Exploring the Presence of Five Rare Earth Elements in Vineyard Soils on Different Lithologies: Campo de Calatrava, Spain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling
2.3. Statistical and Geostatistical Analysis
3. Results and Discussion
3.1. General Characteristics of the Soils of Campo de Calatrava
3.2. REE Contents
3.3. Comparison of Values between Soils on Volcanic Materials versus Soils on Nonvolcanic Materials
3.4. Spatial Distribution
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kabata-Pendias, A.; Pendias, H. Trace Elements in Soils and Plants, 1st ed.; CRC Press: Boca Raton, FL, USA, 1985. [Google Scholar]
- Sposito, G. The Chemistry of Soils; Oxford University Press, Inc.: Oxford, UK, 2016. [Google Scholar]
- García, F.M.; Ramos, A.B.; Riquelme, F.M.; Carsjens, G. A territorial approach to assess the transition to trellis vineyards in special protection areas for steppe birds in Spain. Land Use Policy 2017, 67, 27–37. [Google Scholar] [CrossRef]
- Eurostat. Agriculture, Forestry and Fishery Statistics, 2016 ed.; Publications Office of the European Union: Luxembourg, 2016. [Google Scholar]
- Mihajlovic, J.; Rinklebe, J. Rare earth elements in German soils—A review. Chemosphere 2018, 205, 514–523. [Google Scholar] [CrossRef]
- Chen, Z. Global rare earth resources and scenarios of future rare earth industry. J. Rare Earths 2011, 29, 1–6. [Google Scholar] [CrossRef]
- Dutta, T.; Kim, K.-H.; Uchimiya, M.; Kwon, E.E.; Jeon, B.-H.; Deep, A.; Yun, S.-T. Global demand for rare earth resources and strategies for green mining. Environ. Res. 2016, 150, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Li, Z.; Chen, C. Global Potential of Rare Earth Resources and Rare Earth Demand from Clean Technologies. Minerals 2017, 7, 203. [Google Scholar] [CrossRef] [Green Version]
- Adibi, N.; Lafhaj, Z.; Gemechu, E.; Sonnemann, G.; Payet, J. Introducing a multi-criteria indicator to better evaluate impacts of rare earth materials production and consumption in life cycle assessment. J. Rare Earths 2014, 32, 288–292. [Google Scholar] [CrossRef]
- Haque, N.; Hughes, A.; Lim, S.; Vernon, C. Rare Earth Elements: Overview of Mining, Mineralogy, Uses, Sustainability and Environmental Impact. Resources 2014, 3, 614–635. [Google Scholar] [CrossRef] [Green Version]
- Schreiber, A.; Marx, J.; Zapp, P.; Hake, J.-F.; Voßenkaul, D.; Friedrich, B. Environmental Impacts of Rare Earth Mining and Separation Based on Eudialyte: A New European Way. Resources 2016, 5, 32. [Google Scholar] [CrossRef] [Green Version]
- Rim, K.-T. Effects of rare earth elements on the environment and human health: A literature review. Toxicol. Environ. Health Sci. 2016, 8, 189–200. [Google Scholar] [CrossRef]
- Wang, L.; Huang, X.; Zhou, Q. Protective effect of rare earth against oxidative stress under ultravi-olet-B radiation. Biol. Trace Elem. Res. 2009, 128, 82–93. [Google Scholar] [CrossRef]
- Rim, K.T.; Koo, K.H.; Park, J.S. Toxicological Evaluations of Rare Earths and Their Health Impacts to Workers: A Literature Review. Saf. Health Work. 2013, 4, 12–26. [Google Scholar] [CrossRef] [Green Version]
