Crop Establishment and Weed Control Options for Sustaining Dry Direct Seeded Rice Production in Eastern India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
2.3. Crop Management and Herbicide Application Details
2.4. Field Measurements
2.5. Economics
2.6. Energy
2.7. Statistical Analyses
3. Results
3.1. Weed Composition and Weed Species Dominance Pattern
3.2. Weed Density, Dry Weight, and Weed Control Efficiency
3.2.1. Weed Density
3.2.2. Weed Dry Weight
3.2.3. Weed Control Efficiency (WCE)
3.3. Rice Grain Yield and Yield Components
3.3.1. Rice Grain Yield
3.3.2. Yield Components
3.4. Weed Index
3.5. Economics and Energy Balance
3.5.1. Economic Analysis
3.5.2. Energy Balance
4. Discussion
4.1. Effect on Weeds
4.2. Rice grain Yield, Economics and Energetics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. FAOSTAT Database; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2018; Available online: http://www.fao.org/faostat/en/ (accessed on 20 December 2020).
- Singh, D.P.; Mahata, K.R.; Saha, S.; Ismail, A.M. Crop diversification for improving water productivity and rural livelihoods in coastal saline soils of the Mahanadi delta, India. In Tropical Deltas and Coastal Zones: Food Production, Communities and Environment at the Land-Water Interface; Hoanh, C.T., Szuster, B., Kam, S., Ismail, A., Noble, A., Eds.; CAB International: Wallingford, UK, 2010; pp. 249–263. [Google Scholar]
- Saha, S.; Singh, D.P.; Sinhababu, D.P.; Mahata, K.R.; Behera, K.S.; Pandey, M.P. Improved rice-based production systems for higher and sustainable yield in eastern coastal plain in India. J. Indian Soc. Coast. Agric. Res. 2008, 26, 74–79. [Google Scholar]
- Saha, S.; Rao, K.S.; Poonam, A. Crop establishment techniques for sustaining productivity of wet direct-sown summer rice in flood-prone lowlands of coastal Orissa. J. Indian Soc. Coast. Agric. Res. 2011, 29, 73–77. [Google Scholar]
- Kumar, V.; Ladha, J.K. Direct seeded rice: Recent development & future research needs. Adv. Agron. 2011, 111, 297–413. [Google Scholar]
- Kumar, V.; Jat, H.S.; Sharma, P.C.; Singh, B.; Gathala, M.K.; Malik, R.K.; Kamboj, B.R.; Yadav, A.K.; Ladhaa, J.K.; Raman, A.; et al. Can productivity and profitability be enhanced in intensively managed cereal systems while reducing the environmental footprint of production? Assessing sustainable intensification options in the breadbasket of India. Agric. Ecosyst. Environ. 2018, 252, 132–147. [Google Scholar] [CrossRef]
- Chakraborty, D.; Ladha, J.K.; Rana, D.S.; Jat, M.L.; Gathala, M.K.; Yadav, S.; Rao, A.N.; Ramesha, M.S.; Raman, A. A global analysis of alternative tillage and crop establishment practices for economically and environmentally efficient rice production. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Pathak, H.; Saharawat, Y.S.; Gathala, M.K.; Mohanty, S.; Ladha, J.K. Simulating environmental impact of resource-conserving technologies in the rice-wheat system of the Indo-Gangetic Plains. In Integrated Crop and Resource Management in the Rice-Wheat System of South Asia; Ladha, J.K., Singh, Y., Erenstein, O., Hardy, B., Eds.; International Rice Research Institute: Los Baños, Philippines, 2009; pp. 321–333. [Google Scholar]
