Intercropping—A Low Input Agricultural Strategy for Food and Environmental Security
Abstract
:1. Introduction
2. Intercropping as Low-Input Agriculture
3. Concept and Goal of Intercropping
4. Types of Intercropping
4.1. Row Intercropping
4.2. Mixed Intercropping
4.3. Strip-Intercropping
4.4. Relay Intercropping
5. Crop Geometry in Intercropping
5.1. Additive Series
5.2. Replacement Series
6. Consideration for Choosing the Intercropping System
6.1. Crop Choice
6.2. Crop Maturity
6.3. Planting Density
6.4. Planting Time
7. Management of Intercropping
7.1. Seed-Bed Preparation
7.2. Varieties
7.3. Sowing and Plant Stand
7.4. Fertilizer Application
7.5. Water Management
7.6. Weed Management
7.7. Pest and Disease Management
8. Indices for Measuring the Efficiency of Intercropping
- (i)
- Competitive: In this relationship, the output of one crop would be increased through the decline in the production of the other. This is also known as ‘compensation’. Willey [85] referred to the two species as ‘dominant’ and ‘dominated’ species.
- (ii)
- Complementary: This is another type of relationship in which an increase in output of one crop helps to bring about an increase in output of the other species. This is termed as ‘mutual cooperation’ [85] and is not very common.
- (iii)
- Supplementary: In this case, the output of one crop may be increased without having any influence on the output of the other. This situation commonly occurs when the maturity of two crop species differ widely.
- (iv)
- Mutual Inhibition: Mutual inhibition happens when the actual productivity of each component of crops harvested is less than the expected yield. The competitive and supplementary relationship is very common in different intercropping systems. The majority of research works carried out that for value assessment of variation among pure stand and the intercropping system was developed during the period from 1970 to 1980. Most remarkable was the proposal of the land equivalent ratio (LER) and afterwards, widespread application of the LER was noted to evaluate the performance of an intercropping system) [85,86,87]. Later various researchers reviewed these studies and validated the concept of LER [12,39]. The focus of these studies was mostly on the use of replacement series of intercropping (mainly with two crops) and productivity of intercropping is compared with pure stands of each crop species. A major problem is that additive series of intercropping the LER exhibits the combined value of base crop with 100% plant density and the additional value of intercrops which ultimately results in the combined LER value with more than unity [86,88,89]. However, researchers concluded that the derivation of LER values is the concerned researchers’ concern in estimating the efficiency of an intercropping system over pure stand [33].
8.1. Land Equivalent Ratio (LER)
8.2. Area Time Equivalent Ratio (ATER)
8.3. Aggressivity
8.4. Competitive Ratio (CR)
8.5. Relative Crowding Coefficient (RCC)
9. Benefits of Intercropping
9.1. Yield Advantage
9.2. Greater Use of Resources
9.2.1. Soil Nutrients
9.2.2. Available Soil Moisture
9.2.3. Atmospheric Carbon Dioxide
9.2.4. Sunlight
9.2.5. Land Area
9.3. Resource Conservation and Soil Health Management
9.3.1. Reduced Run-Off of Water, Soil Erosion and Nutrient Loss
9.3.2. Soil Fertility Enhancement
9.4. Sustainability
9.4.1. Biotic Diversity
9.4.2. Food and Nutritional Security
9.4.3. Pest Population Dynamics
9.4.4. Legume Effect and Less Chemical Fertilizers
9.4.5. Crop Diversity and Natural Insurance
9.4.6. Ecosystem Services
10. Limitations of the Intercropping System
11. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gitari, H.I.; Nyawade, S.O.; Kamau, S.; Gachene, C.K.K.; Karanja, N.N.; Schulte-Geldermann, E. Increasing potato equivalent yield increases returns to investment under potato-legume intercropping systems. Open Agric. 2019, 4, 623–629. [Google Scholar] [CrossRef]
- Maitra, S.; Palai, J.B.; Manasa, P.; Kumar, D.P. Potential of intercropping system in sustaining crop productivity. Int. J. Agric. Environ. Bio-Res. 2019, 12, 39–45. [Google Scholar] [CrossRef]
- Plucknett, D.L.; Smith, N.J.H. Historical perspectives on multiple cropping. In Multiple Cropping Systems; Francis, C.A., Ed.; MacMillan Publishing Company: New York, NY, USA, 1986. [Google Scholar]
- Fuller, D.Q. Pathways to Asian civilizations: Tracing the origins and spread of rice and rice cultures. Rice 2011, 4, 78–92. [Google Scholar] [CrossRef] [Green Version]
- Kingwell-Banham, E.; Petrie, C.A.; Fuller, D.Q. Early agriculture in South Asia. In Cambridge World History; Barker, G., Goucher, C., Eds.; Cambridge University Press: Cambridge, UK, 2015; Volume II, Chapter 10; pp. 261–288. [Google Scholar]
- Petrie, C.A.; Bate, J. Multi-cropping, intercropping and adaptation to variable environments in Indus south Asia. J. World Prehist. 2017, 30, 81–130. [Google Scholar] [CrossRef] [PubMed]
- Fuller, D.Q.; Madella, M. Issues in Harappan archaeobotany: Retrospect and prospect. In Indian Archaeology in Retrospect II: Protohistory; Settar, S., Korisettar, R., Eds.; Manohar: New Delhi, India, 2002; pp. 317–390. [Google Scholar]
- Wright, R.P. The Ancient Indus: Urbanism, Economy, and Society: Case Studies in Early Societies; Cambridge University Press: New York, NY, USA, 2010. [Google Scholar]
- Papanastasis, V.P.; Arianoutsou, M.; Lyrintzis, G. Management of biotic resources in ancient Greece. In Proceedings of the 10th Mediterranean Ecosystems (MEDECOS) Conference, Rhodes, Greece, 25 April–1 May 2004; pp. 1–11. [Google Scholar]
- Lithourgidis, A.S.; Vlachostergios, D.N.; Dordas, C.A.; Damalas, C.A. Dry matter yield, nitrogen content, and competition in pea–cereal intercropping systems. Eur. J. Agron. 2011, 34, 287–294. [Google Scholar] [CrossRef]