- Pagano, G.; Aliberti, F.; Guida, M.; Oral, R.; Siciliano, A.; Trifuoggi, M.; Tommasi, F. Rare earth elements in human and animal health: State of art and research priorities. Environ. Res. 2015, 142, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Pagano, G.; Guida, M.; Tommasi, F.; Oral, R. Health effects and toxicity mechanisms of rare earth elements—Knowledge gaps and research prospects. Ecotoxicol. Environ. Saf. 2015, 115, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Taylor, V.F.; Longerich, H.P.; Greenough, J.D. Geology and wine 5. Provenance of Okanagan Valley wines, British Columbia, using trace elements: Promise and limitations. Geosci. Can. 2002, 29, 110–120. [Google Scholar]
- Greenough, J.D.; Mallory-Greenough, L.M.; Fryer, B.J. Geology and wine 9: Regional trace element fingerprinting of Canadian wines. Geosci. Can. 2005, 32, 129–137. [Google Scholar]
- Durante, C.; Bertacchini, L.; Cocchi, M.; Manzini, D.; Marchetti, A.; Rossi, M.C.; Sighinolfi, S.; Tassi, L. Development of 87 Sr/ 86 Sr maps as targeted strategy to support wine quality. Food Chem. 2018, 255, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Hoogewerff, J.A.; Reimann, C.; Ueckermann, H.; Frei, R.; Frei, K.M.; van Aswegen, T.; Stirling, C.; Reid, M.; Clayton, A.; Ladenberger, A.; et al. Bioavailable 87Sr/86Sr in European soils: A baseline for provenancing studies. Sci. Total. Environ. 2019, 672, 1033–1044. [Google Scholar] [CrossRef] [Green Version]
- Martín-Serrano, A.; Vegas, A.; Garcia-Cortes, A.; Galán, L.; Gallardo-Millán, J.L.; Martín-Alfageme, S.; Rubio, F.M.; Ibarra, P.I.; Granda, A.; Pérez-González, A.; et al. Morphotectonic setting of maar lakes in the Campo de Calatrava Volcanic Field (Central Spain, SW Europe). Sediment. Geol. 2009, 222, 52–63. [Google Scholar] [CrossRef]
- López-Ruiz, J.; Cebria, J.; Doblas, M.; Oyarzun, R.; Hoyos, M.; Martin, C. Cenozoic intra-plate volcanism related to extensional tectonics at Calatrava, central Iberia. J. Geol. Soc. 1993, 150, 915–922. [Google Scholar] [CrossRef]
- Garcia-Navarro, F.J.; Amorós, J.A.; Perez, C.; Bravo, S.; Garcia-Pradas, J.; Ballesta, R.J. Caracterización de los Suelos de la Indicación Geográfica Protegida vinos del Campo de Calatrava; Universidad de Castilla La Mancha: Ciudad Real, Spain, 2021. [Google Scholar]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA—Natural Resources Conservation Service: Washington, DC, USA, 2014. [Google Scholar]
- FAO-ISRIC-ISSS. World Reference Base for Soil Resources. In Food and Agriculture Organization of the United Nations; FAO: Rome, Italy, 2015. [Google Scholar]
- Vinogradov, A.P. The Geochemistry of Rare and Dispersed Chemical Elements in Soils, 2nd ed.; Consultants Bureau Inc.: New York, NY, USA, 1959. [Google Scholar]
- Hu, Z.; Haneklaus, S.; Sparovek, G.; Schnug, E. Rare Earth Elements in Soils. Commun. Soil Sci. Plant Anal. 2006, 37, 1381–1420. [Google Scholar] [CrossRef]
- Da Silva, Y.J.A.B.; Nascimento, C.W.A.D.; Biondi, C.M.; Silva, C.M.C.A.C. Rare Earth Element Concentrations in Brazilian Benchmark Soils. Rev. Bras. Cienc. Solo 2016, 40, e0150413. [Google Scholar] [CrossRef] [Green Version]
- Tyler, G. Rare earth elements in soil and plant systems—A review. Plant Soil 2004, 267, 191–206. [Google Scholar] [CrossRef]
