Nutrient Supplementation Configures the Bioactive Profile and Production Characteristics of Three Brassica L. Microgreens Species Grown in Peat-Based Media
Abstract
:1. Introduction
2. Materials and Methods
2.1. Climate Chamber Set Up, Genetic Material and Experimental Design
2.2. Colorimetric Measurements, Harvest and Sampling
2.3. Mineral Content, Nitrate and Total Ascorbic Acid Assessment
2.4. Chlorophyll Pigments, Carotenoid Extraction and Quantification by HPLC-DAD
2.5. Anthocyanin and Polyphenol Extraction
2.6. UHPLC-HRMS Analysis
2.7. Statistics
3. Results and Discussion
3.1. Microgreens Fresh Yield and Dry Matter Concentration
3.2. Microgreens Leaf Colorimetric Parameters
3.3. Microgreens Nitrate and Macro-Minerals Content
3.4. Microgreens Chlorophylls and Carotenoids Pigments
3.5. Microgreens Total Ascorbic Acid Content and Total Anthocyanins
3.6. Microgreens Phenolic Acid Profile and Total Phenolic Acids
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kyriacou, M.C.; Rouphael, Y.; Di Gioia, F.; Kyratzis, A.; Serio, F.; Renna, M.; De Pascale, S.; Santamaria, P. Micro-scale vegetable production and the rise of microgreens. Trends Food Sci. Technol. 2016, 57, 103–115. [Google Scholar] [CrossRef]
- DellaPenna, D. Nutritional Genomics: Manipulating Plant Micronutrients to Improve Human Health. Science 1999, 285, 375–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Gioia, F.; Tzortzakis, N.; Rouphael, Y.; Kyriacou, M.C.; Sampaio, S.L.; Ferreira, I.C.; Petropoulos, S.A. Grown to Be Blue—Antioxidant Properties and Health Effects of Colored Vegetables. Part II: Leafy, Fruit, and Other Vegetables. Antioxidants 2020, 9, 97. [Google Scholar] [CrossRef] [Green Version]
- Lewis, W.H.; Elvin-Lewis, M.P.F. Medical Botany: Plants Affecting Human Health, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2003; ISBN 0471628824. [Google Scholar]
- Raskin, I.; Ribnicky, D.M.; Komarnytsky, S.; Ilic, N.; Poulev, A.; Borisjuk, N.; Brinker, A.; Moreno, D.A.; Ripoll, C.; Yakoby, N.; et al. Plants and human health in the twenty-first century. Trends Biotechnol. 2002, 20, 522–531. [Google Scholar] [CrossRef]
- Neugart, S.; Baldermann, S.; Hanschen, F.S.; Klopsch, R.; Wiesner-Reinhold, M.; Schreiner, M. The intrinsic quality of brassicaceous vegetables: How secondary plant metabolites are affected by genetic, environmental, and agronomic factors. Sci. Hortic. 2018, 233, 460–478. [Google Scholar] [CrossRef]
- Herr, I.; Büchler, M.W. Dietary constituents of broccoli and other cruciferous vegetables: Implications for prevention and therapy of cancer. Cancer Treat. Rev. 2010, 36, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Cartea, M.E.; Francisco, M.; Soengas, P.; Velasco, P. Phenolic Compounds in Brassica Vegetables. Molecules 2010, 16, 251–280. [Google Scholar] [CrossRef]