- Altieri, M.A. The ecological role of biodiversity in agro-ecosystems. Agr. Ecosyst. Environ. 1999, 74, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Francis, C.A. Introduction: Distribution and importance of multiple cropping. In Multiple Cropping Systems; Francis, C.A., Ed.; Macmillan Publishing Company: New York, NY, USA, 1986; pp. 1–20. [Google Scholar]
- Vandermeer, J.H. The Ecology of Intercropping; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Anil, L.; Park, J.; Phipps, R.H.; Miller, F.A. Temperate intercropping of cereals for forage: A review of the potential for growth and utilization with particular reference to the UK. Grass Forage Sci. 1998, 53, 301–317. [Google Scholar] [CrossRef]
- Hauggaard-Nielsen, H.; Jørnsgaard, B.; Kinane, J.; Jensen, E. Grain legume–cereal intercropping: The practical application of diversity, competition and facilitation in arable and organic cropping systems. Renew. Agric. Food Syst. 2008, 23, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Nyawade, S.; Gitari, H.I.; Karanja, N.N.; Gachene, C.K.; Schulte-Geldermann, E.; Sharma, K.; Parker, M. Enhancing climate resilience of rain-fed potato through legume intercropping and silicon application. Front. Sustain. Food Syst. 2020, 4, 566345. [Google Scholar] [CrossRef]
- Willey, R.W.; Reddy, M.S. A field technique for separating above-and below- ground interactions in intercropping: An experiment with pearl millet/groundnut. Exp. Agric. 1981, 17, 257–264. [Google Scholar] [CrossRef]
- Willey, R.W.; Natarajan, M.; Reddy, M.S.; Rao, M.R.; Nambiar, P.T.C.; Kannaiyan, J.; Bhatnagar, V.S. Intercropping studies with annual crops. Better Crops Food 1983, 97, 83–100. [Google Scholar]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef]
- Altieri, M.A.; Letourneau, D.K.; Davis, J.R. Developing sustainable agro-ecosystems. Biol. Sci. 1983, 33, 45–49. [Google Scholar]
- Scherr, S.J.; McNeely, J.A. Biodiversity conservation and agricultural sustainability: Towards a new paradigm of ‘ecoagriculture’ landscapes. Philos. Trans. R. Soc. B 2008, 363, 477–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maitra, S.; Ray, D.P. Enrichment of biodiversity, influence in microbial population dynamics of soil and nutrient utilization in cereal-legume intercropping systems: A Review. Int. J. Biores. Sci. 2019, 6, 11–19. [Google Scholar] [CrossRef]
- Lichtfouse, E.; Navarrete, M.; Debaeke, P.; Souchere, V.; Alberola, C.; Menassieu, J. Agronomy for sustainable agriculture. A review. Agron. Sustain. Dev. 2009, 29, 1–6. [Google Scholar] [CrossRef]
- Gitari, H.I.; Gachene, C.K.K.; Karanja, N.N.; Kamau, S.; Nyawade, S.; Sharma, K.; Schulte-Geldermann, E. Optimizing yield and economic returns of rain-fed potato (Solanum tuberosum L.) through water conservation under potato-legume intercropping systems. Agric. Water Manag. 2018, 208, 59–66. [Google Scholar] [CrossRef]
- Nyawade, S.O.; Karanja, N.N.; Gachene, C.K.K.; Gitari, H.I.; Schulte-Geldermann, E.; Parker, M.L. Intercropping Optimizes Soil Temperature and Increases Crop Water Productivity and Radiation Use Efficiency of Rainfed Potato. Am. J. Potato Res. 2019, 96, 457–471. [Google Scholar] [CrossRef] [Green Version]
- Maitra, S.; Barik, A.; Samui, S.K.; Saha, D. Economics of cotton based intercropping system in the rice fallows of coastal Bengal- Sundarbans. J. Indian Soc. Coast. Agric. Res. 1999, 17, 299–304. [Google Scholar]
- Maitra, S.; Ghosh, D.C.; Sounda, G.; Jan, P.K.; Roy, D.K. Productivity, competition and economics of intercropping legumes in finger millet (Eleusine coracana) at different fertility levels. Indian J. Agric. Sci. 2000, 70, 824–828. [Google Scholar]
- Manasa, P.; Maitra, S.; Reddy, M.D. Effect of summer maize-legume intercropping system on growth, productivity and competitive ability of crops. Int. J. Manag. Technol. Eng. 2018, 8, 2871–2875. [Google Scholar]
- Lathrap, D.W. The Upper Amazon; Thames and Hudson: London, UK, 1970; p. 384. [Google Scholar]
- Harris, D.R. The ecology of swidden cultivation in the upper Orinoco rain forest, Venezuela. Geogr. Rev. 1971, 61, 475–495. [Google Scholar] [CrossRef]
- Eden, M.J. Ecological aspects of development among piaroa and guahibo Indians of the upper Orinoco basin. Antropologica 1974, 39, 25–26. [Google Scholar]
- Harris, D.R. Traditional systems of plant food production and the origins of agriculture in West Africa. In Origins of African Plant Domestication; Harlan, J.R., De Wet, J.M.J., Stemler, A.B.L., Eds.; Mouton: The Hague, The Netherlands, 1976; pp. 311–346. [Google Scholar]
- Anders, M.M.; Potdar, M.V.; Francis, C.A. Significance of intercropping in cropping systems. In Dynamics of Roots and Nitrogen in Cropping Systems of the Semi-Arid Tropis; Japan International Research Center tor Agricultural Sciences: Tsukuba, Japan, 1996; ISBN 4-906635-01-6. [Google Scholar]
- Bedoussac, L.; Journet, E.P.; Hauggaard-Nielsen, H.; Naudin, C.; Corre-Hellou, G.; Jensen, E.S.; Prieur, L.; Justes, E. Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming: A review. Agron. Sustain. Dev. 2015, 35, 911–935. [Google Scholar] [CrossRef]
- Li, L.; Sun, J.; Zhang, F.; Guo, T.; Bao, X.; Smith, F.A.; Smith, S.E. Root distribution and interactions between intercropped species. Oecologia 2006, 147, 280–290. [Google Scholar] [CrossRef] [PubMed]
- Miao, Q.; Rosa, R.D.; Shi, H.; Paredes, P.; Zhu, L.; Dai, J.; Gonçalves, J.M.; Pereira, L.S. Modeling water use, transpiration and soil evaporation of spring wheat–maize and spring wheat–sunflower relay intercropping using the dual crop coefficient approach. Agric. Water Manag. 2016, 165, 211–229. [Google Scholar] [CrossRef]
- Mao, L.; Zhang, L.; Li, W.; van der Werf, W.; Sun, J.; Spiertz, H.; Li, L. Yield advantage and water saving in maize/pea intercrop. Field Crop Res. 2012, 138, 11–20. [Google Scholar] [CrossRef]
- Eskandari, H.; Ghanbari, A.; Javanmard, A. Intercropping of cereals and legumes for forage production. Not. Sci. Biol. 2009, 1, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Ofori, F.; Stern, W.R. Cereal-legume intercropping systems. Adv. Agron. 1987, 40, 41–90. [Google Scholar]
