Single Nucleotide Polymorphism (SNP) Discovery and Association Study of Flowering Times, Crude Fat and Fatty Acid Composition in Rapeseed (Brassica napus L.) Mutant Lines Using Genotyping-by-Sequencing (GBS)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Library Construction and Genotypin-by-Sequencing
2.3. Sequence Preprocessing and Alignment to Reference Genome Sequence
2.4. Raw SNP Detection and Consensus Sequence Extraction
2.5. Generate SNP Matrix
2.6. Gene Ontology Analysis of Genes with Polymorphic SNPs
2.7. Construction of Phylogenetic Tree and Heatmap
2.8. Association Analysis
2.9. Determination of Crude Fat and Fatty Acid Compositions
3. Results
3.1. Flowering Time, Crude Fat Content, and Fatty Acid Compositions between the Original Cultivar and Mutant Lines
3.2. Genotyping-by-Sequencing of Rapeseed Mutant Lines
3.3. Identification of SNPs
3.4. GO Analysis of Genes with Polymorphic SNPs
3.5. Phylogenetic and Hierarchical Cluster Analysis
3.6. Association Analysis via GBS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Friedt, W.; Tu, J.; Fu, T. Academic and economic importance of Brassica napus Rapeseed. In The Brassica napus Genome. Compendium of Plant Genomes; Liu, S., Snowdon, R., Chalhoub, B., Eds.; Springer: Cham, Switzerland, 2018; pp. 10–12. [Google Scholar]
- Hu, Q.; Hua, W.; Yin, Y.; Zhang, X.; Liu, L.; Shi, J.; Zhao, Y.; Qin, L.; Chen, C.; Wang, H. Rapeseed research and production in Chaina. Crop J. 2017, 127–135. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Allemekinders, A.; Dansby, A.; Campbell, L.; Durance-Tod, S.; Berger, A.; Jones, P.J.H. Evidence of benefits of canola oil. Nutr. Rev. 2013, 71, 370–385. [Google Scholar] [CrossRef] [Green Version]
- FDA. Qualified Health Claims: Letter of Enforcement Discretion-Unsaturated Fatty Acids from Canola Oil and Reduced Risk of Coronary Heart Disease; Food and Drug Administration: Silver Spring, MD, USA, 2021; Available online: http://wwwcfsanfdagov/ (accessed on 5 January 2021).
- Downey, R.K.; Harvey, B.L. Method of breeding for oil quality in rape. Can. J. Plant Sci. 1963, 43, 271–275. [Google Scholar] [CrossRef]
- Nath, U.K.; Kim, H.T.; Khatun, K.; Park, J.I.; Kang, K.K.; Nou, I.S. Modification of fatty acid profiles of rapeseed (Brassica napus L.) oil for using as food, industrial feed-stock and biodiesel. Plant Breed. Biotech. 2014, 4, 123–134. [Google Scholar] [CrossRef] [Green Version]
- Orsavova, J.; Misurcova, L.; Ambrozova, J.V.; Vicha, R.; Mlcek, J. Fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids. Int. J. Mol. Sci. 2015, 16, 12871–12890. [Google Scholar] [CrossRef] [PubMed]
- Przybylski, R.; Mag, T. Canola/rapeseed oil. In Vegetable Oils in Food Technology Composition, Properties and Uses; Gunstone, F.D., Ed.; CRC Press: Boca Raton, FL, USA; Blackwell Publishing: Hoboken, NJ, USA, 2002; pp. 98–127. [Google Scholar]
- Chen, G.; Geng, J.F.; Rahman, M.; Liu, X.P.; Tu, J.X.; Fu, T.D.; Li, G.Y.; McVetty, P.B.E.; Tahir, M. Identification of QTL for oil content, seed yield, and flowering time in oilseed rape (Brassica napus). Euphytica 2010, 175, 161–174. [Google Scholar] [CrossRef]
- Barth, C.A. Nutritional value of rapeseed oil and its high oleic/low linolenic variety-A call for differentiation. Eur. J. Lipid Sci. 2009, 111, 953–956. [Google Scholar] [CrossRef]
- ArifUzZaman, M.; Mamidi, S.; McClean, P.; Rahman, M. QTL mapping for root vigor and days to flowering in Brassica napus L. Can. J. Plant Sci. 2017, 97, 99–109. [Google Scholar] [CrossRef] [Green Version]
