Exploring Genome-Wide Diversity in the National Peach (Prunus persica) Germplasm Collection at CITA (Zaragoza, Spain)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and DNA Extraction
2.2. Genotyping
2.3. Identification of Duplicated Individuals
2.4. Genetic Diversity Analysis
2.5. Genetic Structure Analysis
3. Results
3.1. Characterization and Selection of SNPs
3.2. Identification of Duplicates and Labeling Errors
3.3. Genetic Diversity Analysis
3.4. Genetic Structure Analysis
4. Discussion
4.1. SNP Genotyping, Identification of Duplicates and Labeling Errors
4.2. Genetic Diversity of the Accessions
4.3. Genetic Population Structure
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Verde, I.; Abbott, A.G.; Scalabrin, S.; Jung, S.; Shu, S.; Marroni, F.; Zhebentyayeva, T.; Dettori, M.T.; Grimwood, J.; Cattonaro, F. The High-Quality Draft Genome of Peach (Prunus persica) Identifies Unique Patterns of Genetic Diversity, Domestication and Genome Evolution. Nat. Genet. 2013, 45, 487–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAOSTAT. Available online: http://www.fao.org/faostat/en/#data (accessed on 15 January 2021).
- Faust, M.; Timon, B. Origin and Dissemination of Peach. Hortic. Rev. 1995, 17, 331–379. [Google Scholar]
- Zheng, Y.; Crawford, G.W.; Chen, X. Archaeological Evidence for Peach (Prunus persica) Cultivation and Domestication in China. PLoS ONE 2014, 9, e106595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Meng, X.; Jia, H.; Yu, M.; Ma, R.; Wang, L.; Cao, K.; Shen, Z.; Niu, L.; Tian, J. Peach Genetic Resources: Diversity, Population Structure and Linkage Disequilibrium. BMC Genet. 2013, 14, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reed, D.H.; Frankham, R. Correlation between Fitness and Genetic Diversity. Conserv. Biol. 2003, 17, 230–237. [Google Scholar] [CrossRef]
- Baccichet, I.; Chiozzotto, R.; Bassi, D.; Gardana, C.; Cirilli, M.; Spinardi, A. Characterization of Fruit Quality Traits for Organic Acids Content and Profile in a Large Peach Germplasm Collection. Sci. Hortic. 2021, 278, 109865. [Google Scholar] [CrossRef]
- Micheletti, D.; Dettori, M.T.; Micali, S.; Aramini, V.; Pacheco, I.; Linge, C.D.S.; Foschi, S.; Banchi, E.; Barreneche, T.; Quilot-Turion, B. Whole-Genome Analysis of Diversity and SNP-Major Gene Association in Peach Germplasm. PLoS ONE 2015, 10, e0136803. [Google Scholar] [CrossRef] [PubMed]
- Gürcan, K.; Çetinsağ, N.; Pınar, H.; Macit, T. Molecular and Biological Assessment Reveals Sources of Resistance to Plum Pox Virus-Turkey Strain in Turkish Apricot (Prunus armeniaca) Germplasm. Sci. Hortic. 2019, 252, 348–353. [Google Scholar] [CrossRef]
- Font i Forcada, C.; Gradziel, T.M.; Gogorcena, Y.; Moreno, M.Á. Phenotypic Diversity among Local Spanish and Foreign Peach and Nectarine (Prunus persica (L.) Batsch) Accessions. Euphytica 2014, 197, 261–277. [Google Scholar] [CrossRef] [Green Version]
- Bouhadida, M.; Moreno, M.Á.; Gonzalo, M.J.; Alonso, J.M.; Gogorcena, Y. Genetic Variability of Introduced and Local Spanish Peach Cultivars Determined by SSR Markers. Tree Genet. Genomes 2011, 7, 257–270. [Google Scholar] [CrossRef] [Green Version]