- Yoshida, S.; Muramatsu, Y.; Tagami, K.; Uchida, S. Concentrations of lanthanide elements, Th, and U in 77 Japanese surface soils. Environ. Int. 1998, 24, 275–286. [Google Scholar] [CrossRef]
- Tyopine, A.A.; Sikakwe, G.U.; Obalum, S.E.; Okoye, C.O. Relative distribution of rare-earth metals alongside alkaline earth and alkali metals in rhizosphere of agricultural soils in humid tropical environment. Environ. Monit. Assess. 2020, 192, 1–13. [Google Scholar] [CrossRef]
- Liankai, Z.; Hongbing, J.; Shijie, W.; Gang, L.; Xiuming, L.; Xiao, W.; QuocDinh, N.; DaiTrung, N. Geochemical Implications of Rare Earth Elements in Terra Rossa in Tropical Karst Area: A Case Study in Northern Vietnam. Appl. Sci. 2020, 10, 858. [Google Scholar] [CrossRef] [Green Version]
- Retallack, G.J. Paleosols in the upper Narrabeen group of New South Wales as evidence or early Triassic paleoenvironments without exact modern analogues. Aust. J. Earth Sci. 1997, 44, 185–201. [Google Scholar] [CrossRef]
- Henderson, P. Rare Earth Element Geochemistry; Elsevier: Amsterdam, The Netherlands, 1984; 520p. [Google Scholar]
- Zhu, Q.Q.; Liu, Z. REEs in soils of eastern China. J. Chin. Rare Earth Soc. 1988, 6, 59–65. (In Chinese) [Google Scholar]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Ballesta, R.J.; Bueno, P.C.; Rubi, J.A.M.; Giménez, R.G. Pedo-geochemical baseline content levels and soil quality reference values of trace elements in soils from the Mediterranean (Castilla La Mancha, Spain). Open Geosci. 2010, 2, 441–454. [Google Scholar] [CrossRef]
- Bravo, S.; García-Ordiales, E.; García-Navarro, F.J.; Amorós, J.Á.; Pérez-De-Los-Reyes, C.; Jiménez-Ballesta, R.; Esbrí, J.M.; García-Noguero, E.M.; Higueras, P. Geochemical distribution of major and trace elements in agricultural soils of Castilla-La Mancha (central Spain): Finding criteria for baselines and delimiting regional anomalies. Environ. Sci. Pollut. Res. 2017, 26, 3100–3114. [Google Scholar] [CrossRef] [PubMed]
- Deady, E.; Lacinska, A.; Goodenough, K.M.; Shaw, R.A.; Roberts, N.M.W. Volcanic-Derived Placers as a Potential Resource of Rare Earth Elements: The Aksu Diamas Case Study, Turkey. Minerals 2019, 9, 208. [Google Scholar] [CrossRef] [Green Version]
- Li, X.D.; Lee, S.L.; Wong, S.C.; Shi, W.Z.; Thornton, I. The study of metal contamination 814 in urban soils of Hong Kong using a GIS-based approach. Environ. Pollut. 2004, 129, 113–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vidal, B.; Pérez-Sirvent, J.; Martínez-Sánchez, C.; Navarro, M.J. Origin and behavior of 884 heavy metals in agricultural Calcaric Fluvisols in semiarid conditions. Geoderma 2004, 121, 257–270. [Google Scholar] [CrossRef]
- Volokh, A.A.; Gorbunov, A.V.; Gundorina, S.F.; Revich, B.A.; Frontasyeva, M.V.; Pal, C.S. Phosphorus fertilizer production as a source of rare-earth elements pollution of the environment. Sci. Total Environ. 1990, 95, 141–148. [Google Scholar] [CrossRef]
- Otero, N.; Vitoria, L.; Soler, A.; Canals, A. Fertilizer characterization: Major, trace and rare earth elements. Appl. Geochem. 2005, 20, 1473–1483. [Google Scholar] [CrossRef]