- Spencer-Lopes, M.M.; Forster, B.P.; Jankuloski, L. Manual on mutation. In Food and Agriculture Organization of the United Nations, 3rd ed.; FAO/IAEA: Rome, Italy, 2018; pp. 187–189. [Google Scholar]
- Kim, S.H.; Ryu, J.; Kim, W.J.; Kang, R.; Seo, E.; Kim, G.; Kang, S.Y.; Lee, J.D.; Ha, B.K. Identification of a new GmSACPD-C allele in high stearic acid mutant Hfa180 derived from gamma-ray irradiation. Mol. Breed. 2019, 39, 17. [Google Scholar] [CrossRef]
- Chaudhary, J.; Alisha, A.; Bhatt, V.; Chandanshive, S.; Kumar, N.; Mir, Z.; Kumar, A.; Yadav, S.; Shivaraj, S.M.; Sonah, H.; et al. Mutation breeding in tomato: Advances, applicability and challenges. Plants 2019, 8, 128. [Google Scholar] [CrossRef] [Green Version]
- Bado, S.; Forster, B.P.; Nielen, S.; Ghanim, A.; Lagoda, P.J.; Till, B.J.; Laimer, M. Plant mutation breeding: Current progress and future assessment. Plant Breed. Rev. 2015, 39, 23–88. [Google Scholar]
- Puchta, H.; Dujon, B.; Hohn, B. Two different but related mechanisms are used in plants for the repair of genomic double-strand breaks by homologous recombination. Proc. Natl. Acad. Sci. USA 1996, 93, 5055–5060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Liu, Z.; Chen, P.; Wang, X. Irradiation-facilitated chromosomal translocation: Wheat as an example. In Plant Mutation Breeding and Biotechnology; CABI, FAO: Oxfordshire, UK, 2012; pp. 223–229. [Google Scholar]
- Kim, S.H.; Kim, S.W.; Ahn, J.W.; Ryu, J.; Kwon, S.J.; Kang, B.C.; Kim, J.B. Frequency, spectrum, and stability of leaf mutants induced by diverse gamma-ray treatments in two Cymbidium hybrids. Plants 2020, 9, 546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amosova, A.V.; Zoshchuk, S.A.; Volovik, V.T.; Shirokova, A.V.; Houruzhiy, N.E.; Mozgova, G.V.; Yurkevich, O.Y.; Artyukhova, M.A.; Lemesh, V.A.; Samatadze, T.E.; et al. Phenotypic, biochemical and genomic variability in generations of the rapeseed (Brassica napus L.) mutant lines obtained via chemical mutagenesis. PLoS ONE 2019, 14, e0221699. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Banks, T.W.; Cloutier, S. SNP discovery through next generation sequencing and its applications. Int. J. Plant Genom. 2012, 2012, 831460. [Google Scholar] [CrossRef]
- Cox, M.P.; Peterson, D.A.; Biggs, P.J. SolexaQA: At-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinform. 2010, 11, 485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poland, J.A.; Rife, T.W. Genotyping-by-sequencing for plant breeding and genetics. Plant Genome 2012, 5, 92–102. [Google Scholar] [CrossRef] [Green Version]
- Elshire, R.J.; Glaubitz, J.C.; Sun, Q.; Poland, J.A.; Kawamoto, K.; Buckler, E.S.; Mitchell, S.E. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 2011, 6, e19379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, J.; Zhao, X.; Laroche, A.; Lu, Z.X.; Liu, H.; Li, Z. Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front. Plant Sci. 2014, 5, 484. [Google Scholar] [CrossRef] [Green Version]
- Raman, H.; Raman, R.; Coombes, N.; Song, J.; Prangnell, R.; Bandaranayake, C.; Tahira, R.; Sundaramoorthi, V.; Killian, A.; Meng, J.; et al. Genome-wide association analyses reveal complex genetic architecture underlying natural variation for flowering time in canola. Plant Cell Environ. 2016, 39, 1228–1239. [Google Scholar] [CrossRef]