- Guajardo, V.; Solís, S.; Almada, R.; Saski, C.; Gasic, K.; Moreno, M.Á. Genome-Wide SNP Identification in Prunus Rootstocks Germplasm Collections Using Genotyping-by-Sequencing: Phylogenetic Analysis, Distribution of SNPs and Prediction of Their Effect on Gene Function. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavan, S.; Delvento, C.; Ricciardi, L.; Lotti, C.; Ciani, E.; D’Agostino, N. Recommendations for Choosing the Genotyping Method and Best Practices for Quality Control in Crop Genome-Wide Association Studies. Front. Genet. 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Martínez-García, P.J.; Parfitt, D.E.; Ogundiwin, E.A.; Fass, J.; Chan, H.M.; Ahmad, R.; Lurie, S.; Dandekar, A.; Gradziel, T.M.; Crisosto, C.H. High Density SNP Mapping and QTL Analysis for Fruit Quality Characteristics in Peach (Prunus persica L.). Tree Genet. Genom. 2013, 9, 19–36. [Google Scholar] [CrossRef]
- Romeu, J.F.; Monforte, A.J.; Sánchez, G.; Granell, A.; García-Brunton, J.; Badenes, M.L.; Ríos, G. Quantitative Trait Loci Affecting Reproductive Phenology in Peach. BMC Plant Biol. 2014, 14, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Fresnedo-Ramírez, J.; Frett, T.J.; Sandefur, P.J.; Salgado-Rojas, A.; Clark, J.R.; Gasic, K.; Peace, C.P.; Anderson, N.; Hartmann, T.P.; Byrne, D.H. QTL Mapping and Breeding Value Estimation through Pedigree-Based Analysis of Fruit Size and Weight in Four Diverse Peach Breeding Programs. Tree Genet. Genomes 2016, 12, 25. [Google Scholar] [CrossRef]
- Zeballos, J.L.; Abidi, W.; Giménez, R.; Monforte, A.J.; Moreno, M.Á.; Gogorcena, Y. Mapping QTLs Associated with Fruit Quality Traits in Peach (Prunus persica (L.) Batsch) Using SNP Maps. Tree Genet. Genomes 2016, 12, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Mora, J.R.H.; Micheletti, D.; Bink, M.; Van de Weg, E.; Cantín, C.; Nazzicari, N.; Caprera, A.; Dettori, M.T.; Micali, S.; Banchi, E. Integrated QTL Detection for Key Breeding Traits in Multiple Peach Progenies. BMC Genom. 2017, 18, 1–15. [Google Scholar]
- Font i Forcada, C.; Guajardo, V.; Chin-Wo, S.R.; Moreno, M.Á. Association Mapping Analysis for Fruit Quality Traits in Prunus persica Using SNP Markers. Front. Plant Sci. 2019, 9, 2005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- da Silva Linge, C.; Antanaviciute, L.; Abdelghafar, A.; Arus, P.; Bassi, D.; Rossini, L.; Ficklin, S.; Gasic, K. High-Density Multi-Population Consensus Genetic Linkage Map for Peach. PLoS ONE 2018, 13, e0207724. [Google Scholar] [CrossRef]
- Font i Forcada, C.; Oraguzie, N.; Igartua, E.; Moreno, M.Á.; Gogorcena, Y. Population Structure and Marker–Trait Associations for Pomological Traits in Peach and Nectarine Cultivars. Tree Genet. Genom. 2013, 9, 331–349. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Li, Y.; Li, Z.; Zhang, H.; Qi, Y.; Wang, T. Simple Sequence Repeat Analysis of Genetic Diversity in Primary Core Collection of Peach (Prunus persica). J. Integr. Plant Biol. 2008, 50, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Xie, R.; Li, X.; Chai, M.; Song, L.; Jia, H.; Wu, D.; Chen, M.; Chen, K.; Aranzana, M.J.; Gao, Z. Evaluation of the Genetic Diversity of Asian Peach Accessions Using a Selected Set of SSR Markers. Sci. Hortic. 2010, 125, 622–629. [Google Scholar] [CrossRef]
- Wünsch, A.; Carrera, M.; Hormaza, J. Molecular Characterization of Local Spanish Peach (Prunus persica (L.) Batsch) Germplasm. Genet. Resour. Crop Evolut. 2006, 53, 925–932. [Google Scholar] [CrossRef]