- Oliveira, K.A.P.; Menezes, M.A.B.C.; Von Sperling, E.; Jacomino, V.M.F. Transfer factor of rare earth elements from phosphogypsum amended Brazilian tropical soils to lettuce, corm and soybean. J. Soild Waste Technol. Manag. 2012, 38, 202–210. [Google Scholar] [CrossRef]
- Yamasaki, S.; Takeda, A.; Nanzyo, M.; Taniyama, I.; Nakai, M. Background levels of trace and ultra-trace elements in soils of Japan. Soil Sci. Plant Nutr. 2001, 47, 755–765. [Google Scholar] [CrossRef] [Green Version]
- Higueras, P.L.; Jiménez-Ballesta, R.; Esbrí, J.M.; García-Giménez, R.; García-Noguero, E.M.; Álvarez, R.; Peco, J.D.; García-Noguero, C.; Campos, J.A. Occurrence and environmental constraints of gray monazite in red soils from the Campo de Montiel area (SW Ciudad Real province, south central Spain). Environ. Sci. Pollut. Res. 2021, 28, 4573–4584. [Google Scholar] [CrossRef] [PubMed]
- Martín, J.A.G.; Fernández, V.R.; Giménez, R.G.; Ballesta, R.J. Red palaeosols sequence in a semiarid Mediterranean environment region. Environ. Earth Sci. 2007, 51, 1093–1102. [Google Scholar] [CrossRef]
- Reeves, C.C. Caliche; Estacado Boocks: Lubbock, TX, USA, 1976; 233p. [Google Scholar]
- Braithwaite, C.J.R. Calcrete and other soils in Quaternary limestones: Structures, processes and applications. J. Geol. Soc. 1983, 140, 351–363. [Google Scholar] [CrossRef]
- Van Houten, F. Ancient Soils and Ancients Climates; Studies in Geophysics; National Academic Press: Washington, DC, USA, 1982; pp. 112–117. [Google Scholar]
- Goudie, A.S. Calcrete. In Chemical Sediments and Geomorphology; Goudie, P., Ed.; Academic Press: London, UK, 1983; pp. 93–131. [Google Scholar]
- Weeks, M.E. The discovery of the elements. XVI. The rare earth elements. J. Chem. Educ. 1932, 9, 1751. [Google Scholar] [CrossRef]
- Ramos, S.J.; Dinali, G.S.; Oliveira, C.; Martins, G.C.; Moreira, C.G.; Siqueira, J.O.; Guilherme, L.R.G. Rare Earth Elements in the Soil Environment. Curr. Pollut. Rep. 2016, 2, 28–50. [Google Scholar] [CrossRef] [Green Version]
- Castiñeira, M.D.M.; Feldmann, I.; Jakubowski, N.; Andersson, J.T. Classification of German White Wines with Certified Brand of Origin by Multielement Quantitation and Pattern Recognition Techniques. J. Agric. Food Chem. 2004, 52, 2962–2974. [Google Scholar] [CrossRef] [PubMed]
- Aceto, M.; Robotti, E.; Oddone, M.; Baldizzone, M.; Bonifacino, G.; Bezzo, G.; Di Stefano, R.; Gosetti, F.; Mazzucco, E.; Manfredi, M.; et al. A traceability study on the Moscato wine chain. Food Chem. 2013, 138, 1914–1922. [Google Scholar] [CrossRef]
Surface Horizons | ||||||
---|---|---|---|---|---|---|
N | Range | Min | Max | Mean | Stand. Dev. | |
Sc | 75 | 14.1 | 9.1 | 23.2 | 13.9 | 12.4 |
Y | 75 | 21.2 | 10.5 | 31.7 | 18.8 | 4.3 |
La | 75 | 74.5 | 9.5 | 84.0 | 35.5 | 14.1 |
Ce | 75 | 145.5 | 19.7 | 165.2 | 65.7 | 26.3 |
Nd | 75 | 68.1 | 10.2 | 78.3 | 32.0 | 12.0 |
Subsurface Horizons | ||||||
N | Range | Min. | Max. | Mean | Stand. Dev. | |
Sc | 66 | 21.2 | 4.8 | 26.0 | 14.4 | 4.4 |
Y | 66 | 24.8 | 5.5 | 30.3 | 17.9 | 5.8 |
La | 66 | 82.3 | 3.2 | 85.5 | 35.7 | 18.0 |
Ce | 66 | 149.9 | 6.1 | 156.0 | 62.8 | 31.2 |
Nd | 66 | 69.4 | 5.4 | 74.8 | 31.0 | 14.4 |
Surface Horizon Correlation | ||||||
---|---|---|---|---|---|---|
Y | La | Ce | Th | Nd | Sc | |
Y | 1 | |||||
La | 0.835 ** | 1 | ||||
Ce | 0.884 ** | 0.973 ** | 1 | |||