- Kapusta-Duch, J.; Kopec, A.; Piatkowska, E.; Borczak, B.; Leszczynska, T. The beneficial effects of Brassica vegetables on human health. Rocz. Państwowego Zakładu Hig. 2012, 63, 389–395. [Google Scholar]
- Samuolienė, G.; Brazaitytė, A.; Viršilė, A.; Miliauskienė, J.; Vaštakaitė-Kairienė, V.; Duchovskis, P. Nutrient Levels in Brassicaceae Microgreens Increase Under Tailored Light-Emitting Diode Spectra. Front. Plant Sci. 2019, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber, C.F. Nutrient Content of Cabbage and Lettuce Microgreens Grown on Vermicompost and Hydroponic Growing Pads. J. Hortic. 2016, 3, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Kyriacou, M.C.; El-Nakhel, C.; Graziani, G.; Pannico, A.; Soteriou, G.A.; Giordano, M.; Ritieni, A.; De Pascale, S.; Rouphael, Y. Functional quality in novel food sources: Genotypic variation in the nutritive and phytochemical composition of thirteen microgreens species. Food Chem. 2019, 277, 107–118. [Google Scholar] [CrossRef]
- Kamal, K.Y.; Khodaeiaminjan, M.; El-Tantawy, A.A.; Moneim, D.A.; Salam, A.A.; Ash-shormillesy, S.M.A.I.; Attia, A.; Ali, M.A.S.; Herranz, R.; El-Esawi, M.A.; et al. Evaluation of growth and nutritional value of Brassica microgreens grown under red, blue and green LEDs combinations. Physiol. Plant. 2020, 169, 625–638. [Google Scholar] [CrossRef]
- Xiao, Z.; Lester, G.E.; Luo, Y.; Wang, Q. Assessment of vitamin and carotenoid concentrations of emerging food products: Edible microgreens. J. Agric. Food Chem. 2012, 60, 7644–7651. [Google Scholar] [CrossRef]
- Mir, S.A.; Shah, M.A.; Mir, M.M. Microgreens: Production, shelf life, and bioactive components. Crit. Rev. Food Sci. Nutr. 2017, 57, 2730–2736. [Google Scholar] [CrossRef] [PubMed]
- Caracciolo, F.; El-Nakhel, C.; Raimondo, M.; Kyriacou, M.C.; Cembalo, L.; De Pascale, S.; Rouphael, Y. Sensory Attributes and Consumer Acceptability of 12 Microgreens Species. Agronomy 2020, 10, 1043. [Google Scholar] [CrossRef]
- Pannico, A.; El-Nakhel, C.; Graziani, G.; Kyriacou, M.C.; Giordano, M.; Soteriou, G.A.; Zarrelli, A.; Ritieni, A.; De Pascale, S.; Rouphael, Y. Selenium Biofortification Impacts the Nutritive Value, Polyphenolic Content, and Bioactive Constitution of Variable Microgreens Genotypes. Antioxidants 2020, 9, 272. [Google Scholar] [CrossRef] [Green Version]
- El-Nakhel, C.; Pannico, A.; Graziani, G.; Kyriacou, M.C.; Giordano, M.; Ritieni, A.; De Pascale, S.; Rouphael, Y. Variation in Macronutrient Content, Phytochemical Constitution and In Vitro Antioxidant Capacity of Green and Red Butterhead Lettuce Dictated by Different Developmental Stages of Harvest Maturity. Antioxidants 2020, 9, 300. [Google Scholar] [CrossRef] [Green Version]