- Rao, A.N.; Brainard, D.C.; Kumar, V.; Ladha, J.K.; Johnson, D.E. Preventive weed management in direct-seeded rice: Targeting the weed seedbank. Adv. Agron. 2017, 144, 45–142. [Google Scholar]
- Johnson, D.E.; Mortimer, A.M. Issues for integrated weed management and decision support in direct-seeded rice. In Rice Is Life: Scientific Perspectives for the 21st Century; Toriyama, K., Heong, K.L., Hardy, B., Eds.; International Rice Research Institute: Los Baños, Philippines; Japan International Research Center for Agricultural Sciences: Tsukuba, Japan, 2005; pp. 211–214. [Google Scholar]
- Chauhan, B.S.; Ahmed, S.; Awan, T.H.; Jabran, K.; Sudheesh, M. Integrated weed management approach to improve weed control efficiencies for sustainable rice production in dry-seeded systems. Crop Prot. 2015, 71, 19–24. [Google Scholar] [CrossRef]
- Chauhan, B.S.; Johnson, D.E. Growth response of direct-seeded rice to oxadiazon and bispyribac-sodium in aerobic and saturated soils. Weed Sci. 2011, 59, 119–122. [Google Scholar] [CrossRef]
- Chauhan, B.S.; Opena, J. Effect of tillage systems and herbicides on weed emergence, weed growth, and grain yield in dry-seeded rice systems. Field Crops Res. 2012, 137, 56–69. [Google Scholar] [CrossRef]
- The Hindu. 2020. Available online: https://www.thehindubusinessline.com/news/government-moves-to-restrict-use-of-glyphosate/article32029918.ece (accessed on 5 February 2021).
- Government of India; Ministry of Agriculture & Farmers Welfare; Department of Agriculture, Cooperation & Farmers Welfare. Directorate of Plant Protection, Quarantine & Storage. 2021. Available online: http://ppqs.gov.in/sites/default/files/list_of_pesticides_which_are_bannedrefused_registration_and_restricted_in_use_as_on_01.01.2021.pdf (accessed on 5 February 2021).
- The Gazette of India. 2020. Available online: http://egazette.nic.in/WriteReadData/2020/219423.pdf (accessed on 5 February 2021).
- Shahabuddin, M.; Hossain, M.M.; Salim, M.; Begum, M. Efficacy of pretilachlor and oxadiazon on weed control and yield performance of transplant Aman rice. Progress. Agric. 2016, 27, 119–127. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.; Chauhan, B.S. Performance of Different Herbicides in Dry-Seeded Rice in Bangladesh. Sci. World J. 2014, 2014. [Google Scholar] [CrossRef] [Green Version]
- Kachroo, D.; Bazaya, B.R. Efficacy of Different Herbicides on Growth and Yield of Direct Wet Seeded Rice Sown through Drum Seeder. Indian J. Weed Sci. 2011, 43, 67–69. [Google Scholar]
- Kundu, C.K.; Biswas, U.; Kundu, A.; Bera, P.S.; Sathish, G. Studies on Bio efficacy and Phytotoxicity of Pretilachlor 30.7% EC in Direct Seeded Rice. Int. J. Chem. Stud. 2017, 5, 1847–1850. [Google Scholar]
- Kaur, S.; Singh, S. Bio-efficacy of different herbicides for weed control in direct-seeded rice. Indian J. Weed Sci. 2015, 47, 106–109. [Google Scholar]
- Kaur, J.; Singh, A. Direct seeded rice: Prospects, problems/constraints and researchable issues in India. Curr. Agric. Res. 2017, 5, 13–32. [Google Scholar] [CrossRef]