Th | 0.811 ** | 0.705 ** | 0.730 ** | 1 | ||
Nd | 0.868 ** | 0.970 ** | 0.985 ** | 0.693 ** | 1 | |
Sc | 0.634 ** | 0.638 ** | 0.622 ** | 0.349 ** | 0.667 ** | 1 |
Subsurface Horizon Correlation | ||||||
Y | La | Ce | Th | Nd | Sc | |
Y | 1 | |||||
La | 0.853 ** | 1 | ||||
Ce | 0.904 ** | 0.961 ** | 1 | |||
Th | 0.854 ** | 0.788 ** | 0.786 ** | 1 | ||
Nd | 0.889 ** | 0.970 ** | 0.984 ** | 0.785 ** | 1 | |
Sc | 0.690 ** | 0.755 ** | 0.731 ** | 0.670 ** | 0.778 ** | 1 |
Soils on Volcanic Rocks | ||||||
---|---|---|---|---|---|---|
Surface Horizons | ||||||
N | Range | Min | Max | Mean | Stand. Dev. | |
Sc | 29 | 11.8 | 11.4 | 23.2 | 15.5 | 3.6 |
Y | 29 | 15.7 | 16.0 | 31.7 | 21.9 | 4.3 |
La | 29 | 59.3 | 24.7 | 84.0 | 46.9 | 14.6 |
Ce | 29 | 119.8 | 45.4 | 165.2 | 102.4 | 25.4 |
Nd | 29 | 59.2 | 19.1 | 78.3 | 41.4 | 12.3 |
Soils on Volcanic Rocks | ||||||
Subsurface Horizons | ||||||
N | Range | Min | Max | Mean | Stand. Dev. | |
Sc | 26 | 14.6 | 11.4 | 26.0 | 17.7 | 3.6 |
Y | 26 | 15.5 | 14.8 | 30.3 | 22.4 | 4.3 |
La | 26 | 64.8 | 20.7 | 85.5 | 51.7 | 14.6 |
Ce | 26 | 114.1 | 41.9 | 156.0 | 91.4 | 27.9 |
Nd | 26 | 53.2 | 21.6 | 74.8 | 44.5 | 12.3 |
Soils on Nonvolcanic Rocks | ||||||
Surface Horizons | ||||||
N | Range | Min | Max | Mean | Stand. Dev. | |
Sc | 46 | 9.0 | 9.1 | 18.1 | 12.9 | 1.9 |
Y | 46 | 13.9 | 10.5 | 24.4 | 16.8 | 2.9 |
La | 46 | 45.2 | 9.5 | 54.7 | 28.3 | 9.8 |
Ce | 46 | 76.2 | 19.7 | 95.9 | 52.6 | 16.8 |
Nd | 46 | 38.8 | 10.2 | 49.0 | 26.1 | 7.7 |
Soils on Nonvolcanic Rocks | ||||||
Subsurface Horizons | ||||||
N | Range | Min | Max | Mean | Stand. Dev. | |
Sc | 40 | 17.6 | 4.8 | 22.4 | 12.6 | 3.9 |
Y | 40 | 19.9 | 5.5 | 25.4 | 15.3 | 5.1 |
La | 40 | 52.9 | 3.2 | 56.1 | 26.7 | 14.1 |
Ce | 40 | 97.5 | 6.1 | 103.6 | 47.4 | 24.2 |
Nd | 40 | 42.7 | 5.4 | 48.1 | 23.7 | 11.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez-Ballesta, R.; Bravo, S.; Pérez-de-los-Reyes, C.; Amorós, J.A.; García-Pradas, J.; Sánchez-Ormeño, M.; García-Navarro, F.J. Exploring the Presence of Five Rare Earth Elements in Vineyard Soils on Different Lithologies: Campo de Calatrava, Spain. Agronomy 2021, 11, 458. https://doi.org/10.3390/agronomy11030458
Jiménez-Ballesta R, Bravo S, Pérez-de-los-Reyes C, Amorós JA, García-Pradas J, Sánchez-Ormeño M, García-Navarro FJ. Exploring the Presence of Five Rare Earth Elements in Vineyard Soils on Different Lithologies: Campo de Calatrava, Spain. Agronomy. 2021; 11(3):458. https://doi.org/10.3390/agronomy11030458
Chicago/Turabian StyleJiménez-Ballesta, Raimundo, Sandra Bravo, Caridad Pérez-de-los-Reyes, José Angel Amorós, Jesús García-Pradas, Mónica Sánchez-Ormeño, and Francisco Jesús García-Navarro. 2021. "Exploring the Presence of Five Rare Earth Elements in Vineyard Soils on Different Lithologies: Campo de Calatrava, Spain" Agronomy 11, no. 3: 458. https://doi.org/10.3390/agronomy11030458
APA StyleJiménez-Ballesta, R., Bravo, S., Pérez-de-los-Reyes, C., Amorós, J. A., García-Pradas, J., Sánchez-Ormeño, M., & García-Navarro, F. J. (2021). Exploring the Presence of Five Rare Earth Elements in Vineyard Soils on Different Lithologies: Campo de Calatrava, Spain. Agronomy, 11(3), 458. https://doi.org/10.3390/agronomy11030458