- Oancea, S.; Oprean, L. Anthocyanins, From Biosynthesis In Plants To Human Health Benefits. Acta Univ. Cinbinesis, Ser. E Food Technol. 2011, 15, 3–16. [Google Scholar]
- Rouphael, Y.; Kyriacou, M.C. Enhancing Quality of Fresh Vegetables Through Salinity Eustress and Biofortification Applications Facilitated by Soilless Cultivation. Front. Plant Sci. 2018, 9, 1254. [Google Scholar] [CrossRef] [PubMed]
- Teklić, T.; Parađiković, N.; Špoljarević, M.; Zeljković, S.; Lončarić, Z.; Lisjak, M. Linking abiotic stress, plant metabolites, biostimulants and functional food. Ann. Appl. Biol. 2020, 12651. [Google Scholar] [CrossRef]
- El-Nakhel, C.; Pannico, A.; Kyriacou, M.C.; Giordano, M.; De Pascale, S.; Rouphael, Y. Macronutrient deprivation eustress elicits differential secondary metabolites in red and green-pigmented butterhead lettuce grown in a closed soilless system. J. Sci. Food Agric. 2019, 99, 6962–6972. [Google Scholar] [CrossRef]
- Senizza, B.; Zhang, L.; Miras-Moreno, B.; Righetti, L.; Zengin, G.; Ak, G.; Bruni, R.; Lucini, L.; Sifola, M.I.; El-Nakhel, C.; et al. The Strength of the Nutrient Solution Modulates the Functional Profile of Hydroponically Grown Lettuce in a Genotype-Dependent Manner. Foods 2020, 9, 1156. [Google Scholar] [CrossRef]
- Murphy, C.; Pill, W. Cultural practices to speed the growth of microgreen arugula (roquette; Eruca vesicaria subsp. sativa ). J. Hortic. Sci. Biotechnol. 2010, 85, 171–176. [Google Scholar] [CrossRef]
- Wieth, A.R.; Pinheiro, W.D.; Duarte, T.S. Purple cabbage microgreens grown in different substrates and nutritive solution concentrations | Microgreens de repolho roxo cultivado em diferentes substratos e concentrações de solução nutritiva. Rev. Caatinga 2019, 32, 976–985. [Google Scholar] [CrossRef] [Green Version]
- Palmitessa, O.D.; Renna, M.; Crupi, P.; Lovece, A.; Corbo, F.; Santamaria, P. Yield and quality characteristics of brassica microgreens as affected by the NH4:NO3 molar ratio and strength of the nutrient solution. Foods 2020, 9, 677. [Google Scholar] [CrossRef] [PubMed]
- Kyriacou, M.C.; El-Nakhel, C.; Pannico, A.; Graziani, G.; Soteriou, G.A.; Giordano, M.; Palladino, M.; Ritieni, A.; De Pascale, S.; Rouphael, Y. Phenolic Constitution, Phytochemical and Macronutrient Content in Three Species of Microgreens as Modulated by Natural Fiber and Synthetic Substrates. Antioxidants 2020, 9, 252. [Google Scholar] [CrossRef] [Green Version]
- Kampfenkel, K.; Vanmontagu, M.; Inze, D. Extraction and Determination of Ascorbate and Dehydroascorbate from Plant Tissue. Anal. Biochem. 1995, 225, 165–167. [Google Scholar] [CrossRef] [PubMed]
- Lichtenthaler, H.K.; Wellburn, A.R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 1983, 11, 591–592. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-J.; Fonseca, J.M.; Choi, J.-H.; Kubota, C.; Kwon, D.Y. Salt in Irrigation Water Affects the Nutritional and Visual Properties of Romaine Lettuce (Lactuca sativa L.). J. Agric. Food Chem. 2008, 56, 3772–3776. [Google Scholar] [CrossRef]