- Bhurer, K.P.; Yadav, D.N.; Ladha, J.K.; Thapa, R.B.; Pandey, K.R. Efficacy of various herbicides to control weeds in dry direct seeded rice (Oryza sativa L.). Glob. J. Biol. Agric. Health Sci. 2013, 2, 205–212. [Google Scholar]
- Xie, X.M.; Liu, W.P.; Subhani, A. Rapid degradation of bensulfuron-methyl upon repeated application in paddy soils. J. Environ. Sci. 2004, 16, 49–52. [Google Scholar]
- Saha, S.; Munda, S.; Patra, B.C.; Adak, T.; Singh, S. Management of weeds in dry-seeded and aerobic rice systems. In Proceedings of the 25th Asian-Pacific Weed Science Society Conference on ‘Weed Science for Sustainable Agriculture, Environment and Biodiversity’, Hyderabad, Telengana, 13–16 October 2015; p. 52. [Google Scholar]
- Singh, V.P.; Singh, S.P.; Dhyani, V.C.; Banga, A.; Kumar, A.; Satyawali, K.; Bisht, N. Weed management in direct-seeded rice. Ind. J. Weed Sci. 2016, 48, 233–246. [Google Scholar] [CrossRef]
- Saha, S. Efficacy of herbicides in wet direct-sown summer rice. Ind. J. Weed Sci. 2006, 38, 45–48. [Google Scholar]
- Singh, A.; Nandal, D.P.; Punia, S.S.; Malik, P. Integrated weed management in direct seeded rice in Trans Indo-Gangetic plains of India- A review. J. Appl. Nat. Sci. 2018, 10, 779–790. [Google Scholar] [CrossRef] [Green Version]
- Wrubel, R.P.; Gressel, J. Are Herbicide Mixtures Useful for Delaying the Rapid Evolution of Resistance? A Case Study. Weed Technol. 1994, 8, 635–648. [Google Scholar] [CrossRef]
- Janiya, J.D.; Moody, K. Weed populations in transplanted wet seeded rice as affected by weed control method. Trop. Pest Manag. 1989, 35, 8–11. [Google Scholar] [CrossRef]
- Ziaei, S.M.; Mazloumzadeh, S.M.; Jabbary, M. A comparison of energy use and productivity of wheat and barley (case study). J. Saudi Soc. Agric. Sci. 2015, 14, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Ozkan, B.; Akcaoz, H.; Karadeniz, F. Energy requirement and economic analysis of citrus production in Turkey. Energy Convers. Manag. 2004, 45, 1821–1830. [Google Scholar] [CrossRef]
- Beheshti, T.I.; Keyhani, A.; Rafiee, S.H. Energy balance in Iran’s agronomy (1990–2006). Renew. Sustain. Energy Rev. 2010, 14, 849–855. [Google Scholar] [CrossRef]
- Ichikawa, M. Swamp rice cultivation in an Iban village of Sarawak: Planting methods as an adaptation strategy. Southeast Asian Stud. 2000, 38, 74–94. [Google Scholar]
- Lodhi, R.; Rawat, A.; Jha, A.K.; Dubey, J. Efficacy of bensulfuron methyl + pretilachlor against weeds in transplanted rice. Glob. J. Bio-sci. Biotechnol. 2017, 6, 285–288. [Google Scholar]
- Saha, S.; Rao, K.S. Evaluation of bensulfuron-methyl for weed control in wet direct-sown summer rice. Oryza 2010, 47, 38–41. [Google Scholar]
- FAO. FAOSTAT Database; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2002; Available online: http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/Specs/bensul_m.pdf (accessed on 20 December 2020).
- Luo, W.; Zhao, Y.; Ding, H.; Lin, X.; Zheng, H. Co-metabolic degradation of bensulfuron-methyl in labouratory conditions. J. Hazard. Mater. 2008, 158, 208–214. [Google Scholar] [CrossRef]