- Martín, C.; Herrero, M.; Hormaza, J.I. Molecular Characterization of Apricot Germplasm from an Old Stone Collection. PLoS ONE 2011, 6, e23979. [Google Scholar] [CrossRef] [Green Version]
- Bouhadida, M.; Casas, A.M.; Moreno, M.; Gogorcena, Y. Molecular Characterization of Miraflores Peach Variety and Relatives Using SSRs. Sci. Hortic. 2007, 111, 140–145. [Google Scholar] [CrossRef] [Green Version]
- Alonso Segura, J.M.; Espiau Ramírez, M.T.; Fernández i Martí, A.V. Available Genetic Variability in the Spanish National Peach Collection. In Proceedings of the VIII International Peach Symposium, Matera, Italy, 17–20 June 2013; p. 101. [Google Scholar]
- Vanderzande, S.; Howard, N.P.; Cai, L.; Da Silva Linge, C.; Antanaviciute, L.; Bink, M.C.; Kruisselbrink, J.W.; Bassil, N.; Gasic, K.; Iezzoni, A. High-Quality, Genome-Wide SNP Genotypic Data for Pedigreed Germplasm of the Diploid Outbreeding Species Apple, Peach, and Sweet Cherry through a Common Workflow. PLoS ONE 2019, 14, e0210928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peace, C.; Bassil, N.; Main, D.; Ficklin, S.; Rosyara, U.R.; Stegmeir, T.; Sebolt, A.; Gilmore, B.; Lawley, C.; Mockler, T.C. Development and Evaluation of a Genome-Wide 6K SNP Array for Diploid Sweet Cherry and Tetraploid Sour Cherry. PLoS ONE 2012, 7, e48305. [Google Scholar] [CrossRef] [PubMed]
- Verde, I.; Bassil, N.; Scalabrin, S.; Gilmore, B.; Lawley, C.T.; Gasic, K.; Micheletti, D.; Rosyara, U.R.; Cattonaro, F.; Vendramin, E. Development and Evaluation of a 9K SNP Array for Peach by Internationally Coordinated SNP Detection and Validation in Breeding Germplasm. PLoS ONE 2012, 7, e35668. [Google Scholar] [CrossRef]
- Thurow, L.B.; Gasic, K.; Raseira, M.; do, C.B.; Bonow, S.; Castro, C.M. Genome-Wide SNP Discovery through Genotyping by Sequencing, Population Structure, and Linkage Disequilibrium in Brazilian Peach Breeding Germplasm. Tree Genet. Genomes 2020, 16, 1–14. [Google Scholar] [CrossRef]
- Aranzana, M.J.; Illa, E.; Howad, W.; Arús, P. A First Insight into Peach (Prunus persica (L.) Batsch) SNP Variability. Tree Genet. Genomes 2012, 8, 1359–1369. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Liu, L.; Wang, Y.; Zhang, Q.; Fan, G.; Zhang, S.; Wang, Y.; Liao, K. Genetic Diversity, Population Structure, and Relationships of Apricot (Prunus) Based on Restriction Site-Associated DNA Sequencing. Hortic. Res. 2020, 7, 1–13. [Google Scholar] [CrossRef]
- Pérez, V.; Larrañaga, N.; Abdallah, D.; Wünsch, A.; Hormaza, J.I. Genetic Diversity of Local Peach (Prunus persica) Accessions from La Palma Island (Canary Islands, Spain). Agronomy 2020, 10, 457. [Google Scholar] [CrossRef] [Green Version]
- Doyle, J.J.; Doyle, J.L. A Rapid DNA Isolation Procedure for Small Quantities of Fresh Leaf Tissue. Phytochem. Bull. 1987, 19, 11–15. [Google Scholar]
- Gasic, K.; Da Silva Linge, C.; Bianco, L.; Troggio, M.; Rossini, L.; Bassi, D.; Aranzana, M.J.; Arus, P.; Verde, I.; Peace, C.; et al. Development and Evaluation of a 9K SNP Addition to the Peach Ipsc 9K SNP Array V1. In Proceedings of the ASHS 2019 Annual Conference, Las Vegas, NV, USA, 21–25 July 2019; Volume 54, p. 188. [Google Scholar]