- Huang, H.; Jiang, X.; Xiao, Z.; Yu, L.; Pham, Q.; Sun, J.; Chen, P.; Yokoyama, W.; Yu, L.L.; Luo, Y.S.; et al. Red Cabbage Microgreens Lower Circulating Low-Density Lipoprotein (LDL), Liver Cholesterol, and Inflammatory Cytokines in Mice Fed a High-Fat Diet. J. Agric. Food Chem. 2016, 64, 9161–9171. [Google Scholar] [CrossRef]
- Verma, N.; Shukla, S. Impact of various factors responsible for fluctuation in plant secondary metabolites. J. Appl. Res. Med. Aromat. Plants 2015, 2, 105–113. [Google Scholar] [CrossRef]
- Toscano, S.; Trivellini, A.; Cocetta, G.; Bulgari, R.; Francini, A.; Romano, D.; Ferrante, A. Effect of Preharvest Abiotic Stresses on the Accumulation of Bioactive Compounds in Horticultural Produce. Front. Plant Sci. 2019, 10, 1212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, M.; Lee, Y.-T.; Mele, M.; Choi, I.-L.; Kang, H.-M. The Effect of Phosphorus and Root Zone Temperature on Anthocyanin of Red Romaine Lettuce. Agronomy 2019, 9, 47. [Google Scholar] [CrossRef] [Green Version]
- Pathare, P.B.; Opara, U.L.; Al-Said, F.A.J. Colour Measurement and Analysis in Fresh and Processed Foods: A Review. Food Bioprocess Technol. 2013, 6, 36–60. [Google Scholar] [CrossRef]
- Di Mola, I.; Ottaiano, L.; Cozzolino, E.; Senatore, M.; Giordano, M.; El-Nakhel, C.; Sacco, A.; Rouphael, Y.; Colla, G.; Mori, M. Plant-based biostimulants influence the agronomical, physiological, and qualitative responses of baby rocket leaves under diverse nitrogen conditions. Plants 2019, 8, 522. [Google Scholar] [CrossRef] [Green Version]
- Colla, G.; Kim, H.-J.; Kyriacou, M.C.; Rouphael, Y. Nitrate in fruits and vegetables. Sci. Hortic. 2018, 237, 221–238. [Google Scholar] [CrossRef]
- Kyriacou, M.C.; Soteriou, G.A.; Colla, G.; Rouphael, Y. The occurrence of nitrate and nitrite in Mediterranean fresh salad vegetables and its modulation by preharvest practices and postharvest conditions. Food Chem. 2019, 285, 468–477. [Google Scholar] [CrossRef] [PubMed]
- Waterland, N.L.; Moon, Y.; Tou, J.C.; Kim, M.J.; Pena-Yewtukhiw, E.M.; Park, S. Mineral content differs among microgreen, baby leaf, and adult stages in three cultivars of Kale. HortScience 2017, 52, 566–571. [Google Scholar] [CrossRef] [Green Version]
- Kalaji, H.M.; Dąbrowski, P.; Cetner, M.D.; Samborska, I.A.; Łukasik, I.; Brestic, M.; Zivcak, M.; Tomasz, H.; Mojski, J.; Kociel, H.; et al. A comparison between different chlorophyll content meters under nutrient deficiency conditions. J. Plant Nutr. 2017, 40, 1024–1034. [Google Scholar] [CrossRef]