- Zhu, Q.; King, G.J.; Liu, X.; Shan, N.; Borpatragohain, P.; Baten, A.; Wang, P.; Luo, S.; Zhou, Q. Identification of SNP loci and candidate genes related to four important fatty acid compositions in Brassica napus using genome wide association study. PLoS ONE 2019, 14, e0221578. [Google Scholar] [CrossRef]
- Davey, J.W.; Hohenlohe, P.A.; Etter, P.D.; Boone, J.Q.; Catchen, J.M.; Blaxter, M.L. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat. Rev. Genet. 2011, 12, 499–510. [Google Scholar] [CrossRef]
- Thelen, J.J.; Ohlrogge, J.B. Metabolic engineering of fatty acid biosynthesis in plants. Metabol. Eng. 2002, 4, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Barker, G.C.; King, G.J. Novel insights into seed fatty acid synthesis and modification pathways from genetic diversity and quantitative trait loci analysis of the Brassica C genome. Plant Physiol. 2007, 144, 1827–1842. [Google Scholar] [CrossRef] [Green Version]
- Long, W.; Hu, M.; Gao, J.; Chen, S.; Zhang, J.; Cheng, L.; Pu, H. Identification and functional analysis of two new mutant BnFAD2 alleles that confer elevated oleic acid content in rapeseed. Front. Genet. 2018, 9, 399. [Google Scholar] [CrossRef]
- Guan, M.; Huang, X.; Xiao, Z.; Jia, L.; Wang, S.; Zhu, M.; Qiao, C.; Wei, L.; Xu, X.; Liang, Y.; et al. Association mapping analysis of fatty acid content in different ecotypic rapeseed using mrMLM. Front. Plant Sci. 2019, 9, 1872. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Qian, W.; Suppanz, I.; Wei, L.; Mao, B.; Long, Y.; Meng, J.; Muller, A.E.; Jung, C. Flowering time variation in oilseed rape (Brassica napus L.) is associated with allelic variation in the FRIGIDA homologue BnaA. FRI. a. J. Exp. Bot. 2011, 62, 5641–5658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011, 17, 10–13. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The sequence alignment/map format and SAM tools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.E.; Oh, S.K.; Lee, J.H.; Lee, B.M.; Jo, S.H. Genome-wide SNP calling using next generation sequencing data in tomato. Mol. Cells 2014, 37, 36–42. [Google Scholar] [CrossRef]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T. Gene Ontology: Tool for the unification of biology. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Huang, M.; Fan, B.; Buckler, E.S.; Zhang, Z. Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies. PLoS Genet. 2016, 12, e1005767. [Google Scholar] [CrossRef]
- A.O.A.C. International. Official Methods of Analyses of AOAC International, 16th ed.; AOAC International: Rockville, MD, USA, 1995. [Google Scholar]
- Lee, T.S.; Lee, Y.H.; Kim, K.S.; Lee, H.K.; Jang, Y.S.; Choi, I.H.; Kim, K.S. Effect of sowing time on oil content and fatty acid composition characteristics in rapeseed cultivars. Kor. J. Plant Res. 2014, 27, 202–208. [Google Scholar] [CrossRef] [Green Version]
- Pio, X.; Choi, S.Y.; Kim, Y.H.; Lee, Y.H.; Kim, K.S.; Jang, Y.S.; So, Y.S.; Kim, H.S. Variety x location interaction on oil, fatty acids, tocopherols and phytosterols in Korean rapeseed (Brassica napus L.). Plant Breed. Biotech. 2013, 1, 91–101. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; You, C.; Hu, Y.; Chen, S.; Zhou, B.; Cao, A.; Wang, X. Radiationinduced translocations with reduced Haynaldia villosa chromatin at the Pm21 locus for powdery mildew resistance in wheat. Mol. Breed. 2013, 31, 477–484. [Google Scholar] [CrossRef]