- Varma, D.; Meena, R.S.; Kumar, S. Response of mungbean to fertility and lime levels under soil acidity in an alley cropping system in Vindhyan region. Indian Int. J. Chem. Stud. 2017, 5, 384–389. [Google Scholar]
- Von Cossel, M.; Wagner, M.; Lask, J.; Magenau, E.; Bauerle, A.; Von Cossel, V.; Warrach-Sagi, K.; Winkler, B. Prospects of Bioenergy Cropping Systems for A More Social-Ecologically Sound Bioeconomy. Agronomy 2019, 9, 605. [Google Scholar] [CrossRef] [Green Version]
- Gulwa, U.; Mgujulwa, N.; Beyene, S.T. Effect of Grass-legume Intercropping on Dry Matter Yield and Nutritive Value of Pastures in the Eastern Cape Province, South Africa. Univ. J. Agric. Res. 2017, 5, 355–362. [Google Scholar] [CrossRef] [Green Version]
- Undie, U.L.; Uwah, D.F.; Attoe, E.E. Effect of intercropping and crop arrangement on yield and productivity of late season maize/soybean mixtures in the humid environment of south southern Nigeria. J. Agric. Res. 2012, 4, 37. [Google Scholar] [CrossRef] [Green Version]
- Weißhuhn, P.; Moritz Reckling, M.; Stachow, U.; Wiggering, H. Supporting Agricultural Ecosystem Services through the Integration of Perennial Polycultures into Crop Rotations. Sustainability 2017, 9, 2267. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Wang, X.C.; Liao, D.P.; Lu, F.Z.; Gao, R.C.; Liu, W.G.; Yong, T.; Wu, X.; Du, J.; Liu, J.; et al. Yield response to different planting geometries in maize-soybean relay strip intercropping systems. Agron. J. 2015, 107, 296–304. [Google Scholar] [CrossRef]
- Balde, A.B.; Scope, L.E.; Affholder, F.; Corbeels, M.; DaSilva, F.A.M.; Xavier, J.H.V.; Wery, J. Agronomic performance of no-tillage relay intercropping with maize under smallholder conditions in Central Brazil. Field Crop Res. 2011, 124, 240–251. [Google Scholar] [CrossRef]
- Baker, C.M.; Blamey, F.P.C. Nitrogen fertilizer effects on yield and nitrogen uptake of sorghum and soybean, grown in sole cropping and intercropping systems. Field Crop Res. 1985, 12, 233–240. [Google Scholar] [CrossRef]
- Maitra, S.; Shankar, T.; Banerjee, P. Potential and advantages of maize-legume intercropping system. In Maize—Production and Use; Hossain, A., Ed.; Intechopen: London, UK, 2020. [Google Scholar] [CrossRef] [Green Version]
- Fan, F.; Zhang, F.; Song, Y.; Sun, J.; Bao, X.; Guo, T.; Li, L. Nitrogen fixation of faba bean (Vicia faba L.) interacting with a non-legume in two contrasting intercropping systems. Plant Soil. 2006, 283, 275–286. [Google Scholar] [CrossRef]
- Wang, X.; Wu, X.; Ding, G.; Yang, F.; Yong, T.; Wang, X.; Yang, W. Analysis of Grain Yield Differences among Soybean Cultivars under Maize–Soybean Intercropping. Agronomy 2020, 10, 110. [Google Scholar] [CrossRef] [Green Version]
- Maitra, S.; Samui, S.K.; Roy, D.K.; Mondal, A.K. Effect of cotton based intercropping system under rainfed conditions in Sundarban region of West Bengal. Indian Agric. 2001, 45, 157–162. [Google Scholar]
- Mamine, F.; Farès, M. Barriers and levers to developing wheat–pea intercropping in Europe: A Review. Sustainability 2020, 12, 6962. [Google Scholar] [CrossRef]
- Lal, R. Climate Change and Agriculture, Chapter 28. In Climate Change, 2nd ed.; Letcher, T.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 465–489. ISBN 9780444635242. [Google Scholar]
- Bybee-Finley, K.A.; Ryan, M.R. Advancing intercropping research and practices in industrialized agricultural landscapes. Agriculture 2018, 8, 80. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, P.C.; Lawande, K.E. Intercropping of onion and garlic in sugarcane with modern irrigation systems. Tech. Bull. 2005, 14, 1–8. [Google Scholar]
- Fukai, S.; Trenbath, B.R. Processes determining intercrop productivity and yields of component crops. Field Crops Res. 1993, 34, 247–271. [Google Scholar] [CrossRef]
- Sanon, M.; Hoogenboom, G.; Traoré, S.B.; Sarr, B.; Garcia, A.; Garcia, Y.; Somé, L.; Roncoli, C. Photoperiod sensitivity of local millet and sorghum varieties in west africa. NJAS-Wagening. J. Life Sci. 2014, 68, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Saxena, K.B.; Chauhan, Y.S.; Kumar, C.V.S.; Hingane, A.J.; Kumar, R.V.; Saxena, R.K.; Rao, G.V.R. Developing improved varieties of pigeonpea. In Achieving Sustainable Cultivation of Grain Legumes Volume 2, Improving Cultivation of Particular Grain Legumes; Burleigh Dodds Science Publishing: Cambridge, UK, 2018; ISBN 9781786761408. [Google Scholar] [CrossRef]
- Mobasser, H.R.; Vazirimehr, M.R.; Khashayar, R.K. Effect of intercropping on resources use, weed management and forage quality. Int. J. Plant Ani. Environ. Sci. 2014, 4, 706–713. [Google Scholar]
- Kumar, V.; Singh, R.P.; Kumar, S.; Shukla, U.N.; Kumar, K. Performance of pearlmillet + greengram intercropping as influenced by different planting techniques and integrated nitrogen management under rainfed condition. Int. J. Chem. Stud. 2018, 6, 705–708. [Google Scholar]
- Alam, F.; Kim, T.Y.; Kim, S.; Alam, S.; Pramanik, P.; Kim, P.J.; Lee, Y.B. Effect of molybdenum on nodulation, plant yield and nitrogen uptake in hairy vetch (Vicia villosa Roth). J. Soil Sci. Plant Nutr. 2019, 61, 1–12. [Google Scholar] [CrossRef]
- Xue, Y.; Xia, H.; Christie, P.; Zhang, Z.; Li, L.; Tang, C. Crop acquisition of phosphorus, iron and zinc from soil in cereal/legume intercropping systems: A critical review. Ann. Bot. Lond. 2016, 117, 363–377. [Google Scholar] [CrossRef]
- Zaman, A.; Zaman, P.; Maitra, S. Water resource development and management for agricultural sustainability. J. Appl. Adv. Res. 2017, 2, 73–77. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.H.; Chai, Q.; Huang, G.B. Root distribution and yield responses of wheat/maize intercropping to alternate irrigation in the arid areas of northwest China. Plant Soil Environ. 2010, 56, 253–262. [Google Scholar] [CrossRef] [Green Version]
