11.2 | 5.0 | 0.4 | 0.30 |
6 | 19.1 | 67.1 | 13.8 | Silt Loam | 6.35 | 5.76 | 11.7 | 14.4 | 6.5 | 0.5 | 0.56 |
7 | 20.4 | 51.9 | 27.7 | Clay Loam | 7.47 | 6.85 | 2.9 | 14.8 | 5.5 | 0.4 | 0.53 |
8 | 31.5 | 36.8 | 31.7 | Clay Loam | 5.04 | 4.54 | 3.0 | 10.0 | 6.7 | 0.4 | 0.27 |
9 | 45.5 | 35.1 | 19.4 | Loam | 4.70 | 4.32 | 5.2 | 19.6 | 10.3 | 0.8 | 0.25 |
10 | 31.0 | 45.4 | 23.7 | Loam | 4.93 | 4.44 | 6.2 | 29.1 | 14.3 | 1.0 | 0.44 |
PARENT MATERIAL | ECEC (CMOLC KG−1) | FEOM (MG KG−1) | FEIA (MG KG−1) | FEC (MG KG−1) | ALOM (MG KG−1) | ALIA (MG KG−1) | ALC (MG KG−1) | |
---|---|---|---|---|---|---|---|---|
1 | Granite | 8.0 | 799 | 47 | 526 | 1186 | 225 | 391 |
2 | Granite | 9.0 | 2086 | <d.l. | 544 | 2937 | <d.l. | 396 |
3 | Schist | 5.8 | 4343 | 2123 | 17,592 | 11,440 | <d.l. | 5037 |
4 | Amphibolite | 3.0 | 4631 | 2052 | 24,556 | 8993 | 1141 | 12,239 |
5 | Granite | 1.8 | 927 | 48 | 588 | 4239 | <d.l. | 936 |
6 | Limestone | 23.4 | 907 | 2555 | 37,397 | 3323 | 5268 | <d.l. |
7 | Limestone | 29.0 | 1531 | 3670 | 32,209 | 1530 | 2954 | <d.l. |
8 | Amphibolite | 4.0 | 6567 | 2161 | 45,893 | 10,724 | 3506 | 6503 |
9 | Amphibolite | 6.7 | 5559 | 2757 | 50,229 | 11,027 | 3787 | <d.l. |
10 | Amphibolite | 6.8 | 4359 | 1367 | 47,501 | 16,966 | 7224 | <d.l. |
H2O ZN | CaCl2 Zn | DTPA Zn | H2O Ni | CaCl2 Ni | DTPA Ni | H2O Cu | CaCl2 Cu | DTPA Cu | H2O Pb | |
---|---|---|---|---|---|---|---|---|---|---|
H2O ZN | 1 | |||||||||
CACL2 ZN | 0.20 | 1 | ||||||||
DTPA ZN | 0.38 * | 0.57 *** | 1 | |||||||
H2O NI | 0.92 *** | 0.16 | 0.28 | 1 | ||||||
CACL2 NI | 0.76 *** | 0.48 *** | 0.62 *** | 0.76 *** | 1 | |||||
DTPA NI | 0.46 ** | 0.46 *** | 0.78 *** | 0.45 ** | 0.76 *** | 1 | ||||
H2O CU | 0.90 *** | 0.04 | 0.24 | 0.74 *** | 0.66 ** | 0.42 | 1 | |||
CACL2 CU | 0.83 *** | 0.38 ** | 0.49 *** | 0.71 *** | 0.81 *** | 0.59 *** | 0.79 *** | 1 | ||
DTPA CU | 0.15 | 0.42 ** | 0.48 *** | 0.24 | 0.45 *** | 0.39 ** | 0.01 | 0.51 *** | 1 | |
H2O PB | 0.51 * | −0.30 | 0.04 | −0.11 | −0.13 | 0.21 | 0.84 *** | −0.06 | −0.2 | 1 |
CACL2 PB | 0.76 *** | −0.01 | 0.25 | 0.57 *** | 0.87 *** | 0.56 ** | 0.81 *** | 0.78 *** | 0.25 | 0.58 * |
DTPA PB | 0.03 | 0.37 ** | 0.74 *** | 0.07 | 0.45 *** | 0.64 *** | 0.03 | 0.31 * | 0.55 *** | −0.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campillo-Cora, C.; Rodríguez-González, L.; Arias-Estévez, M.; Fernández-Calviño, D.; Soto-Gómez, D. Influence of Soil Properties and Initial Concentration on the Fractionation of Nickel, Zinc, Copper and Lead in Soils Derived from Different Parent Materials. Agronomy 2021, 11, 301. https://doi.org/10.3390/agronomy11020301
Campillo-Cora C, Rodríguez-González L, Arias-Estévez M, Fernández-Calviño D, Soto-Gómez D. Influence of Soil Properties and Initial Concentration on the Fractionation of Nickel, Zinc, Copper and Lead in Soils Derived from Different Parent Materials. Agronomy. 2021; 11(2):301. https://doi.org/10.3390/agronomy11020301
Chicago/Turabian StyleCampillo-Cora, Claudia, Laura Rodríguez-González, Manuel Arias-Estévez, David Fernández-Calviño, and Diego Soto-Gómez. 2021. "Influence of Soil Properties and Initial Concentration on the Fractionation of Nickel, Zinc, Copper and Lead in Soils Derived from Different Parent Materials" Agronomy 11, no. 2: 301. https://doi.org/10.3390/agronomy11020301
APA StyleCampillo-Cora, C., Rodríguez-González, L., Arias-Estévez, M., Fernández-Calviño, D., & Soto-Gómez, D. (2021). Influence of Soil Properties and Initial Concentration on the Fractionation of Nickel, Zinc, Copper and Lead in Soils Derived from Different Parent Materials. Agronomy, 11(2), 301. https://doi.org/10.3390/agronomy11020301