- De Micco, V.; Arena, C.; Pignalosa, D.; Durante, M. Effects of sparsely and densely ionizing radiation on plants. Rad. Environ. Bioph. 2011, 50, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Verma, A.K. A review on efforts of induced mutagenesis for qualitative and quantitative improvement of oilseed brassicas. J. Pharm. Phytochem. 2015, 4, 298–302. [Google Scholar]
- IAEA. Mutation breeding of oil crops. In Proceedings of the International Atomic Energy Agency Proceedings of a Final Research Co-Ordination Meeting of an FAO/IAEA Co-Ordinated Research Programme Organized by the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, No. 781, Vienna, Austria, 30 October–3 November 1995. [Google Scholar]
- Candela, H.; Casanova-Saez, R.; Micol, J.L. Getting started in mapping-by-sequencing. J. Integ. Plant Biol. 2015, 57, 606–612. [Google Scholar] [CrossRef] [PubMed]
- Scheben, A.; Batley, J.; Edwards, D. Genotyping-by-sequencing approaches to characterize crop genomes: Choosing the right tool for the right application. Plant Biotechnol. J. 2017, 15, 149–161. [Google Scholar] [CrossRef] [Green Version]
- Yu, F.; Zhang, X.; Peng, G.; Falk, K.C.; Strelkov, S.E.; Gossen, B.D. Genotyping-by-sequencing reveals three QTL for clubrootresistance to six pathotypes of Plasmodiophorabrassicae in Brassica rapa. Sci. Rep. 2017, 7, 4516. [Google Scholar] [CrossRef]
- Jo, Y.D.; Kang, H.S.; Choi, H.-I.; Kim, J.-B. Genotype-by-sequencing analysis of mutations and recombination in pepper progeny of gamma-irradiated gametophytes. Plants 2021, 10, 144. [Google Scholar] [CrossRef] [PubMed]
- Malmberg, M.M.; Shi, F.; Spangenberg, G.C.; Daetwyler, H.D.; Cogon, N.O. Diversity and genome analysis of Australian and global oilseed Brassica napus L. germplasm using transcriptomics and whole genome re-sequencing. Front. Plant Sci. 2018, 9, 508. [Google Scholar] [CrossRef] [Green Version]
- Louwaars, N.P. Plant breeding and diversity: A troubled relationship. Euphytica 2018, 214, 214. [Google Scholar] [CrossRef] [Green Version]
- Weller, S.G.; Sakai, A.K. Using phylogenetic approaches for the analysis of plant breeding system evolution. Annu. Rev. Ecol. Evol. Syst. 1999, 30, 167–199. [Google Scholar] [CrossRef]
- Ryu, J.; Kim, W.J.; Im, J.; Kang, K.W.; Kim, S.H.; Jo, Y.D.; Kang, S.Y.; Lee, J.H.; Ha, B.K. Single nucleotide polymorphism (SNP) discovery through genotyping-bysequencing (GBS) and genetic characterization of Dendrobium mutants and cultivars. Sci. Horticult. 2019, 244, 225–233. [Google Scholar] [CrossRef]
- Lu, K.; Wei, L.; Li, X.; Wang, Y.; Wu, M.; Liu, M.; Zhang, C.; Chen, Z.; Xiao, Z.; Jian, H.; et al. Whole-genome resequencing reveals Brassica napus origin and genetic loci involved in its improvement. Nat. Commun. 2019, 10, 1154. [Google Scholar] [CrossRef] [Green Version]
- Jestin, C.; Lode, M.; Vallee, P.; Domin, C.; Falentin, C.; Horvais, R.; Coedel, S.; Manzanares-Daulex, M.J.; Delourme, R. Association mapping of quantitative resistance for Leptosphaeria maculans in oilseed rape (Brassica napus L.). Mol. Breed. 2011, 27, 271–287. [Google Scholar] [CrossRef]
- Rezaeizad, A.; Wittkop, B.; Snowdon, R.; Hasan, M.; Mohammadi, V.; Zali, A.; Friedt, W. Identification of QTLs for phenolic compounds in oilseed rape (Brassica napus L.) by association mapping using SSR markers. Euphytica 2011, 177, 335–342. [Google Scholar] [CrossRef]
- Javed, N.; Gneg, J.; Tahir, M.; McVetty, P.B.E.; Li, G.; Dunan, R.W. Identification of QTL influencing seed oil content, fatty acid profile and days to flowering in Brassica napus L. Euphytica 2016, 207, 191–211. [Google Scholar] [CrossRef]