- Rahman, Y.; Liu, X.; Hussain, S.; Ahmed, S.; Chen, G.; Yang, F.; Chen, L.; Du, J.; Liu, W.; Yang, W. Water use efficiency and evapotranspiration in maize-soybean relay strip intercrop systems as affected by planting geometries. PLoS ONE 2016, 12, e0178332. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Kong, X.; Gan, Y.; Zhang, R.; Feng, F.; Yu, A.; Zhao, C.; Wan, S.; Chai, Q. Enhancing the systems productivity and water use efficiency through coordinated soil water sharing and compensation in strip intercropping. Sci. Rep. 2018, 8, 10494. [Google Scholar] [CrossRef] [Green Version]
- Saharan, K.; Schütz, L.; Kahmen, A.; Wiemken, A.; Boller, T.; Mathimaran, N. Finger millet growth and nutrient uptake is improved in intercropping with pigeon pea through “biofertilization” and “bioirrigation” mediated by arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria. Front. Environ. Sci. 2018, 6, 1–11. [Google Scholar] [CrossRef]
- Singh, D.; Mathimaran, N.; Boller, T.; Kahmen, A. Deep-rooted pigeon pea promotes the water relations and survival of shallow-rooted finger millet during drought—Despite strong competitive interactions at ambient water availability. PLoS ONE 2020, 15, e0228993. [Google Scholar] [CrossRef]
- Nurk, L.; Graß, R.; Pekrun, C.; Wachendorf, M. Effect of Sowing Method and Weed Control on the Performance of Maize (Zea mays L.) Intercropped with Climbing Beans (Phaseolus vulgaris L.). Agriculture 2017, 7, 51. [Google Scholar] [CrossRef] [Green Version]
- Reddy, S.R. Principles of Agronomy; Kalyani Publishers: Kolkata, India, 2011; p. 581. [Google Scholar]
- Banik, P.; Midya, A.; Sarkar, B.K.; Ghose, S.S. Wheat and chickpea intercropping systems in an additive series experiment: Advantages and weed smothering. Eur. J. Agron. 2006, 24, 325–332. [Google Scholar] [CrossRef]
- Bilalis, D.; Papastylianou, P.; Konstantas, A.; Patsiali, S.; Karkanis, A.; Efthimiadou, A. Weed-suppressive effects of maize-legume intercropping in organic farming. Int. J. Pest Manag. 2010, 56, 173–181. [Google Scholar] [CrossRef]
- Kithan, L.; Longkumer, T.L. Effect on yield and weed dynamics in maize (Zea mays L.) based intercropping systems under foothill condition of Nagaland. Int. J. Econ. Plants 2016, 3, 159–167. [Google Scholar]
- Chalka, M.K.; Nepalia, V. Nutrient uptake appraisal of maize intercropped with legumes and associated weeds under the influence of weed control. Indian J. Agric. Res. 2006, 40, 86–91. [Google Scholar]
- Kumar, A.R.; Venkataraman, N.S.; Ramadass, S.; Ajaykumar, R.; Thirumeninathan, S. A Study on inter-cropping system and weed management practices on weed interference and productivity of maize. Int. J. Chem. Stud. 2017, 5, 847–851. [Google Scholar]
- Liebman, M.; Dyck, E. Crop rotation and intercropping strategies for weed management. Ecol Appl. 1993, 3, 92–122. [Google Scholar] [CrossRef] [PubMed]
- Divya, R.K.; Behera, B.; Jena, S.N. Effect of planting patterns and weed management practices on weed dynamics and nutrient mining in runner bean (Phaseolus coccineus L.) + maize (Zea mays L.) intercropping. Int. J. Chem. Stud. 2020, 8, 2704–2712. [Google Scholar]
- Nickel, J.L. Pest situation in changing agricultural system: A review. Bull Entomol. Soc. Amer. 1973, 54, 76–86. [Google Scholar] [CrossRef] [Green Version]
- Kyamanywa, S.; Ampofo, J.K.O. Effect of cowpea/maize mixed cropping on the incident light at the cowpea canopy and flower thrips (Thysanoptera: Thripidae) population density. Crop Prot. 1988, 7, 186–189. [Google Scholar] [CrossRef]
- Litsinger, J.A.; Moody, K. Integrated pest management in multiple cropping system. Mult. Crop. 1976, 27, 293–316. [Google Scholar]
- Altieri, M.A.; Francis, C.A.; Schoonhoven, A.V.; Doll, J.D. A review of insect prevalence in maize and bean polycultural systems. Field Crops Res. 1978, 1, 33–49. [Google Scholar] [CrossRef]
- Chikte, P.; Thakare, S.M.; Bhalkare, S.K. Influence of various cotton-based intercropping systems on population dynamics of thrips, Scircothrips dorsalis Hood and whitefly, Bemisia tabaci Genn. Res Crop. 2008, 9, 683–687. [Google Scholar]
- Epidi, T.T.; Bassey, A.E.; Zuofa, K. Influence of intercrops on pests’ populations in upland rice (Oryza sativa L.). Afr. J. Environ. Sci. Technol. 2008, 2, 438–441. [Google Scholar]
- Finckh, M.R.; Gacek, E.S.; Goyeau, H.; Lannou, C.; Merz, U.; Mundt, C.C.; Munk, L.; Nadziak, J.; Newton, A.C.; de Vallavieille-Pope, C.; et al. Cereal variety and species mixtures in practice, with emphasis on disease resistance. Agronomie 2000, 20, 813–837. [Google Scholar] [CrossRef] [Green Version]
- Willey, R.W. Intercropping its importance and research needs. Part 1, Competition and yield advantages. Field Crop Abstr. 1979, 32, 1–10. [Google Scholar]
- Willey, R.W.; Osiru, D.S.O. Studies on mixtures of maize and beans (Phasrolus vulgaris) with particular reference to plant population. J. Agric. Sci. Camb. 1972, 79, 519–529. [Google Scholar] [CrossRef]
- Beets, W.C. Multiple Cropping and Tropical Farming Systems; Westview Press: Boulder, CO, USA, 1982; p. 220. [Google Scholar]
- Mead, R.; Willey, R.W. The concept of a “land equivalent ratio” and advantages in yields from intercropping. Exp. Agric. 1980, 16, 217–228. [Google Scholar] [CrossRef] [Green Version]
- Spitters, C.J.T. Competition effects within mixed stands. In Opportunities for Increasing Crop Yields; Hurd, R.G., Biscoe, P.V., Dennis, C., Eds.; The Pitman Publ.: London, UK, 1980; pp. 219–231. [Google Scholar]
- Caballero, R.; Goicoechea, E.L.; Hernaiz, P.J. Forage yields and quality of common vetch and oat sown at varying seeding ratios and seeding rates of vetch. Field Crop Res. 1995, 41, 135–140. [Google Scholar] [CrossRef]
- Kurdali, F.; Janat, M.; Khalifa, K. Growth and nitrogen fixation and uptake in dhaincha/sorghum intercropping system under saline and non-saline conditions. Comm. Soil Sci. Plant Anal. 2003, 34, 7–18. [Google Scholar] [CrossRef]