- Di Guardo, M.; Micheletti, D.; Bianco, L.; Koehorst-van Putten, H.J.; Longhi, S.; Costa, F.; Aranzana, M.J.; Velasco, R.; Arús, P.; Troggio, M. ASSIsT: An Automatic SNP Scoring Tool for in-and Outbreeding Species. Bioinformatics 2015, 31, 3873–3874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; De Bakker, P.I.; Daly, M.J. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keenan, K.; McGinnity, P.; Cross, T.F.; Crozier, W.W.; Prodöhl, P.A. DiveRsity: An R Package for the Estimation and Exploration of Population Genetics Parameters and Their Associated Errors. Methods Ecol. Evolut. 2013, 4, 782–788. [Google Scholar] [CrossRef] [Green Version]
- Raj, A.; Stephens, M.; Pritchard, J.K. FastSTRUCTURE: Variational Inference of Population Structure in Large SNP Data Sets. Genetics 2014, 197, 573–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, X.; Levine, D.; Shen, J.; Gogarten, S.M.; Laurie, C.; Weir, B.S. A High-Performance Computing Toolset for Relatedness and Principal Component Analysis of SNP Data. Bioinformatics 2012, 28, 3326–3328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
- Milne, I.; Shaw, P.; Stephen, G.; Bayer, M.; Cardle, L.; Thomas, W.T.; Flavell, A.J.; Marshall, D. Flapjack—Graphical Genotype Visualization. Bioinformatics 2010, 26, 3133–3134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belaj, A.; De La Rosa, R.; Lorite, I.J.; Mariotti, R.; Cultrera, N.G.; Beuzón, C.R.; González-Plaza, J.J.; Muñoz-Mérida, A.; Trelles, O.; Baldoni, L. Usefulness of a New Large Set of High Throughput EST-SNP Markers as a Tool for Olive Germplasm Collection Management. Front. Plant Sci. 2018, 9, 1320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adami, M.; De Franceschi, P.; Brandi, F.; Liverani, A.; Giovannini, D.; Rosati, C.; Dondini, L.; Tartarini, S. Identifying a Carotenoid Cleavage Dioxygenase (Ccd4) Gene Controlling Yellow/White Fruit Flesh Color of Peach. Plant Mol. Biol. Rep. 2013, 31, 1166–1175. [Google Scholar] [CrossRef]
- Falchi, R.; Vendramin, E.; Zanon, L.; Scalabrin, S.; Cipriani, G.; Verde, I.; Vizzotto, G.; Morgante, M. Three Distinct Mutational Mechanisms Acting on a Single Gene Underpin the Origin of Yellow Flesh in Peach. Plant J. 2013, 76, 175–187. [Google Scholar] [CrossRef] [Green Version]
- Huang, F.-C.; Molnár, P.; Schwab, W. Cloning and Functional Characterization of Carotenoid Cleavage Dioxygenase 4 Genes. J. Exp. Bot. 2009, 60, 3011–3022. [Google Scholar] [CrossRef] [Green Version]
- González, J.R.; Armengol, L.; Solé, X.; Guinó, E.; Mercader, J.M.; Estivill, X.; Moreno, V. SNPassoc: An R Package to Perform Whole Genome Association Studies. Bioinformatics 2007, 23, 654–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aranzana, M.; Carbó, J.; Arús, P. Microsatellite Variability in Peach (Prunus Persica (L.) Batsch): Cultivar Identification, Marker Mutation, Pedigree Inferences and Population Structure. Theor. Appl. Genet. 2003, 106, 1341–1352. [Google Scholar] [CrossRef] [PubMed]
- Aranzana, M.J.; Abbassi, E.-K.; Howad, W.; Arús, P. Genetic Variation, Population Structure and Linkage Disequilibrium in Peach Commercial Varieties. BMC Genet. 2010, 11, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Aranzana, M.J.; Decroocq, V.; Dirlewanger, E.; Eduardo, I.; Gao, Z.S.; Gasic, K.; Iezzoni, A.; Jung, S.; Peace, C.; Prieto, H. Prunus Genetics and Applications after de Novo Genome Sequencing: Achievements and Prospects. Hortic. Res. 2019, 6, 1–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jarni, K.; Jakše, J.; Brus, R. Vegetative Propagation: Linear Barriers and Somatic Mutation Affect the Genetic Structure of a Prunus Avium L. Stand. For. Int. J. For. Res. 2015, 88, 612–621. [Google Scholar] [CrossRef] [Green Version]