- Mahajan, G.; Chauhan, B.S. Weed control in dry direct-seeded rice using tank mixtures of herbicides in South Asia. Crop Prot. 2015, 5, 90–96. [Google Scholar] [CrossRef]
- Abeysekera, A.S.K.; Wickrama, W.B. Control of L. chinensis in wet seeded rice fields in Sri Lanka. In Rice is Life: Scientific Perspectives for the 21st Century; Toriyama, K., Ed.; International Rice Research Institute: Los Banos, Philippines, 2005; pp. 215–217. [Google Scholar]
- Martini, L.F.D.; Burgos, N.R.; Noldin, J.A.; de Avila, L.A.; Salas, R.A. Absorption, translocation and metabolism of bispyribac-sodium on rice seedlings under cold stress. Pest Manag. Sci. 2014, 71, 1021–1029. [Google Scholar] [CrossRef] [PubMed]
- Boschin, G.; D’Agostina, A.; Antonioni, C.; Locati, D.; Arnoldi, A. Hydrolytic degradation of azimsulfuron, a sulfonylurea herbicide. Chemosphere 2007, 68, 1312–1317. [Google Scholar] [CrossRef] [PubMed]
- Pinna, M.V.; Zema, M.; Gessa, C.; Pusino, A. Structural Elucidation of Phototransformation Products of Azimsulfuron in Water. J. Agric. Food Chem. 2007, 55, 6659–6663. [Google Scholar] [CrossRef]
- European Food Safety Authority, Panel on Plant Health (EFSA-PLH). Guidance on a harmonised framework for pest risk assessment and the identification and evaluation of pest risk management options by EFSA. EFSA J. 2010, 8, 1495. [Google Scholar]
- European Food Safety Authority, Panel on Plant Health (EFSA-PLH). Scientific opinion on a quantitative pathway analysis of the likelihood of Tilletia indica M. Introduction into EU with importation of US wheat. EFSA J. 2010, 8, 1621. [Google Scholar]
- Knezevic, S.Z.; Jhala, A.; Gaines, T. Herbicide Resistance and Molecular Aspects. In Encyclopedia of Applied Plant Sciences, 2nd ed.; Thomas, B., Murray, B.G., Murphy, D.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; Volume 3, pp. 455–458. [Google Scholar]
- Palou, A.T.; Ranzenberger, A.C.; Larios, C.Z. Management of Herbicide-Resistant Weed Populations 100 questions on resistance; Food and Agriculture Organization of The United Nations: Rome, Italy, 2008; Available online: http://www.fao.org/fileadmin/templates/agphome/documents/Biodiversity-pollination/Weeds/Docs/ResistEnglish.pdf (accessed on 30 January 2021).
At 30 Days after Crop Emergence | At 60 Days after Crop Emergence | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Echinochloa colona | Leptochloa chinensis | Digitaria sanguinalis | Cyperus difformis | Sphenochlea zeylanica | Eclipta prostrata | Echinochloa colona | Leptochloa chinensis | Digitaria sanguinalis | Cyperus difformis | Alternanthera philoxeroides | Sphenochlea zeylanica | Eclipta prostrata | Phyllanthus niruri | Ammannia baccifera | |
Drill seeding | 15 | 10 | 8 | 9 | 6 | 3 | 18 | 14 | 12 | 11 | 2 | 9 | 4 | 0 | 3 |
Manual line-seeding | 18 | 12 | 9 | 10 | 4 | 3 | 20 | 16 | 13 | 14 | 4 | 10 | 6 | 3 | 5 |
Broadcast seeding | 21 | 14 | 13 | 12 | 6 | 3 | 24 | 17 | 15 | 15 | 4 | 11 | 6 | 5 | 6 |
SDR | 28.5 ± 3.3 | 19.8 ± 2.3 | 17.0 ± 2.4 | 17.4 ± 1.5 | 9.1 ± 1.1 | 5.8 ± 1.2 | 22.2 ± 3.4 | 17.2 ± 1.8 | 14.9 ± 1.5 | 15.0 ± 2.0 | 4.2 ± 1.1 | 11.5 ± 1.3 | 6.7 ± 1.2 | 2.7 ± 2.3 | 5.7 ± 1.8 |