- Eskandari, H.; Ahmad, G. Effect of different planting pattern of wheat (Triticum aestivum) and bean (Vicia faba) on grain yield, dry matter production and weed biomass. Not. Sci. Biol. 2010, 2, 111–115. [Google Scholar] [CrossRef] [Green Version]
- Oseni, T.O. Evaluation of sorghum-cowpea intercrop productivity in savanna agro-ecology using competition indices. J. Agric. Sci. 2010, 2. [Google Scholar] [CrossRef]
- Khatun, S.; Azad, A.K.; Bala, P. Intercropping with wheat affected crop productivity. Bangladesh Res. Pub. J. 2012, 6, 414–419. [Google Scholar]
- Wasaya, A.; Ahmad, R.; Hassan, F.U.; Ansar, M.; Manaf, A.; Sher, A. Enhancing crop productivity through wheat (Triticum aestivum)-fenugreek intercropping system. J. Ani. Plant Sci. 2013, 23, 210–221. [Google Scholar]
- Gao, Y.; Wu, P.; Zhao, X.; Wang, Z. Growth, yield, and nitrogen use in the wheat/maize intercropping system in an arid region of northwestern China. Field Crop. Res. 2014, 167, 19–30. [Google Scholar] [CrossRef]
- Atabo, A.J.; Umaru, M.T. Assessing the land equivalent ratio (LER) and stability of yield of two cultivars of sorghum (Sor-ghum bicolor L. Moench)-Soyabean (Glycine max L. Merr) to Row intercropping system. J. Biol. Agric. Healthc. 2015, 5, 144. [Google Scholar]
- Ijoyah, M.O.; Hashin, I.K.; Geza, R.T. Effects of intra-row spacing of pearl millet (Pennisetum glaucum (L.) R. Br) and cropping systems on the productivity of soybean-pearl millet intercropping system in a southern guinea savanna location, Nigeria. World Sci. News 2015, 18, 35–48. [Google Scholar]
- Dereje, G.; Adisu, T.; Mengesha, M.; Bogale, T. The influence of intercropping sorghum with legumes for management and control of striga in sorghum at assosa zone, benshangul gumuz region, western ethiopia, East Africa. Adv. Crop Sci. Technol. 2017, 4, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Kamara, A.Y.; Tofa, A.I.; Ademulegun, T.; Solomon, R.; Shehu, H.; Kamai, N.; Omoigui, L. Maize–soybean intercropping for sustainable intensification of cereal–legume cropping systems in northern nigeria. Exp. Agric. 2017, 55, 73–87. [Google Scholar] [CrossRef] [Green Version]
- Kermah, M.; Franke, A.C.; Adjei-Nsiah, S.; Ahiabor, B.D.; Abaidoo, R.C.; Giller, K.E. Maize-grain legume intercropping for enhanced resource use efficiency and crop productivity in the Guinea savanna of northern Ghana. Field Crop. Res. 2017, 213, 38–50. [Google Scholar] [CrossRef]
- Kidane, B.Z.; Hailu, M.H.; Haile, H.T. Maize and potato intercropping: A technology to increase productivity and profitability in tigray. Open Agric. 2017, 2. [Google Scholar] [CrossRef]
- Khan, M.A.H.; Sultana, N.; Akter, N.; Zaman, M.S.; Islam, M.R. Intercropping gardenpea (Pisium sativum) with Maize (Zea mays) at farmers field Bangladesh. J. Agric. Res. 2018, 43, 691–702. [Google Scholar]
- Raza, M.A.; Feng, L.Y.; Van Der Werf, W.; Iqbal, N.; Khan, I.; Hassan, M.J.; Ansar, M.; Chen, Y.K.; Xi, Z.J.; Shi, J.Y.; et al. Optimum leaf defoliation: A new agronomic approach for increasing nutrient uptake and land equivalent ratio of maize soybean relay intercropping system. Field Crop. Res. 2019, 244, 107647. [Google Scholar] [CrossRef]
- Singh, A.; Kumar, R.; Kaur, M. Effect of lentil intercropping on growth, yield and quality of wheat (Triticum aestivum). J. Pharma Phytochem. 2019, SP4, 152–156. [Google Scholar]
- Gitari, H.I.; Nyawade, S.O.; Kamau, S.; Karanja, N.N.; Gachene, C.K.K.; Raza, M.A.; Maitra, S.; Schulte-Geldermann, E. Revis-iting intercropping indices with respect to potato-legume intercropping systems. Field Crops Res. 2020, 258, 107957. [Google Scholar] [CrossRef]
- Lal, J.; Meena, R.N.; Kumar, S.; Meena, R.; Pal, V.K.; Lawate, P. effect of crop diversification on growth and yield of pearl-millet (Pennisetum glaucum L.) under custard apple (Annona squamosa L.) based rainfed agrihorti system. J. Pure Appl. Micro-Biol. 2018, 12, 207–215. [Google Scholar] [CrossRef]
- Hiebsch, C.K. Interpretation of yields obtained in crop mixture. In Abstracts of American Society of Agronomy; Madison: Wisconsin, DC, USA, 1978; p. 41. [Google Scholar]
- Aasim, M.; Umer, E.M.; Karim, A. Yield and Competition Indices of Intercropping Cotton (Gossypium hirsutum L.) Using Different Planting Patterns. Tarım Bilim. Derg. 2008, 14, 326–333. [Google Scholar] [CrossRef] [Green Version]
- Bantie, Y.B.; Abera, F.A.; Woldegiorgis, T.D. Competition Indices of Intercropped Lupine (Local) and Small Cereals in Additive Series in West Gojam, North Western Ethiopia. Am. J. Plant Sci. 2014, 5, 1296–1305. [Google Scholar] [CrossRef] [Green Version]
- Yogesh, S.; Halikatti, S.I.; Hiremath, S.M.; Potdar, M.P.; Harlapur, S.I.; Venkatesh, H. Light use efficiency, productivity and profitability of maize and soybean intercropping as influenced by planting geometry and row proportion. Karnataka J. Agric. Sci. 2014, 27, 1–4. [Google Scholar]
- Jan, R.; Saxena, A.; Jan, R.; Khanday, M.; Jan, R. Intercropping indices and yield attributes of maize and black cowpea under various planting pattern. Int. Q. J. Life Sci. 2016, 11, 1–7. [Google Scholar]
- Renu, K.A.; Kumar, P. Performance of advance pearl millet hybrids and mungbean under sole cropping and intercropping systems under semi-arid environment. J. Pharm. Phytochem. 2018, 7, 1671–1675. [Google Scholar]
- Khalid, S.; Khalil, F. Imranuddin Influence of irrigation regimes on competition indexes of winter and summer intercropping system under semi-arid regions of Pakistan. Sci. Rep. 2020, 10, 8129. [Google Scholar] [CrossRef]
- McGilchrist, C.A. Analysis of Competition Experiments. Biometrics 1965, 21, 975. [Google Scholar] [CrossRef]
- Willey, R.W.; Rao, M.R. A Competitive Ratio for Quantifying Competition between Intercrops. Exp. Agric. 1980, 16, 117–125. [Google Scholar] [CrossRef]