- Bao, B.; Chao, H.; Wang, H.; Zhao, W.; Zhang, L.; Raboanatahiry, N.; Wang, X.; Wang, B.; Jia, H.; Li, M. Stable, environmental specific and novel QTL identification as well as genetic dissection of fatty acid metabolism in Brassica napus. Front. Plant Sci. 2018, 9, 1018. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Zhang, W.; Yu, K.; Sun, L.; Gao, J.; Zhou, X.; Peng, Q.; Fu, S.; Hu, M.; Long, W.; et al. Unconditional and conditional QTL analyses of seed fatty acid composition in Brassica napus L. BMC Plant Biol. 2018, 18, 49. [Google Scholar] [CrossRef] [Green Version]
- Capistrano-Gossmann, G.G.; Ries, D.; Holtgrawe, D.; Minoche, A.; Kraft, T.; Frerichmann, S.L.M.; Rosleff Soerensen, T.; Dohm, J.C.; Gonzalez, I.; Schilhabel, M.; et al. Crop wild relative populations Beta vulgaris allow direct mapping of agronomically important genes. Nat. Commun. 2017, 8, 15708. [Google Scholar] [CrossRef] [PubMed]
Lines | Flowering Types | Crude Fat Content (mg/100 g) | Fatty Acid Composition (%) | |||||
---|---|---|---|---|---|---|---|---|
C16:0 | C18:0 | C18:1 | C18:2 | C18:3 | C22:1 | |||
Tammi | Middle * | 33.92 | 4.8gh ** | 1.9c | 64.9d | 15.7e | 4.4e | 0.0f |
Tm2M-1 | Late | 37.29 | 3.6k | 0.4f | 70.7bc | 17.1e | 7.2d | 0.0f |
Tm3M-1 | Late | 37.11 | 4.9g | 0.9e | 68.7c | 16.7e | 7.7cd | 0.0f |
Tm3M-2 | Late | 38.11 | 2.9m | 0.2g | 70.1bc | 18.8d | 7.1de | 0.0f |
Tm4M-1 | Late | 37.73 | 2.3n | 0.6f | 69.8bc | 20.3cd | 6.4de | 0.0f |
Tm4M-2 | Early | 36.47 | 4.4i | 1.7d | 69.7c | 14.5f | 5.8d | 0.0f |
Tm7M-1 | Late | 37.95 | 4.8gh | 1.6d | 64.3d | 16.8e | 5.7d | 0.0f |
Tm7M-2 | Late | 36.10 | 4.0jk | 0.0h | 71.6b | 13.5e | 4.5e | 0.0f |
Tm6-1 | Early | 36.23 | 4.9g | 0.6f | 67.9cd | 18.6de | 7.2d | 0.0f |
Tm6-2 | Middle | 38.50 | 5.6f | 0.0h | 67.8cd | 17.8e | 5.4de | 0.0f |
Tm6-3 | Early | 34.96 | 4.5hi | 2.3b | 67.4cd | 16.7e | 5.9d | 0.0f |
Tm6-4 | Middle | 35.95 | 4.0jk | 0.0h | 72.1b | 15.5e | 4.7e | 0.1e |
Tm6-6 | Middle | 33.42 | 5.5f | 1.9c | 70.3bc | 17.0e | 4.7e | 0.0f |
Tm6-7 | Middle | 32.50 | 3.5kl | 0.0h | 71.3bc | 15.0ef | 6.1d | 0.0f |
Tm6-8 | Middle | 27.13 | 3.3l | 0.5f | 76.7a | 14.6f | 4.2e | 0.0f |
Tm6-10 | Middle | 32.69 | 8.2c | 1.8cd | 49.8h | 27.0a | 10.9b | 0.0f |
Tm6-12 | Middle | 35.21 | 5.3fg | 1.1e | 62.0e | 22.5c | 8.0c | 0.0f |
Tm6-13 | Middle | 29.72 | 2.5 | 0.8ef | 76.1a | 14.9ef | 5.2de | 0.0f |
Tm8-2 | Middle | 40.46 | 3.4l | 0.0e | 72.0b | 13.5f | 5.7d | 0.0f |
Tm8-3 | Middle | 32.65 | 4.4i | 1.0e | 68.4c | 17.0e | 8.0cd | 0.0f |
Tm8-4 | Middle | 38.09 | 6.8e | 1.8cd | 52.0g | 28.3a | 10.0b | 0.0f |
Tm8-5 | Early | 37.04 | 4.8gh | 0.3g | 59.1ef | 26.6ab | 8.3cd | 0.0f |
Tm8-6 | Middle | 33.69 | 7.4de | 0.4f | 51.7g | 28.4a | 11.3ab | 0.0f |
Tm8-7 | Middle | 37.62 | 9.2b | 0.8ef | 48.6h | 28.8a | 11.6ab | 0.0f |
Tm8-8 | Middle | 38.29 | 2.5n | 0.3g | 65.4d | 26.6ab | 4.9e | 0.0f |
Tm8-10 | Middle | 33.25 | 4.4i | 2.4ab | 57.6f | 21.7cd | 6.0d | 0.0f |
Tm8-11 | Middle | 34.19 | 5.1g | 2.7a | 56.7f | 21.0cd | 4.6e | 0.0f |
Tm8-12 | Middle | 36.54 | 4.7h | 2.1bc | 56.3f | 20.7cd | 5.8d | 0.0f |
Tm8-13 | Middle | 30.15 | 4.6hi | 2.2b | 59.8e | 20.7cd | 5.1de | 0.0f |
Tm8-14 | Middle | 32.45 | 5.4f | 2.4ab | 51.6gh | 14.8f | 1.4f | 2.0d |
Tm8-15 | Middle | 33.18 | 3.5kl | 1.0e | 37.3i | 21.3cd | 6.3de | 15.8b |
Tm8-16 | Middle | 41.32 | 3.7k | 2.2b | 62.7de | 18.8d | 5.0e | 0.0f |
Tm8-17 | Middle | 38.29 | 4.1jk | 2.3b | 59.5e | 20.5cd | 5.8d | 0.0f |