Establishment Method (T) | ||||||||
---|---|---|---|---|---|---|---|---|
30 DAE | 60 DAE | |||||||
Weed Control Treatments (W) * | Drill Seeding | Manual Seeding | Broadcast Seeding | Mean * | Drill Seeding | Manual Seeding | Broadcast Seeding | Mean * |
-----------------------------------------Weed density (plants m−2)----------------------------------------------- | ||||||||
BPS | 20 | 26 | 35 | 27 c | 34 | 43 | 49 | 42 c |
AZM | 12 | 16 | 21 | 16 d | 26 | 32 | 36 | 31 d |
BSM + Pretl. | 26 | 32 | 43 | 34 b | 41 | 52 | 57 | 50 b |
Weed free † | - | - | - | - | - | - | - | - |
Weedy | 49 | 56 | 68 | 57 a | 71 | 77 | 91 | 80 a |
Mean ** | 27C | 32 B | 42 A | 43 C | 51 B | 58 A | ||
Analysis of variance (ANOVA) | ||||||||
p value | LSD | p value | LSD | |||||
Main plot (T) | <0.0015 | 3 | 0.0003 | 3.0 | ||||
Sub plot (W) | <0.0001 | 3.6 | <0.0001 | 4.6 | ||||
T × W | NS | 3.4 | 0.0494 | 9.2 |
Establishment Method (T) | |||||||||
---|---|---|---|---|---|---|---|---|---|
30 DAE | 60 DAE | ||||||||
Weed Control Treatments (W) * | Drill Seeding | Manual Seeding | Broadcast Seeding | Mean * | Drill Seeding | Manual Seeding | Broadcast Seeding | Mean * | |
-------------------------------------------Weed dry matter (g m−2)---------------------------------------------------- | |||||||||
BPS | 4.0 | 4.4 | 5.3 | 4.6 c | 19.2 | 20.9 | 23.4 | 21.1 c | |
AZM | 2.0 | 2.5 | 2.9 | 2.5 d | 10.5 | 13.0 | 15.1 | 12.9 d | |
BSM + Pretl. | 4.4 | 4.9 | 6.1 | 5.1 b | 22.5 | 24.4 | 26.6 | 24.5 b | |
Weed free † | - | - | - | - | - | - | - | - | |
Weedy | 12.4 | 13.4 | 15.4 | 13.7 a | 78.5 | 83.2 | 89.4 | 83.7 a | |
Mean ** | 5.7 C | 6.3 B | 7.5 A | 32.5 C | 35.4 B | 38.7 A | |||
Analysis of variance (ANOVA) | |||||||||
p value | LSD | p value | LSD | ||||||
Main plot (T) | 0.0098 | 0.70 | 0.0013 | 1.6 | |||||
Sub plot (W) | <0.0001 | 0.61 | <0.0001 | 2.5 | |||||
T × W | 0.0286 | 0.97 | 0.0344 | 4.6 |
Weed Control Treatments (W) * | Method of Establishment (T) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Drill Seeding | Manual Seeding | Broadcast Seeding | Mean * | Drill Seeding | Manual Seeding | Broadcast Seeding | Mean * | Drill Seeding | Manual Seeding | Broadcast Seeding | Mean * | |
Panicles m−2 | Grains Panicle−1 | Grain yield | ||||||||||
--------------------- m−2--------------------- | --------------------------------------- | ------------------- t ha−1------------------ | ||||||||||
BPS | 254 | 230 | 212 | 232 bc | 90 | 84 | 79 | 84 abc | 5.4 | 4.9 | 4.3 | 4.9 c |
AZM | 274 | 249 | 230 | 251 ab | 95 | 87 | 82 | 88 ab | 5.7 | 5.3 | 4.6 | 5.2 b |
BSM + Pretl. | 235 | 211 | 199 | 215 c | 87 | 82 | 77 | 82 c | 4.8 | 4.3 | 4.0 | 4.4 d |
Weed free † | 294 | 270 | 247 | 270 a | 97 | 91 | 84 | 91 a | 5.9 | 5.5 | 4.9 | 5.5 a |
Weedy | 197 | 170 | 153 | 173 d | 65 | 54 | 50 | 56 d | 2.8 | 2.2 | 1.9 | 2.3 e |
Mean ** | 251 A | 226 B | 208 B | 87 A | 80 AB | 74 B | 4.9 A | 4.5 B | 3.9 C | |||
Analysis of variance (ANOVA) | ||||||||||||
p-value | LSD | p-value | LSD | p-value | LSD | |||||||