- De Wit, C.T. On competition. verslag land bouwkundige onderzoekingen. Sci Res. 1960, 66, 1–81. [Google Scholar]
- Hall, R.L. Ananalysis of the nature of interface between plants of different species. I. Concepts and extension of the Dewit analysis to examine effects. Aust. J. Agric. Res. 1974, 25, 739–747. [Google Scholar] [CrossRef]
- Hall, R.L. Analysis of the nature of interface between plants of different species. ii. nutrient relations in a Nandi setaria and green leaf desmodium association with particular reference to potassium. Aust. J. Agric. Res. 1974, 25, 749–756. [Google Scholar] [CrossRef]
- Andrade, D.; Pasini, F.; Scarano, F.R. Syntropy and innovation in agriculture. Curr. Opin. Environ. Sustain. 2020, 45, 20–24. [Google Scholar] [CrossRef]
- Wezel, A.; Casagrande, M.; Celette, F.; Jean-Franc, V.; Ferrer, A.; Peigne, J. Agroecological practices for sustainable agriculture. A review. Agron. Sustain. Dev 2014, 34, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Gitari, H.I.; Gachene, C.K.K.; Karanja, N.N.; Kamau, S.; Nyawade, S.; Schulte-Geldermann, E. Potato-legume intercropping on a sloping terrain and its effects on soil physico-chemical properties. Plant Soil 2019, 438, 447–460. [Google Scholar] [CrossRef]
- Nyawade, S.O.; Gachene, C.K.; Karanja, N.N.; Gitari, H.I.; Schulte-Geldermann, E.; Parker, M.L. Controlling soil erosion in smallholder potato farming systems using legume intercrops. Geoderma Reg. 2019, 17, e00225. [Google Scholar] [CrossRef]
- Gitari, H.I.; Karanja, N.N.; Gachene, C.K.; Kamau, S.; Sharma, K.; Schulte-Geldermann, E. Nitrogen and phosphorous uptake by potato (Solanum tuberosum L.) and their use efficiency under potato-legume intercropping systems. Field Crop. Res. 2018, 222, 78–84. [Google Scholar] [CrossRef]
- Mandal, M.K.; Banerjee, M.; Banerjee, H.; Alipatra, A.; Malik, G.C. Productivity of maize (Zea mays) based intercropping system during kharif season under red and lateritic tract of West Bengal. Bioscan 2014, 9, 31–35. [Google Scholar]
- Baghdadi, A.; Halim, R.A.; Othman, R.; Yusof, M.M.; Atashgahi, A.R.M. Productivity, relative yield and plant growth of forage corn intercropped with soybean under different crop combination ratio. Legume Res. 2016, 39, 558–564. [Google Scholar]
- Manasa, P.; Maitra, S.; Barman, S. Yield Attributes, yield, competitive ability and economics of summer maize-legume intercropping system. Int. J. Agric. Environ. Biotechnol. 2020, 13, 3–38. [Google Scholar] [CrossRef]
- Peoples, M.B.; Craswell, E.T. Biological nitrogen fixation: Investments, expectations and actual contributions to agriculture. Biol. Nitrogen Fixat. Sustain. Agric. 1992, 141, 13–39. [Google Scholar] [CrossRef]
- Zhang, F.; Shen, J.; Li, L.; Liu, X. An overview of rhizosphere processes related with plant nutrition in major cropping systems in China. Plant Soil 2004, 260, 89–99. [Google Scholar] [CrossRef]
- Song, Y.N.; Zhang, F.S.; Marschner, P.; Fan, F.L.; Gao, H.M.; Bao, X.G.; Sun, J.H.; Li, L. Effect of intercropping on crop yield and chemical and microbiological properties in rhizosphere of wheat (Triticum aestivum L.), maize (Zea mays L.), and faba bean (Vicia faba L.). Biol. Fertil. Soils 2006, 43, 565–574. [Google Scholar] [CrossRef]
- Raynaud, X.; Jaillard, B.; Leadley, P.W. Plants May Alter Competition by Modifying Nutrient Bioavailability in Rhizosphere: A Modeling Approach. Am. Nat. 2008, 171, 44–58. [Google Scholar] [CrossRef] [Green Version]
- Hauggaardnielsen, H.; Gooding, M.J.; Ambus, P.; Correhellou, G.; Crozat, Y.; Dahlmann, C.; Dibet, A.; Von Fragstein, P.; Pristeri, A.; Monti, M.; et al. Pea–barley intercropping for efficient symbiotic N2-fixation, soil N acquisition and use of other nutrients in European organic cropping systems. Field Crop. Res. 2009, 113, 64–71. [Google Scholar] [CrossRef]
- Li, Y.; Ran, W.; Zhang, R.; Sun, S.; Xu, G. Facilitated legume nodulation, phosphate uptake and nitrogen transfer by arbuscular inoculation in an upland rice and mung bean intercropping system. Plant Soil 2009, 315, 285–296. [Google Scholar] [CrossRef]
- Morris, R.; Garrity, D. Resource capture and utilization in intercropping; non-nitrogen nutrients. Field Crop. Res. 1993, 34, 319–334. [Google Scholar] [CrossRef]
- Ae, N.; Arihara, J.; Okada, K.; Yoshihara, T.; Johansen, C. Phosphorus Uptake by Pigeon Pea and Its Role in Cropping Systems of the Indian Subcontinent. Science 1990, 248, 477–480. [Google Scholar] [CrossRef] [PubMed]
- Cu, S.T.T.; Hutson, J.L.; Schuller, K.A. Mixed culture of wheat (Triticum aestivum L.) with white lupin (Lupinus albus L.) improves the growth and phosphorus nutrition of the wheat. Plant Soil 2005, 272, 143–151. [Google Scholar] [CrossRef]
- Li, L.; Zhang, L.Z.; Zhang, F.Z. Crop mixtures and the mechanisms of over yielding. In Encyclopedia of Biodiversity, 2nd ed.; Levin, S.A., Ed.; Academic Press: Waltham, MA, USA, 2013; Volume 2, pp. 382–395. [Google Scholar]
- Ryan, P.R.; Tyerman, S.D.; Sasaki, T.; Furuichi, T.; Yamamoto, Y.; Zhang, W.H.; Delhaize, E. The identification of aluminium-resistance genes provides opportunities for enhancing crop production on acid soils. J. Exp. Bot. 2011, 62, 9–20. [Google Scholar] [CrossRef] [Green Version]
- Dai, J.; Qiu, W.; Wang, N.; Wang, T.; Nakanishi, H.; Zuo, Y. From Leguminosae/Gramineae Intercropping Systems to See Benefits of Intercropping on Iron Nutrition. Front. Plant Sci. 2019, 10, 605. [Google Scholar] [CrossRef] [Green Version]
- Nyoki, D.; Ndakidemi, P.A. Intercropping System, Rhizobia Inoculation, Phosphorus and Potassium Fertilization: A Strategy of Soil Replenishment for Improved Crop Yield. Int. J. Curr. Microbiol. App. Sci. 2016, 5, 504–522. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Fan, Z.; Chai, Q. Agronomic and Economic Benefits of Pea/Maize Intercropping Systems in Relation to N Fertilizer and Maize Density. Agronomy 2018, 8, 52. [Google Scholar] [CrossRef] [Green Version]