- El-Sharkawy, I.; Liang, D.; Xu, K. Transcriptome Analysis of an Apple (Malus domestica) Yellow Fruit Somatic Mutation Identifies a Gene Network Module Highly Associated with Anthocyanin and Epigenetic Regulation. J. Exp. Bot. 2015, 66, 7359–7376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrier, G.; Le Cunff, L.; Dereeper, A.; Legrand, D.; Sabot, F.; Bouchez, O.; Audeguin, L.; Boursiquot, J.-M.; This, P. Transposable Elements Are a Major Cause of Somatic Polymorphism in Vitis vinifera L. PLoS ONE 2012, 7, e32973. [Google Scholar] [CrossRef] [Green Version]
- Torregrosa, L.; Fernandez, L.; Bouquet, A.; Boursiquot, J.-M.; Pelsy, F.; Martínez-Zapater, J. Origins and consequences of somatic variation in grapevine. In Genetics, Genomics, and Breeding of Grapes; Adam-Blondon, A.-F., Martínez-Zapater, J.-M., Kole, C., Eds.; CRC Press: Boca Raton, FL, USA, 2011; pp. 68–92. [Google Scholar]
- Chavez, D.J.; Beckman, T.G.; Werner, D.J.; Chaparro, J.X. Genetic Diversity in Peach (Prunus persica (L.) Batsch) at the University of Florida: Past, Present and Future. Tree Genet. Genomes 2014, 10, 1399–1417. [Google Scholar] [CrossRef]
- Arab, M.M.; Marrano, A.; Abdollahi-Arpanahi, R.; Leslie, C.A.; Askari, H.; Neale, D.B.; Vahdati, K. Genome-Wide Patterns of Population Structure and Association Mapping of Nut-Related Traits in Persian Walnut Populations from Iran Using the Axiom J. Regia 700K SNP Array. Sci. Rep. 2019, 9, 1–14. [Google Scholar]
- Emanuelli, F.; Lorenzi, S.; Grzeskowiak, L.; Catalano, V.; Stefanini, M.; Troggio, M.; Myles, S.; Martinez-Zapater, J.M.; Zyprian, E.; Moreira, F.M. Genetic Diversity and Population Structure Assessed by SSR and SNP Markers in a Large Germplasm Collection of Grape. BMC Plant Biol. 2013, 13, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamrick, J.L.; Godt, M.J.W.; Sherman-Broyles, S.L. Factors Influencing Levels of Genetic Diversity in Woody Plant Species. New For. 1992, 6, 95–124. [Google Scholar] [CrossRef]
- Dobeš, C.; Konrad, H.; Geburek, T. Potential Population Genetic Consequences of Habitat Fragmentation in Central European Forest Trees and Associated Understorey Species—An Introductory Survey. Diversity 2017, 9, 9. [Google Scholar] [CrossRef] [Green Version]
- Jost, L.; Archer, F.; Flanagan, S.; Gaggiotti, O.; Hoban, S.; Latch, E. Differentiation Measures for Conservation Genetics. Evolut. Appl. 2018, 11, 1139–1148. [Google Scholar] [CrossRef] [Green Version]
- Cornille, A.; Feurtey, A.; Gélin, U.; Ropars, J.; Misvanderbrugge, K.; Gladieux, P.; Giraud, T. Anthropogenic and Natural Drivers of Gene Flow in a Temperate Wild Fruit Tree: A Basis for Conservation and Breeding Programs in Apples. Evolut. Appl. 2015, 8, 373–384. [Google Scholar] [CrossRef]
- Okie, W.R. Handbook of Peach and Nectarine Varieties: Performance in the Southeastern United States and Index of Names; US Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 1998.