- Berges, J.A.; Charlebois, D.O.; Mauzerall, D.C.; Falkowski, P.G. Differential effects of nitrogen limitation on photosynthetic efficiency of photosystems I and II in microalgae. Plant Physiol. 1996, 110, 689–696. [Google Scholar] [CrossRef] [Green Version]
- Kopsell, D.A.; Kopsell, D.E.; Curran-Celentano, J. Carotenoid pigments in kale are influenced by nitrogen concentration and form. J. Sci. Food Agric. 2007, 87, 900–907. [Google Scholar] [CrossRef]
- Dhami, N.; Cazzonelli, C.I. Environmental impacts on carotenoid metabolism in leaves. Plant Growth Regul. 2020, 92, 455–477. [Google Scholar] [CrossRef]
- Mozafar, A. Decreasing the NO3 and increasing the vitamin C contents in spinach by a nitrogen deprivation method. Plant Foods Hum. Nutr. 1996, 49, 155–162. [Google Scholar] [CrossRef]
- Xiao, Z.; Rausch, S.R.; Luo, Y.; Sun, J.; Yu, L.; Wang, Q.; Chen, P.; Yu, L.; Stommel, J.R. Microgreens of Brassicaceae: Genetic diversity of phytochemical concentrations and antioxidant capacity. LWT 2019, 101, 731–737. [Google Scholar] [CrossRef]
- Di Mola, I.; Ottaiano, L.; Cozzolino, E.; Senatore, M.; Sacco, A.; El-Nakhel, C.; Rouphel, Y.; Mori, M. Trichoderma spp. and Mulching Films Differentially Boost Qualitative and Quantitative Aspects of Greenhouse Lettuce under Diverse N Conditions. Horticulturae 2020, 6, 55. [Google Scholar] [CrossRef]
- Pannico, A.; Graziani, G.; El-Nakhel, C.; Giordano, M.; Ritieni, A.; Kyriacou, M.C.; Rouphael, Y. Nutritional stress suppresses nitrate content and positively impacts ascorbic acid concentration and phenolic acids profile of lettuce microgreens. Italus Hortus 2020, 27, 41–52. [Google Scholar] [CrossRef]
- Mozafar, A. Nitrogen fertilizers and the amount of vitamins in plants: A review. J. Plant Nutr. 1993, 16, 2479–2506. [Google Scholar] [CrossRef]
- Akula, R.; Ravishankar, G.A. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal. Behav. 2011, 6, 1720–1731. [Google Scholar] [CrossRef]
Source of Variance | L* | Chroma (C *) | Hue Angle (h) |
---|---|---|---|
Microgreens species (M) | |||
Brussels sprouts | 38.54 ± 1.15 a | 18.64 ± 0.34 b | 113.8 ± 0.30 a |
Cabbage | 40.59 ± 0.36 a | 17.97 ± 0.18 b | 114.0 ± 0.31 a |
Rocket | 32.78 ± 1.48 b | 22.30 ± 1.23 a | 109.4 ± 0.33 b |
*** | *** | *** | |
Fertigation treatment (T) | |||
Control (C) | 36.22 ± 1.66 | 18.96 ± 0.50 | 112.3 ± 0.78 |
NS | 38.38 ± 1.10 | 20.32 ± 1.11 | 112.6 ± 0.80 |
t-test | ns | ns | ns |
M × T | |||
Brussels sprouts × C | 37.80 ± 1.16 | 18.86 ± 0.52 b | 113.7 ± 0.63 |
Brussels sprouts × NS | 39.27 ± 2.17 | 18.41 ± 0.50 b | 114.0 ± 0.16 |
Cabbage × C | 40.67 ± 0.29 | 17.87 ± 0.17 b | 113.7 ± 0.46 |
Cabbage × NS | 40.52 ± 0.76 | 18.08 ± 0.35 b | 114.3 ± 0.42 |
Rocket × C | 30.19 ± 1.50 | 20.13 ± 1.21 b | 109.3 ± 0.68 |
Rocket × NS | 35.37 ± 1.42 | 24.46 ± 1.19 a | 109.4 ± 0.28 |
ns | * | ns |
Source of Variance | Nitrate | P | K | Ca | Mg | S | Na |