Tm10-1 | Early | 42.32 | 1.3p | 0.2g | 71.5b | 21.9cd | 4.9e | 0.0f |
Tm10-1St | Early | 28.15 | 2.5n | 0.2g | 35.3i | 18.7de | 8.8c | 20.1a |
Tm10-1Lin | Middle | 38.16 | 9.8a | 1.8cd | 48.8h | 24.9bc | 12.8a | 0.0f |
Tm10-2 | Middle | 38.10 | 9.1b | 0.4f | 53.1g | 25.4b | 10.6b | 0.0f |
Tm10Oel | Early | 31.85 | 3.3l | 0.4f | 70.5bc | 19.1d | 6.0d | 0.0f |
Tm10-3 | Middle | 33.74 | 6.9e | 1.7d | 57.2f | 24.2bc | 8.4c | 0.0f |
Tm10-4EF | Early | 36.49 | 5.4f | 1.6d | 60.8e | 23.7c | 7.8cd | 0.0f |
Tm10-5EF | Early | 26.85 | 1.7o | 0.2g | 71.4b | 22.3c | 4.0e | 0.0f |
Tm10-6EF | Early | 28.44 | 3.7k | 0.0h | 56.6f | 17.1e | 5.9d | 5.9c |
Tm10-7EF | Early | 26.92 | 3.5kl | 1.9c | 63.5d | 19.2d | 4.8e | 0.0f |
Tm10-8EF | Middle | 29.46 | 3.5kl | 0.0h | 64.2d | 19.1d | 8.6c | 0.1e |
Tm10-9EF | Early | 28.55 | 3.4l | 0.0h | 59.6e | 19.2d | 6.7de | 4.8c |
Tm10-10EF | Early | 29.98 | 3.8k | 0.0h | 69.4bc | 17.7e | 5.0e | 0.1e |
Tm10-11EF | Early | 27.99 | 3.6k | 0.0h | 68.2c | 18.9d | 5.1de | 0.2e |
Total | Average/Plant | |
---|---|---|
Raw data | ||
Reads | 712,089,136 | 7,575,416 |
Bases (bp) | 107,525,459,536 | 1,143,887,867 |
After trimming | ||
Reads | 623,026,394 | 6,627,540 |
Bases (bp) | 60,784,210,724 | 646,640,540 |
Mapped reads on reference genome * | ||
Reads | 396,325,056 | 4,216,224 |
Bases (bp) | 1,537,448,005 | 16,355,830 |
Reference genome coverage (%) | 1.924% |
No. | Line Names | Polymorphic SNPs | Polymorphic SNPs | Genic Region | Genes Number | ||||
---|---|---|---|---|---|---|---|---|---|
Intergenic Region | Genic Region | Promoter 1kb | UTR | CDS | Intron | ||||
1 | Tm2M-1 | 3335 | 1341 | 1994 | 220 | 1458 | 394 | 53 | 1244 |
2 | Tm3M-1 | 2766 | 1074 | 1692 | 198 | 1251 | 331 | 36 | 1040 |
3 | Tm3M-2 | 5402 | 2022 | 3380 | 381 | 2467 | 670 | 98 | 1895 |
4 | Tm4M-1 | 4338 | 1661 | 2677 | 291 | 1964 | 538 | 67 | 1575 |
5 | Tm4M-2 | 6276 | 2233 | 4043 | 436 | 2961 | 829 | 92 | 2345 |
6 | Tm7M-1 | 2376 | 539 | 1837 | 185 | 1361 | 375 | 41 | 1118 |
7 | Tm7M-2 | 5630 | 2133 | 3497 | 392 | 2537 | 703 | 98 | 1940 |
8 | Tm6-1 | 6164 | 1602 | 4562 | 465 | 3352 | 987 | 90 | 2461 |
9 | Tm6-2 | 3990 | 1258 | 2732 | 288 | 2036 | 555 | 58 | 1648 |
10 | Tm6-3 | 5983 | 1987 | 3996 | 430 | 2895 | 866 | 83 | 2173 |
11 | Tm6-4 | 5016 | 1395 | 3621 | 364 | 2705 | 732 | 66 | 2061 |
12 | Tm6-6 | 7342 | 2882 | 4460 | 483 | 3208 | 947 | 117 | 2467 |
13 | Tm6-7 | 5176 | 1498 | 3678 | 376 | 2734 | 757 | 73 | 2030 |
14 | Tm6-8 | 6265 | 1764 | 4501 | 494 | 3334 | 946 | 84 | 2470 |
15 | Tm6-10 | 6342 | 2293 | 4049 | 452 | 2923 | 839 | 106 | 2327 |
16 | Tm6-12 | 5459 | 1601 | 3858 | 456 | 2820 | 786 | 99 | 2121 |
17 | Tm6-13 | 7045 | 2499 | 4546 | 460 | 3300 | 983 | 106 | 2673 |
18 | Tm8-2 | 8628 | 2671 | 5957 | 657 | 4292 | 1289 | 143 | 3364 |
19 | Tm8-3 | 6100 | 2254 | 3846 | 459 | 2818 | 781 | 80 | 2144 |
20 | Tm8-4 | 8732 | 2714 | 6018 | 647 | 4382 | 1295 | 123 | 3222 |
21 | Tm8-5 | 5614 | 1872 | 3742 | 400 | 2762 | 782 | 73 | 2063 |
22 | Tm8-6 | 6372 | 1675 | 4697 | 496 | 3463 | 983 | 90 | 2640 |
23 | Tm8-7 | 6183 | 1800 | 4383 | 474 | 3242 | 926 | 84 | 2389 |
24 | Tm8-8 | 8315 | 2805 | 5510 | 610 | 4012 | 1178 | 118 | 3002 |
25 | Tm8-10 | 7811 | 2361 | 5450 | 643 | 3891 | 1222 | 129 | 3045 |
26 | Tm8-11 | 9049 | 2491 | 6558 | 713 | 4761 | 1425 | 143 | 3504 |
27 | Tm8-12 | 8707 | 2810 | 5897 | 642 | 4332 | 1257 | 112 | 3169 |
28 | Tm8-13 | 9446 | 2723 | 6723 | 720 | 4937 | 1425 | 140 | 3566 |