- Chai, Q.; Qin, A.; Gan, Y.; Yu, A. Higher yield and lower carbon emission by intercropping maize with rape, pea, and wheat in arid irrigation areas. Agron. Sustain. Dev. 2013, 34, 535–543. [Google Scholar] [CrossRef]
- Adler, P.R.; Del Grosso, S.J.; Parton, W.J. Life-Cycle Assessment of Net Greenhouse-Gas Flux for Bioenergy Cropping Systems. Ecol. Appl. 2007, 17, 675–691. [Google Scholar] [CrossRef] [PubMed]
- Signor, D.; Cerri, C.E.P. Nitrous oxide emissions in agricultural soils: A review. Pesqui. Agropecuária Trop. 2013, 43, 322–338. [Google Scholar] [CrossRef]
- Collins, H.P.; Fay, P.A.; Kimura, E.; Fransen, S.; Himes, A. Intercropping with switchgrass improves net greenhouse balance in hybrid poplar plantations on a sand soil. Soil Sci. Soc. Am. J. 2017, 81, 781–795. [Google Scholar] [CrossRef] [Green Version]
- Ghanbari, A.; Dahmardeh, M.; Siahsar, B.A.; Ramroudi, M. Effect of maize (Zea mays L.)—cowpea (Vigna unguiculata L.) inter-cropping on light distribution, soil temperature and soil moisture in and environment. J. Food Agric. Environ. 2010, 8, 102–108. [Google Scholar]
- Mahallati, M.N.; Koocheki, A.; Mondani, F.; Feizi, H.; Amirmoradi, S. Determination of optimal strip width in strip intercropping of maize (Zea mays L.) and bean (Phaseolus vulgaris L.) in Northeast Iran. J. Clean Prod. 2015, 106, 343–350. [Google Scholar] [CrossRef]
- Maitra, S. Intercropping of small millets for agricultural sustainability in drylands: A review. Crop Res. 2020, 55, 162–171. [Google Scholar]
- Madhu, M.; Hombegowda, H.C.; Beer, K.; Adhikary, P.P.; Jakhar, P.; Sahoo, D.C.; Dash, C.J.; Kumar, G.; Naik, G.B. Status of natural resources and resource conservation technologies in eastern region of India. In Resource Conservation in Eastern Region of India: Lead Papers of FFCSWR, 2019; Indian Association of Soil and Water Conservationists: Dehradun, India, 2019; pp. 60–82. [Google Scholar]
- Dass, A.; Sudhishir, S. Intercropping in fingermillet (Eleusine coracana) with pulses for enhanced productivity, resource con-servation and soil fertility in uplands of southern Orissa. Indian J. Agron. 2010, 55, 89–94. [Google Scholar]
- Iqbal, N.; Hussain, S.; Ahmed, Z.; Yang, F.; Wang, X.; Liu, W.; Yong, T.; Du, J.; Shu, K.; Yang, W.; et al. Comparative analysis of maize–soybean strip intercropping systems: A review. Plant Prod. Sci. 2018, 22, 131–142. [Google Scholar] [CrossRef] [Green Version]
- Mucheru-Muna, M.; Pypers, P.; Mugendi, D.; Kungu, J.; Mugwe, J.; Merckx, R.; Vanlauwe, B. A staggered maize legume in-tercrop arrangement robustly increases crop yields and economic returns in the highlands of Central Kenya. Field Crops Res. 2010, 115, 132–139. [Google Scholar] [CrossRef]
- Choudhary, V.K.; Choudhury, B.U. A staggered maize–legume intercrop arrangement influences yield, weed smothering and nutrient balance in the eastern himalayan region of india. Exp. Agric. 2016, 54, 181–200. [Google Scholar] [CrossRef]
- Stagnari, F.; Maggio, A.; Galieni, A.; Pisante, M. Multiple benefits of legumes for agriculture sustainability: An overview. Chem. Biol. Technol. Agric. 2017, 4, 2. [Google Scholar] [CrossRef] [Green Version]
- Kermah, M.; Franke, A.; Adjei-Nsiah, S.; Ahiabor, B.; Abaidoo, R.; Giller, K. N2-fixation and N contribution by grain legumes under different soil fertility status and cropping systems in the Guinea savanna of northern Ghana. Agric. Ecosyst. Environ. 2018, 261, 201–210. [Google Scholar] [CrossRef]
- Asian Development Bank. Gender Equality and Food Security—Women’s Empowerment as A Tool against Hunger Mandaluyong City, Philippines. ISBN 978-92-9254-172-9. 2013. Available online: https://www.adb.org/sites/default/files/publication/30315/gender-equality-and-food-security.pdf (accessed on 31 January 2021).
- Bhawana, K.; Race, D. Women’s approach to farming in the context of feminization of agriculture: A case study from the middle hills of Nepal. World Dev. Perspect. 2020, 20, 100260. [Google Scholar] [CrossRef]
- Omaliko, P.C. Evaluation of Cowpea (Vigna Unguiculata) as A Pollinator Enhancer in An Intercropping system. North Carolina Agricultural and Technical State University, ProQuest Dissertations Publishing. 2020, p. 28025763. Available online: https://search.proquest.com/openview/b029c869d0d03013e58c695b0138c4e2/1?pq-origsite=gscholar&cbl=18750&diss=y (accessed on 2 February 2021).
- Spehn, E.M.; Joshi, J.; Schmid, B.; Alphei, J.; Körner, C. Plant diversity effects on soil heterotrophic activity in experimental grassland ecosystems. Plant Soil 2000, 224, 217–230. [Google Scholar] [CrossRef]
- Qiao, Y.; Li, Z.; Wang, X.; Zhu, B.; Hu, Y.; Zeng, Z. Effect of legume-cereal mixtures on the diversity of bacterial communities in the rhizosphere. Plant Soil Environ. 2012, 58, 174–180. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Wu, F. Diversity and Co-occurrence Patterns of Soil Bacterial and Fungal Communities in Seven Intercropping Systems. Front. Microbiol. 2018, 9, 1521. [Google Scholar] [CrossRef]
- Panth, M.; Hassler, S.C.; Baysal-Gurel, F. Methods for Management of Soilborne Diseases in Crop Production. Agriculture 2020, 10, 16. [Google Scholar] [CrossRef] [Green Version]
- Nicholls, C.I.; Altieri, M.A. Plant biodiversity enhances bees and other insect pollinators in agroecosystems. A review. Agron. Sustain. Dev. 2013, 33, 257–274. [Google Scholar] [CrossRef] [Green Version]
- Dempster, J.P.; Coaker, T.H. Diversification of crop ecosystems as a means of controlling pests. In Biology of Pests and Disease Control; Price Jones, D., Solomon, M.E., Eds.; Blackwell: Oxford, UK, 1974; pp. 106–114. [Google Scholar]
- Burn, A.J.; Coaker, T.H.; Jepson, P.C. Integrated Pest Management; Academic Press: London, UK, 1987; p. 82. [Google Scholar]
- Narayanaswamy, P.; Ganghadharan, K.; Chandrasekharan, G.; Velazhagan, R.; Karunanidhi, K. In Proceedings of the National Workshop on Pests and Diseases, Tamilnadu, India, 16–18 September 1988.