Classification | Number of SNPs | % SNPs |
---|---|---|
Approved | 8954 | 55.83% |
Robust | 3247 | 20.25% |
OneHomozygRare_HWE | 1405 | 8.76% |
OneHomozygRare_NotHWE | 1374 | 8.57% |
DistortedAndUnexpSegreg | 2928 | 18.26% |
Discarded | 7084 | 44.17% |
Monomorphic | 2724 | 16.98% |
Failed | 1018 | 6.35% |
ShiftedHomo | 3174 | 19.79% |
NullAllele-Failed | 168 | 1.05% |
Total | 16,038 | 100.00% |
Name | ID | Country | Region | Clone Group |
---|---|---|---|---|
Calabacero | 5306 | Spain | Murcia | 1 |
Calabacero Candelo | 5649 | Spain | Murcia | 1 |
Calabacero Deleite | 5260 | Spain | Murcia | 1 |
Calabacero Rancho | 5648 | Spain | Murcia | 1 |
Calabacero Rincón | 5262 | Spain | Murcia | 1 |
Calabacero Soto | 5261 | Spain | Murcia | 1 |
Deja-1 | 5050 | Spain | Navarra | 2 |
Deja-2 | 5051 | Spain | Navarra | 2 |
Miraflores | 5213 | Spain | Zaragoza | 3 |
Miraflores Serapio | 5122 | Spain | Zaragoza | 3 |
Jerónimo Copia | 5263 | Spain | Murcia | 4 |
Jerónimo Ortiz (1) | 5265 | Spain | Murcia | 4 |
Jerónimo Prasio C-15 | 5266 | Spain | Murcia | 4 |
Maruja Perfección | 5269 | Spain | Murcia | 4 |
Rojo del Rito | 5162 | Spain | Lleida | 5 |
Tipo Rojo del Rito | 5233 | Spain | Lleida | 5 |
Maruja Alquibla | 5268 | Spain | Murcia | 6 |
Maruja Argos | 5311 | Spain | Murcia | 6 |
Maruja Tejar | 5270 | Spain | Murcia | 6 |
Maruja Tradición | 5267 | Spain | Murcia | 6 |
San Jaime | 5006 | Spain | Lleida | 6 |
Paraguayo Almudí (5138) | 5138 | Spain | Zaragoza | 7 |
Paraguayo San Mateo | 5143 | Spain | Zaragoza | 7 |
Paraguayo Villamayor | 5259 | Spain | Zaragoza | 7 |
Pomar 1 | 5149 | Spain | Huesca | 8 |
Pomar 2 | 5150 | Spain | Huesca | 8 |
Pomar 3 | 5151 | Spain | Huesca | 8 |
Sunmel 1 | 5503 | Spain | Zaragoza | 9 |
Sunmel 2 | 5504 | Spain | Zaragoza | 9 |
Escolapio | 5231 | Spain | Zaragoza | 10 |
Zaragozano | 5004 | Spain | Zaragoza | 10 |
La Escola (5340) | 5340 | Spain | Lleida | 11 |
Sudanell 3099 B.D. | 5001 | Spain | Lleida | 11 |
Sudanell 2 (2349) | 5176 | Spain | Lleida | 11 |
Fulla | 5073 | Spain | Huesca | 12 |
Pigat | 5146 | Spain | Huesca | 12 |
Rojo-Amarillo Septiembre | 5159 | Spain | Lleida | 12 |
Paraguayo Jota | 5141 | Spain | Zaragoza | 13 |
Paraguayo Niqui | 5359 | Spain | Huesca | 13 |
Rojo de Tudela | 5161 | Spain | Navarra | 14 |
Tambarría B.D. | 5186 | Spain | Navarra | 14 |
Borracho de Jarque | 5421 | Spain | Zaragoza | 15 |
Comodin | 5044 | Spain | Huesca | 15 |
Moret | 5126 | Spain | Huesca | 15 |
Population | Nº Individuals | Ar | Ho | He | FIS |
---|---|---|---|---|---|
Murcia | 7 | 1.394 | 0.234 | 0.220 | −0.016 |
Lleida | 8 | 1.543 | 0.285 | 0.312 | 0.043 |