29 | Tm8-14 | 9024 | 2888 | 6136 | 684 | 4471 | 1317 | 128 | 3328 |
30 | Tm8-15 | 8491 | 2548 | 5943 | 662 | 4341 | 1265 | 139 | 3245 |
31 | Tm8-16 | 5418 | 1583 | 3835 | 406 | 2821 | 811 | 71 | 2273 |
32 | Tm8-17 | 8707 | 2885 | 5822 | 667 | 4208 | 1258 | 132 | 3214 |
33 | Tm10-1 | 5717 | 1885 | 3832 | 414 | 2777 | 834 | 75 | 2207 |
34 | Tm10-1St | 6593 | 1936 | 4657 | 509 | 3388 | 1016 | 88 | 2690 |
35 | Tm10-1Lin | 4887 | 1403 | 3484 | 368 | 2592 | 719 | 66 | 2013 |
36 | Tm10-2 | 3754 | 907 | 2847 | 318 | 2123 | 566 | 53 | 1692 |
37 | Tm10Oel | 5243 | 1670 | 3573 | 385 | 2643 | 706 | 85 | 2098 |
38 | Tm10-3 | 2891 | 852 | 2039 | 213 | 1527 | 421 | 30 | 1248 |
39 | Tm10-4EF | 5269 | 1725 | 3544 | 320 | 2612 | 753 | 70 | 2228 |
40 | Tm10-5EF | 5684 | 1644 | 4040 | 429 | 3002 | 840 | 71 | 2250 |
41 | Tm10-6EF | 4827 | 1480 | 3347 | 352 | 2459 | 698 | 73 | 1954 |
42 | Tm10-7EF | 4856 | 1620 | 3236 | 360 | 2402 | 643 | 67 | 1888 |
43 | Tm10-8EF | 5094 | 1751 | 3343 | 366 | 2497 | 648 | 68 | 1943 |
44 | Tm10-9EF | 7490 | 2399 | 5091 | 585 | 3708 | 1071 | 110 | 2966 |
45 | Tm10-10EF | 5538 | 1509 | 4029 | 420 | 2984 | 852 | 83 | 2238 |
46 | Tm10-11EF | 3691 | 1034 | 2657 | 271 | 1927 | 583 | 63 | 1576 |
Union SNP | 35,397 | 13,700 | 21,697 | 2499 | 15,651 | 4657 | 460 | 10,834 |
Triats | SNP | −log10(p) | R2 | Genic/Intergenic | TAIR ID | Allele |
---|---|---|---|---|---|---|
C16:0 | chrA02_4108741 | 4.45 | 0.187 | BnaA02g08450D | AT5G56930 | G/A |
C16:0 | chrA06_12239044 | 4.18 | 0.174 | BnaA06g19730D | AT3G44330 | A/T |
C16:0 | chrA07_4405396 | 4.29 | 0.242 | BnaA07g04220D | AT2G15530 | T/A |
C16:0 | chrA08_18487790 | 4.02 | 0.191 | BnaA08g27990D | AT1G04650 | T/C |
C16:0 | chrC03_39637954 | 4.43 | 0.239 | BnaC03g53730D | AT3G47340 | G/A |
C16:0 | chrC05_23140515 | 4.39 | 0.35 | BnaC05g26850D | AT2G05642 | A/C |
C16:0 | chrC09_7177749 | 4.68 | 0.222 | BnaC09g10630D | AT1G62200 | T/C |
C16:0 | chrAnn_random_36154423 | 4.54 | 0.33 | Intergenic | C/T | |
C16:0 | chrAnn_random_36154429 | 4.54 | 0.33 | Intergenic | G/A | |
C16:0 | chrCnn_random_26697557 | 4.42 | 0.187 | Intergenic | G/T | |
C16:0 | chrCnn_random_66012495 | 4.73 | 0.244 | Intergenic | C/T | |
C18:1 | chrA05_11395334 | 4 | 0.296 | Intergenic | C/T | |
C18:1 | chrA07_9257540 | 4.01 | 0.173 | BnaA07g09460D | AT1G26590 | T/C |
C18:1 | chrC09_29915064 | 4.02 | 0.378 | Intergenic | A/G | |
C18:1 | chrA07_random_856463 | 4.95 | 0.216 | BnaA07g37090D | AT1G26130 | G/A |
C18:2 | chrA03_23022215 | 4.4 | 0.513 | BnaA03g45260D | AT4G22290 | T/C |
C18:2 | chrA03_24661521 | 4.05 | 0.348 | BnaA03g47930D | AT4G26300 | G/A |
C18:2 | chrA06_8948451 | 4.34 | 0.097 | BnaA06g16110D | AT3G49180 | G/A |
C18:2 | chrA06_8948477 | 4.37 | 0.116 | BnaA06g16110D | AT3G49180 | G/A |
C18:2 | chrA09_523273 | 4.73 | 0.432 | Intergenic | A/G | |
C18:2 | chrA09_537232 | 4.39 | 0.263 | BnaA09g00890D | AT4G02570 | C/T |
C18:2 | chrA09_537235 | 4.39 | 0.263 | BnaA09g00890D | AT4G02570 | C/T |
C18:2 | chrA09_572373 | 4.18 | 0.008 | BnaA09g01000D | AT4G02700 | C/T |
C18:2 | chrC05_39137705 | 4.44 | 0.16 | BnaC05g41370D | AT3G11840 | T/G |
C18:2 | chrC05_39137834 | 4.44 | 0.16 | BnaC05g41370D | AT3G11840 | A/T |
C18:3 | chrA05_19815348 | 4.32 | 0.107 | BnaA05g27500D | AT3G11550 | T/C |
C18:3 | chrA05_19815372 | 4.32 | 0.107 | BnaA05g27500D | AT3G11550 | A/G |
C18:3 | chrA06_3024875 | 4.53 | 0.185 | BnaA06g05280D | AT1G56330 | G/T |
C18:3 | chrC03_47213635 | 4.24 | 0.004 | Intergenic | T/C | |