---|---|---|---|---|---|---|---|
Microgreens species (M) | |||||||
Brussels sprouts | 194.3 ± 85.2 b | 4.33 ± 0.12 a | 14.08 ± 0.86 b | 15.93 ± 0.60 b | 5.47 ± 0.10 a | 2.60 ± 0.19 b | 2.83 ± 0.08 b |
Cabbage | 199.3 ± 88.5 b | 3.05 ± 0.12 b | 12.47 ± 0.37 b | 18.97 ± 0.68 a | 5.47 ± 0.29 a | 4.35 ± 0.17 a | 3.98 ± 0.15 a |
Rocket | 270.4 ± 119 a | 4.54 ± 0.28 a | 37.00 ± 1.58 a | 13.62 ± 0.47 c | 3.79 ± 0.21 b | 2.15 ± 0.19 b | 3.80 ± 0.42 a |
*** | *** | *** | *** | *** | *** | *** | |
Fertigation treatment (T) | |||||||
Control (C) | 3.41 ± 0.51 | 4.21 ± 0.27 | 21.76 ± 4.63 | 17.26 ± 0.87 | 5.27 ± 0.27 | 2.90 ± 0.43 | 3.82 ± 0.33 |
NS | 439.2 ± 24.8 | 3.73 ± 0.25 | 20.60 ± 3.35 | 15.08 ± 0.77 | 4.55 ± 0.33 | 3.17 ± 0.28 | 3.25 ± 0.13 |
t-test | *** | ns | ns | ns | ns | ns | ns |
M × T | |||||||
Brussels sprouts × C | 3.94 ± 0.59 c | 4.27 ± 0.13 b | 12.33 ± 0.53 d | 17.05 ± 0.16 | 5.50 ± 0.02 b | 2.31 ± 0.10 bc | 2.66 ± 0.03 c |
Brussels sprouts × NS | 384.6 ± 6.94 b | 4.39 ± 0.23 b | 15.84 ± 0.55 c | 14.80 ± 0.73 | 5.45 ± 0.22 b | 2.88 ± 0.30 b | 3.01 ± 0.02 c |
Cabbage × C | 1.75 ± 0.71 c | 3.28 ± 0.09 c | 12.70 ± 0.75 d | 20.26 ± 0.47 | 6.06 ± 0.03 a | 4.57 ± 0.22 a | 4.19 ± 0.23 ab |
Cabbage × NS | 396.9 ± 10.3 b | 2.82 ± 0.10 c | 12.24 ± 0.29 d | 17.68 ± 0.67 | 4.88 ± 0.24 c | 4.14 ± 0.21 a | 3.76 ± 0.09 b |
Rocket × C | 4.54 ± 0.26 c | 5.10 ± 0.20 a | 40.26 ± 0.23 a | 14.47 ± 0.58 | 4.25 ± 0.12 d | 1.82 ± 0.11 c | 4.60 ± 0.49 a |
Rocket × NS | 536.2 ± 11.6 a | 3.98 ± 0.22 b | 33.73 ± 1.33 b | 12.77 ± 0.24 | 3.33 ± 0.04 e | 2.49 ± 0.24 bc | 2.99 ± 0.04 c |
*** | * | *** | ns | ** | * | ** |
Source of Variance | Chlorophyll a | Chlorophyll b | Total Chlorophylls | Total Ascorbic Acid | ∑ Anthocyanin |
---|---|---|---|---|---|
(mg 100 g−1 fw) | (mg 100 g−1 fw) | (mg 100 g−1 fw) | (mg AA 100 g−1 fw) | (μg g−1 dw) | |
Microgreens species (M) | |||||
Brussels sprouts | 0.61 ± 0.02 a | 0.23 ± 0.01 a | 0.84 ± 0.03 a | 308.7 ± 15.9 a | 36.25 ± 0.74 b |
Cabbage | 0.50 ± 0.01 c | 0.22 ± 0.01 ab | 0.72 ± 0.02 b | 253.0 ± 15.2 b | 52.45 ± 1.51 a |
Rocket | 0.55 ± 0.01 b | 0.21 ± 0.01 b | 0.75 ± 0.01 b | 318.5 ± 32.5 a | 29.10 ± 1.23 c |
*** | * | *** | *** | *** | |
Fertigation treatment (T) | |||||
Control | 0.52 ± 0.01 | 0.21 ± 0.00 | 0.73 ± 0.01 | 318.0 ± 18.4 | 40.97 ± 3.70 |
NS | 0.58 ± 0.02 | 0.22 ± 0.01 | 0.81 ± 0.03 | 268.8 ± 19.0 | 37.57 ± 3.35 |
t-test | * | ns | * | ns | ns |
M × T | |||||
Brussels sprouts × C | 0.56 ± 0.02 | 0.21 ± 0.00 bc | 0.77 ± 0.02 b | 276.7 ± 4.19 c | 35.75 ± 1.27 c |
Brussels sprouts × NS | 0.66 ± 0.01 | 0.25 ± 0.01 a | 0.91 ± 0.01 a | 340.7 ± 14.9 b | 36.75 ± 0.92 c |
Cabbage × C | 0.48 ± 0.02 | 0.21 ± 0.01 bc | 0.69 ± 0.03 c | 286.5 ± 3.92 c | 55.39 ± 1.60 a |