Huesca | 6 | 1.380 | 0.164 | 0.249 | 0.297 |
Zaragoza | 22 | 1.461 | 0.188 | 0.301 | 0.314 |
Navarra | 7 | 1.295 | 0.081 | 0.229 | 0.598 |
Teruel | 2 | 1.377 | 0.228 | 0.209 | −0.142 |
Average | 8.667 | 1.408 | 0.197 | 0.253 | 0.182 |
Population | Differentiation Measures | Teruel | Navarra | Zaragoza | Huesca | Lleida |
---|---|---|---|---|---|---|
Navarra | DJost | 0.0002 | ||||
gST | 0.0308 | |||||
FST | −0.0410 | |||||
Zaragoza | DJost | 0.0000 | 0.0015 | |||
gST | 0.0052 | 0.0217 | ||||
FST | −0.0522 | 0.0162 | ||||
Huesca | DJost | 0.0000 | 0.0016 | 0.0000 | ||
gST | 0.0110 | 0.0315 | −0.0001 | |||
FST | −0.0520 | 0.0155 | −0.0247 | |||
Lleida | DJost | 0.0000 | 0.0039 | 0.0000 | 0.0000 | |
gST | 0.0128 | 0.0396 | −0.0026 | 0.0053 | ||
FST | −0.0125 | 0.0497 | −0.0192 | −0.0108 | ||
Murcia | DJost | 0.0018 | 0.0075 | 0.0028 | 0.0028 | 0.0013 |
gST | 0.0584 | 0.0717 | 0.0272 | 0.0411 | 0.0249 | |
FST | 0.1113 | 0.1086 | 0.0321 | 0.0626 | 0.0405 |
Actual | Lower Value | Upper Value | |
---|---|---|---|
FST | 0.0110 | −0.0312 | 0.0684 |
gST | 0.0395 | −0.0182 | 0.1214 |
DJost | 0.0027 | −0.0113 | 0.0246 |
FIT | 0.3092 | 0.2236 | 0.3877 |
FIS | 0.2620 | 0.1672 | 0.3483 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mas-Gómez, J.; Cantín, C.M.; Moreno, M.Á.; Prudencio, Á.S.; Gómez-Abajo, M.; Bianco, L.; Troggio, M.; Martínez-Gómez, P.; Rubio, M.; Martínez-García, P.J. Exploring Genome-Wide Diversity in the National Peach (Prunus persica) Germplasm Collection at CITA (Zaragoza, Spain). Agronomy 2021, 11, 481. https://doi.org/10.3390/agronomy11030481
Mas-Gómez J, Cantín CM, Moreno MÁ, Prudencio ÁS, Gómez-Abajo M, Bianco L, Troggio M, Martínez-Gómez P, Rubio M, Martínez-García PJ. Exploring Genome-Wide Diversity in the National Peach (Prunus persica) Germplasm Collection at CITA (Zaragoza, Spain). Agronomy. 2021; 11(3):481. https://doi.org/10.3390/agronomy11030481
Chicago/Turabian StyleMas-Gómez, Jorge, Celia M. Cantín, María Á. Moreno, Ángela S. Prudencio, Mar Gómez-Abajo, Luca Bianco, Michela Troggio, Pedro Martínez-Gómez, Manuel Rubio, and Pedro J. Martínez-García. 2021. "Exploring Genome-Wide Diversity in the National Peach (Prunus persica) Germplasm Collection at CITA (Zaragoza, Spain)" Agronomy 11, no. 3: 481. https://doi.org/10.3390/agronomy11030481
APA StyleMas-Gómez, J., Cantín, C. M., Moreno, M. Á., Prudencio, Á. S., Gómez-Abajo, M., Bianco, L., Troggio, M., Martínez-Gómez, P., Rubio, M., & Martínez-García, P. J. (2021). Exploring Genome-Wide Diversity in the National Peach (Prunus persica) Germplasm Collection at CITA (Zaragoza, Spain). Agronomy, 11(3), 481. https://doi.org/10.3390/agronomy11030481