- Huong, N. Reducing Herbicide Use through Cropping System Diversification: A Case Study at the Iowa State University Marsden Farm, and Some Recommendations for the Mekong Delta of Vietnam. Grad. Theses Diss. 2016, 15779. [Google Scholar] [CrossRef]
- Autrique, A.; Potts, M.J. The influence of mixed cropping on the control of potato bacterial wilt (Pseudomonas solanacearum). Ann. Appl. Biol. 1987, 111, 125–133. [Google Scholar] [CrossRef]
- Sahile, S.; Fininsa, C.; Sakhuja, P.; Ahmed, S. Effect of mixed cropping and fungicides on chocolate spot (Botrytis fabae) of faba bean (Vicia faba) in Ethiopia. Crop. Prot. 2008, 27, 275–282. [Google Scholar] [CrossRef]
- Vieira, R.F.; Júnior, T.J.D.P.; Teixeira, H.; Vieira, C. Intensity of angular leaf spot and anthracnose on pods of common beans cultivated in three cropping systems. Ciência e Agrotecnologia 2009, 33, 1931–1934. [Google Scholar] [CrossRef] [Green Version]
- Schoeny, A.; Jumel, S.; Rouault, F.; LeMarchand, E.; Tivoli, B. Effect and underlying mechanisms of pea-cereal intercropping on the epidemic development of ascochyta blight. Eur. J. Plant Pathol. 2009, 126, 317–331. [Google Scholar] [CrossRef]
- Ananthi, T.; Amanullah, M.M.; Al-Tawaha, A.R.M.S. A review on maize-legume intercropping for enhancing the productivity and soil fertility for sustainable agriculture in India. Adv. Environ. Biol. 2017, 11, 49–63. [Google Scholar]
- Massave, P.I.; Mtei, K.M.; Munish, L.K.; Ndakidemi, P.A. Existing practices for soil salinity management through cere-al-legume intercropping systems. World J. Agric. Res. 2016, 3, 80–91. [Google Scholar]
- Maitra, S.; Shankar, T.; Gaikwad, D.J.; Palai, J.B.; Sagar, L. Organic Agriculture, Ecosystem Services and Sustainability: A Re-view. Int. J. Mod. Agric. 2020, 9, 370–378. [Google Scholar]
- Gebru, H. A Review on the Comparative Advantages of Intercropping to Mono-Cropping System. J. Biol. Agric. Healthc. 2015, 5, 1–13. [Google Scholar]
- Cenpukdee, U.; Fukai, S. Cassava/legume intercropping with contrasting cassava cultivars. 1. Competition between com-ponent crops under three intercropping conditions. Field Crops Res. 1992, 29, 113–133. [Google Scholar] [CrossRef]
- Santalla, M.; Rodiño, A.; Casquero, P.; De Ron, A.M. Interactions of bush bean intercropped with field and sweet maize. Eur. J. Agron. 2001, 15, 185–196. [Google Scholar] [CrossRef]
- Tanveer, M.; Anjum, S.A.; Hussain, S.; Cerdà, A.; Ashraf, U. Relay cropping as a sustainable approach: Problems and oppor-tunities for sustainable crop production. Environ. Sci. Pollut. Res. 2017. [Google Scholar] [CrossRef] [PubMed]
- Jose, S.; Holzmueller, E. Black walnut allelopathy: Implications for intercropping. In Allelopathy in Sustainable Agriculture and Forestry; Zeng, R.S., Mallik, A.U., Luo, S.M., Eds.; Springer: New York, NY, USA, 2008. [Google Scholar]
- Rejila, S.; Vijayakumar, N. Allelopathic effect of Jatropha curcas on selected intercropping plants (green chilli and sesame). J. Phytol. 2011, 3, 1–3. [Google Scholar]
- Gliessman, S.R. Agro-Ecological Processes in Sustainable Agriculture; Sleeping Bear Press: Chelsea, ML, USA, 1985. [Google Scholar]
Intercropping System | Ratio | LER | Country | References |
---|---|---|---|---|
Sorghum + Sesbania | 2:1 | 1.06 | Syria | [91] |
Wheat + Faba bean | 1:1 | 5.24 | UK | [92] |
Sorghum + Cowpea | 2:1 | 1.08 | Nigeria | [93] |
Wheat + Mustard | 1:1 | 1.46 | Bangladesh | [94] |
Wheat + Fenugreek | 1:3 | 1.4 | Pakistan | [95] |
Wheat + Maize | 1:1 | 1.19 | China | [96] |
Sorghum + Soyabean | 1:1 | 1.40 | Nigeria | [97] |
Pearlmillet + Soybean | - | 2.77 | Nigeria | [98] |
Sorghum + Ground nut | 1:1 | 2.10 | Ethiopia | [99] |
Maize + Soybean | 1:1 | 1.54 | Nigeria | [100] |
Maize + Groundnut | 2:2 | 1.42 | Ghana | [101] |
Maize + Potato | 1:2 | 1.58 | Ethiopia | [102] |
Maize + Garden pea | 1:2 | 1.56 | Bangladesh | [103] |
Maize + Groundnut | 2:2 | 1.82 | India | [28] |
Maize + Soybean | 2:2 | 1.90 | China | [104] |
Wheat + Lentil | 2:2 | 1.34 | India | [105] |
Potato + Dolichos | 1:2.4 | 1.24 | Kenya | [106] |
Potato + Vetch | 1:2 | 1.75 | Kenya | [16] |
Pearlmillet + Green gram | 1:1 | 2.03 | India | [107] |
Intercropping System | Proportion | ATER | Country | References |
---|---|---|---|---|
Cotton + Cowpea | - | 1.13 | Pakistan | [109] |
Lupine + Wheat | 75% + 100% | 1.31 | Ethiopia | [110] |
Maize + Soybean | 2:6 | 1.32 | India | [111] |
Maize + Black cowpea | 2:2 | 1.51 | India | [112] |
Pearlmillet + Green gram | 2:1 | 1.25 | India | [113] |
Wheat + Faba bean | - | 1.28 | Pakistan | [114] |
Potato + Dolichos | 1:2.4 | 1.13 | Kenya | [106] |
Intercropping Systems | Competitive Ratio (CR) | |
---|---|---|
Finger Millet | Legumes | |
Finger millet + Red gram (4:1) | 0.28 | 3.59 |
Finger millet + Green gram (4:1) | 0.71 | 1.41 |
Finger millet + Groundnut (4:1) | 0.58 | 1.73 |
Finger millet + Soybean (4:1) | 0.68 | 1.48 |
Crop | Name of the Restricted Disease | Intercropping Combination | References |
---|---|---|---|
Potato | Bbacterial wilt (Pseudomonas solanacearum) | Maize + potato | [168] |
Faba bean | Chocolate spot (Botrytis fabae) | Maize + faba bean and barley + faba bean | [169] |
Beans | Angular leaf spot (Phaeoisariopsis griseola) | Maize + bean | [170] |
Pea | Ascochyta blight (Mycosphaerella pinodes) | Cereal + pea | [171] |
Intercropping System | Limitation and Comments | References |
---|---|---|
Row intercropping | Preferably crops of dissimilar growth habits are grown to obtain higher level of complementarity and crops attain maturity at different times that make harvesting laborious. If crops are not chosen properly, inter-species competition may limit yields. | [48,54] |
Mixed intercropping | Grass-legume is most common and harvested mainly as forage that creates no complexity and any limitation. But if crops are harvested separately, it will be labour intensive. | [54] |
Relay intercropping | Succeeding crops may yield less compared to normal crops grown in sequential cropping and more seed rate of relay crop is required. | [178] |
Strip intercropping | A combination of soil conserving and depleting crops are grown simultaneously in alternate strips. If perennial crops are grown in combination, may create shade problem to annuals. | [138] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maitra, S.; Hossain, A.; Brestic, M.; Skalicky, M.; Ondrisik, P.; Gitari, H.; Brahmachari, K.; Shankar, T.; Bhadra, P.; Palai, J.B.; et al. Intercropping—A Low Input Agricultural Strategy for Food and Environmental Security. Agronomy 2021, 11, 343. https://doi.org/10.3390/agronomy11020343
Maitra S, Hossain A, Brestic M, Skalicky M, Ondrisik P, Gitari H, Brahmachari K, Shankar T, Bhadra P, Palai JB, et al. Intercropping—A Low Input Agricultural Strategy for Food and Environmental Security. Agronomy. 2021; 11(2):343. https://doi.org/10.3390/agronomy11020343
Chicago/Turabian StyleMaitra, Sagar, Akbar Hossain, Marian Brestic, Milan Skalicky, Peter Ondrisik, Harun Gitari, Koushik Brahmachari, Tanmoy Shankar, Preetha Bhadra, Jnana Bharati Palai, and et al. 2021. "Intercropping—A Low Input Agricultural Strategy for Food and Environmental Security" Agronomy 11, no. 2: 343. https://doi.org/10.3390/agronomy11020343
APA StyleMaitra, S., Hossain, A., Brestic, M., Skalicky, M., Ondrisik, P., Gitari, H., Brahmachari, K., Shankar, T., Bhadra, P., Palai, J. B., Jena, J., Bhattacharya, U., Duvvada, S. K., Lalichetti, S., & Sairam, M. (2021). Intercropping—A Low Input Agricultural Strategy for Food and Environmental Security. Agronomy, 11(2), 343. https://doi.org/10.3390/agronomy11020343