Cabbage × NS | 0.52 ± 0.01 | 0.23 ± 0.01 ab | 0.75 ± 0.02 b | 219.5 ± 4.70 e | 49.51 ± 0.40 b |
Rocket × C | 0.52 ± 0.01 | 0.21 ± 0.01 bc | 0.74 ± 0.01 bc | 390.6 ± 7.31 a | 31.78 ± 0.53 d |
Rocket × NS | 0.57 ± 0.00 | 0.20 ± 0.01 c | 0.77 ± 0.01 b | 246.3 ± 4.30 d | 26.43 ± 0.44 e |
ns | ** | * | *** | * |
Source of Variance | Caffeoyl Quinic Acid | Coumaroyl-Diglucoside | Disinapoylgentionbiose | Ferulic Acid | Feruloyl-Disinapoyl-Gentionbiose | Km 3-Diglucoside | Km 3-Hydroxyferuloylsophorotrioside-7- Glucoside | Km 3-Sinapoylsophoroside-7-Glucoside | Km 3-Sinapoylsophorotrioside-7- Glucoside |
---|---|---|---|---|---|---|---|---|---|
Microgreens species (M) | |||||||||
Brussels sprouts | 45.65 ± 2.2 b | 10.03 ± 0.2 a | 221 ± 3.8 b | 1.26 ± 0.1 | 12.11 ± 0.5 a | 5.48 ± 0.3 b | 10.40 ± 0.5 b | 16.70 ± 0.6 b | 21.61 ± 1.0 |
Cabbage | 50.22 ± 1.8 a | 3.90 ± 0.2 b | 274 ± 2.4 a | 1.11 ± 0.1 | 6.88 ± 0.4 b | 2.50 ± 0.3 c | 17.54 ± 1.0 a | 41.58 ± 2.7 a | 46.84 ± 2.0 |
Rocket | 2.03 ± 0.3 c | 1.68 ± 0.3 c | 86 ± 3.1 c | 0.93 ± 0.1 | 1.06 ± 0.1 c | 10.22 ± 0.6 a | 0.82 ± 0.0 c | 0.97 ± 0.1 c | nd |
*** | *** | *** | ns | *** | *** | *** | *** | *** | |
Fertigation treatment (T) | |||||||||
Control (C) | 31.88 ± 7.4 | 5.50 ± 1.3 | 197 ± 27.7 | 1.25 ± 0.1 | 7.07 ± 1.7 | 6.01 ± 1.3 | 9.87 ± 2.5 | 20.76 ± 6.7 | 35.65 ± 6.1 |
NS | 33.38 ± 8.1 | 4.91 ± 1.2 | 190 ± 28.5 | 0.95 ± 0.1 | 6.30 ± 1.5 | 6.13 ± 1.0 | 9.31 ± 2.4 | 18.74 ± 5.3 | 32.79 ± 5.6 |
t-test | ns | ns | ns | ns | ns | ns | ns | ns | ns |
M × T | |||||||||
Brussels sprouts × C | 42.65 ± 1.4 | 10.44 ± 0.2 | 222 ± 6.9 | 1.47 ± 0.2 | 12.88 ± 0.5 | 4.99 ± 0.3 c | 10.66 ± 1.0 | 15.81 ± 0.5 | 22.44 ± 1.8 |
Brussels sprouts × NS | 48.65 ± 3.5 | 9.63 ± 0.3 | 219 ± 4.9 | 1.05 ± 0.1 | 11.34 ± 0.8 | 5.97 ± 0.6 c | 10.15 ± 0.6 | 17.60 ± 1.0 | 20.78 ± 1.1 |
Cabbage × C | 50.39 ± 1.0 | 3.96 ± 0.3 | 277 ± 3.0 | 1.39 ± 0.1 | 7.04 ± 0.6 | 1.95 ± 0.2 d | 18.16 ± 0.9 | 45.78 ± 2.5 | 48.87 ± 2.8 |
Cabbage × NS | 50.04 ± 4.0 | 3.83 ± 0.2 | 271 ± 2.8 | 0.83 ± 0.2 | 6.73 ± 0.5 | 3.05 ± 0.1 d | 16.91 ± 1.8 | 37.37 ± 3.5 | 44.81 ± 3.0 |
Rocket × C | 2.61 ± 0.2 | 2.11 ± 0.3 | 91 ± 1.1 | 0.90 ± 0.3 | 1.28 ± 0.1 | 11.08 ± 0.4 a | 0.79 ± 0.1 | 0.69 ± 0.1 | nd |
Rocket × NS | 1.46 ± 0.0 | 1.26 ± 0.2 | 80 ± 3.7 | 0.96 ± 0.1 | 0.84 ± 0.0 | 9.37 ± 1.0 b | 0.86 ± 0.1 | 1.26 ± 0.1 | nd |
ns | ns | ns | ns | ns | * | ns | ns | ns | |
Source of Variance | Qn 3-Glucoside | Qn 3-Sinapoyltriglucoside | Qn 3-Sophoroside-7-Glucoside | Qn 3-Caffeoylsophoroside-7-Glucoside | Rutin | Sinapoyl-Hexose | Trisinapoylgentionbiose | ∑ Phenolic Acids | |
Microgreens species (M) | |||||||||
Brussels sprouts | 0.56 ± 0.1 b | 14 ± 1.0 b | 6.48 ± 0.2 b | 1.47 ± 0.1 | 7.21 ± 0.5 b | 308 ± 8.2 c | 167 ± 3.9 b | 849 ± 14 c | |