Main plot (T) | 0.0086 | 18 | 0.0332 | 8.0 | <0.0004 | 0.155 | ||||||
Sub plot (W) | <0.0001 | 22 | <0.0001 | 7.0 | <0.0001 | 0.205 | ||||||
T × W | NS | 38 | NS | 13.5 | 0.0152 | 0.405 |
Treatment | Cost of Cultivation | Gross Return | Net Return | B:C Ratio |
---|---|---|---|---|
----------------------------US$ * ha−1---------------------------- | ||||
Main plots [Method of establishment (T)] | ||||
Drill seeding | 599 | 1289 a | 685 a | 2.15 a |
Manual line-seeding | 631 | 1171 b | 547 b | 1.86 b |
Broadcast seeding | 577 | 1037 c | 460 c | 1.80 b |
Sub plots [Weed control treatments (W)] | ||||
BPS | 571 | 1279 b | 709 b | 2.24 b |
AZM | 571 | 1369 a | 801 a | 2.40 a |
BSM + Pretl. | 576 | 1149 c | 586 d | 1.99 c |
Weed free | 771 | 1437 a | 649 c | 1.86 d |
Weedy | 522 | 594 d | 73 e | 1.14 e |
LSD (p ≤ 0.05) | ||||
Main plot (T) | 61 | 34 | 0.11 | |
Sub plot (W) | 76 | 38 | 0.12 | |
T × W | NS | 64 | NS |
Treatment | Energy Input | Energy Output | Net Energy | Specific Energy | Energy Use Efficiency | Energy Productivity |
---|---|---|---|---|---|---|
----------------------------MJ ha−1---------------------------- | -------%-------- | ------kg MJ−1------ | ||||
Main plots [Method of establishment (T)] | ||||||
Drill seeding | 10,355 | 137,306 | 126,951 | 2.31 | 13 | 0.47 |
Manual seeding | 10,465 | 124,476 | 114,011 | 2.61 | 12 | 0.42 |
Broadcast seeding | 10,292 | 110,289 | 99,996 | 2.95 | 11 | 0.38 |
Sub plots [Weed control treatments (W)] | ||||||
BPS | 10,205 | 136,323 | 126,118 | 2.12 | 13 | 0.48 |
AZM | 10,178 | 145,316 | 135,139 | 1.97 | 14 | 0.51 |
BSM + Pretl. | 10,269 | 122,038 | 111,769 | 2.37 | 12 | 0.43 |
Weed free | 11,032 | 15,2935 | 141,903 | 2.04 | 14 | 0.49 |
Weedy | 10,169 | 63,505 | 53,336 | 4.62 | 6 | 0.22 |
LSD (p ≤ 0.05) | ||||||
Main plot (T) | - | 6439 | 5941 | 0.18 | 0.6 | 0.02 |
Sub plot (W) | - | 8066 | 7432 | 0.17 | 0.8 | 0.03 |
T × W | - | NS | NS | 0.30 | NS | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saha, S.; Munda, S.; Singh, S.; Kumar, V.; Jangde, H.K.; Mahapatra, A.; Chauhan, B.S. Crop Establishment and Weed Control Options for Sustaining Dry Direct Seeded Rice Production in Eastern India. Agronomy 2021, 11, 389. https://doi.org/10.3390/agronomy11020389
Saha S, Munda S, Singh S, Kumar V, Jangde HK, Mahapatra A, Chauhan BS. Crop Establishment and Weed Control Options for Sustaining Dry Direct Seeded Rice Production in Eastern India. Agronomy. 2021; 11(2):389. https://doi.org/10.3390/agronomy11020389
Chicago/Turabian StyleSaha, Sanjoy, Sushmita Munda, Sudhanshu Singh, Virender Kumar, Hemant Kumar Jangde, Ashirbachan Mahapatra, and Bhagirath S. Chauhan. 2021. "Crop Establishment and Weed Control Options for Sustaining Dry Direct Seeded Rice Production in Eastern India" Agronomy 11, no. 2: 389. https://doi.org/10.3390/agronomy11020389
APA StyleSaha, S., Munda, S., Singh, S., Kumar, V., Jangde, H. K., Mahapatra, A., & Chauhan, B. S. (2021). Crop Establishment and Weed Control Options for Sustaining Dry Direct Seeded Rice Production in Eastern India. Agronomy, 11(2), 389. https://doi.org/10.3390/agronomy11020389