Cabbage | 0.89 ± 0.2 b | 22 ± 1.9 b | 7.09 ± 0.8 b | 9.06 ± 1.0 | 8.40 ± 0.3 b | 371 ± 9.3 b | 180 ± 2.6 a | 1043 ± 11 b | |
Rocket | 4.96 ± 0.4 a | 345 ± 15 a | 38.73 ± 2.8 a | nd | 13.98 ± 0.8 a | 684 ± 35 a | 63 ± 2.3 c | 1253 ± 31 a | |
*** | *** | *** | *** | *** | *** | *** | *** | ||
Fertigation treatment (T) | |||||||||
Control (C) | 2.22 ± 0.7 | 128 ± 56 | 19.37 ± 6.1 | 6.31 ± 2.2 | 9.88 ± 1.4 | 435 ± 46 | 139 ± 19 | 1040 ± 49 | |
NS | 2.05 ± 0.7 | 126 ± 54 | 15.49 ± 4.7 | 4.22 ± 1.2 | 9.84 ± 0.9 | 474 ± 72 | 135 ± 18 | 1056 ± 70 | |
t-test | ns | ns | ns | ns | ns | ns | ns | ns | |
M × T | |||||||||
Brussels sprouts × C | 0.50 ± 0.1 | 12 ± 0.3 | 6.25 ± 0.4 c | 1.39 ± 0.2 | 6.50 ± 0.3 d | 324 ± 6.9 cd | 173 ± 4.1 | 866 ± 19 d | |
Brussels sprouts × NS | 0.62 ± 0.1 | 16 ± 0.6 | 6.70 ± 0.2 c | 1.55 ± 0.1 | 7.92 ± 0.7 cd | 293 ± 7.8 d | 161 ± 4.4 | 831 ± 19 d | |
Cabbage × C | 1.21 ± 0.1 | 25 ± 2.7 | 8.32 ± 1.2 c | 11.23 ± 0.6 | 7.99 ± 0.4 cd | 366 ± 19 c | 181 ± 4.8 | 1056 ± 18 c | |
Cabbage × NS | 0.57 ± 0.1 | 20 ± 1.8 | 5.86 ± 0.2 c | 6.89 ± 0.3 | 8.81 ± 0.4 c | 376 ± 5.9 c | 179 ± 3.3 | 1031 ± 13 c | |
Rocket × C | 4.97 ± 0.8 | 348 ± 30 | 43.55 ± 2.4 a | nd | 15.16 ± 0.5 a | 615 ± 10 b | 61 ± 1.2 | 1198 ± 24 b | |
Rocket × NS | 4.94 ± 0.5 | 341 ± 13 | 33.91 ± 3.2 b | nd | 12.80 ± 1.2 b | 753 ± 37 a | 65 ± 4.7 | 1307 ± 37 a | |
ns | ns | * | ns | * | ** | ns | * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Nakhel, C.; Pannico, A.; Graziani, G.; Kyriacou, M.C.; Gaspari, A.; Ritieni, A.; De Pascale, S.; Rouphael, Y. Nutrient Supplementation Configures the Bioactive Profile and Production Characteristics of Three Brassica L. Microgreens Species Grown in Peat-Based Media. Agronomy 2021, 11, 346. https://doi.org/10.3390/agronomy11020346
El-Nakhel C, Pannico A, Graziani G, Kyriacou MC, Gaspari A, Ritieni A, De Pascale S, Rouphael Y. Nutrient Supplementation Configures the Bioactive Profile and Production Characteristics of Three Brassica L. Microgreens Species Grown in Peat-Based Media. Agronomy. 2021; 11(2):346. https://doi.org/10.3390/agronomy11020346
Chicago/Turabian StyleEl-Nakhel, Christophe, Antonio Pannico, Giulia Graziani, Marios C. Kyriacou, Anna Gaspari, Alberto Ritieni, Stefania De Pascale, and Youssef Rouphael. 2021. "Nutrient Supplementation Configures the Bioactive Profile and Production Characteristics of Three Brassica L. Microgreens Species Grown in Peat-Based Media" Agronomy 11, no. 2: 346. https://doi.org/10.3390/agronomy11020346
APA StyleEl-Nakhel, C., Pannico, A., Graziani, G., Kyriacou, M. C., Gaspari, A., Ritieni, A., De Pascale, S., & Rouphael, Y. (2021). Nutrient Supplementation Configures the Bioactive Profile and Production Characteristics of Three Brassica L. Microgreens Species Grown in Peat-Based Media. Agronomy, 11(2), 346. https://doi.org/10.3390/agronomy11020346