C18:3 | chrC03_47213650 | 4.24 | 0.004 | Intergenic | C/G | |
C18:3 | chrC03_47213704 | 4.54 | 0.003 | Intergenic | A/G | |
C18:3 | chrC05_39137705 | 5.82 | 0.254 | BnaC05g41370D | AT3G11840 | T/G |
C18:3 | chrC05_39137834 | 5.82 | 0.254 | BnaC05g41370D | AT3G11840 | A/T |
C18:3 | chrC09_45061943 | 4.25 | 0.209 | BnaC09g44040D | AT5G13060 | C/T |
C22:1 | chrA05_17476295 | 5.99 | 0.002 | BnaA05g23050D | AT3G16857 | T/C |
C22:1 | chrA10_396151 | 8.15 | 0.002 | BnaA10g00800D | AT1G01040 | G/A |
C22:1 | chrC09_6051633 | 4.11 | 0.002 | BnaC09g09340D | AT2G17420 | A/T |
Crude | chrC08_17724544 | 4.11 | 0.178 | Intergenic | T/C | |
Crude | chrCnn_random_26697557 | 4.62 | 0.099 | Intergenic | G/T | |
FT | chrA09_19120040 | 4.08 | 0.291 | BnaA09g25970D | AT3G08570 | T/G/C |
Triats | SNP | Chr | Position | B. napus | TAIR Gene ID | TAIR Description |
---|---|---|---|---|---|---|
C16:0 | chrA02_4108741 | A02 | 4108741 | BnaA02g08450D | AT5G56930 | CCCH-type zinc finger family protein |
C16:0 | chrC03_39637954 | C03 | 39637954 | BnaC03g53730D | AT3G47340 | glutamine-dependent asparagine synthase 1 |
C18:2 | chrA03_24661521 | A03 | 24661521 | BnaA03g47930D | AT4G26300 | Arginyl-tRNA synthetase, class Ic |
C18:2 | chrA09_537232 | A09 | 537232 | BnaA09g00890D | AT4G02570 | cullin 1 | NADH-ubiquinone oxidoreductase 24 kDa subunit, putative |
C18:2 | chrA09_537235 | A09 | 537235 | |||
C18:2 | chrC05_39137705 | C05 | 39137705 | BnaC05g41370D | AT3G11840 | plant U-box 24 |
C18:2 | chrC05_39137834 | C05 | 39137834 | |||
C18:3 | chrC05_39137705 | C05 | 39137705 | |||
C18:3 | chrC05_39137834 | C05 | 39137834 | |||
C18:3 | chrA05_19815348 | A05 | 19815348 | BnaA05g27500D | AT3G11550 | Uncharacterised protein family (UPF0497) | Tetratricopeptide repeat (TPR)-like superfamily protein |
C18:3 | chrA05_19815372 | A05 | 19815372 | |||
C22:1 | chrA05_17476295 | A05 | 17476295 | BnaA05g23050D | AT3G16857 | response regulator 1 |
C22:1 | chrA10_396151 | A10 | 396151 | BnaA10g00800D | AT1G01040 | dicer-like 1 |
C22:1 | chrC09_6051633 | C09 | 6051633 | BnaC09g09340D | AT2G17420 | NADPH-dependent thioredoxin reductase A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryu, J.; Lyu, J.I.; Kim, D.-G.; Koo, K.M.; Yang, B.; Jo, Y.D.; Kim, S.H.; Kwon, S.-J.; Ha, B.-K.; Kang, S.-Y.; et al. Single Nucleotide Polymorphism (SNP) Discovery and Association Study of Flowering Times, Crude Fat and Fatty Acid Composition in Rapeseed (Brassica napus L.) Mutant Lines Using Genotyping-by-Sequencing (GBS). Agronomy 2021, 11, 508. https://doi.org/10.3390/agronomy11030508
Ryu J, Lyu JI, Kim D-G, Koo KM, Yang B, Jo YD, Kim SH, Kwon S-J, Ha B-K, Kang S-Y, et al. Single Nucleotide Polymorphism (SNP) Discovery and Association Study of Flowering Times, Crude Fat and Fatty Acid Composition in Rapeseed (Brassica napus L.) Mutant Lines Using Genotyping-by-Sequencing (GBS). Agronomy. 2021; 11(3):508. https://doi.org/10.3390/agronomy11030508
Chicago/Turabian StyleRyu, Jaihyunk, Jae Il Lyu, Dong-Gun Kim, Kwang Min Koo, Baul Yang, Yeong Deuk Jo, Sang Hoon Kim, Soon-Jae Kwon, Bo-Keun Ha, Si-Yong Kang, and et al. 2021. "Single Nucleotide Polymorphism (SNP) Discovery and Association Study of Flowering Times, Crude Fat and Fatty Acid Composition in Rapeseed (Brassica napus L.) Mutant Lines Using Genotyping-by-Sequencing (GBS)" Agronomy 11, no. 3: 508. https://doi.org/10.3390/agronomy11030508
APA StyleRyu, J., Lyu, J. I., Kim, D. -G., Koo, K. M., Yang, B., Jo, Y. D., Kim, S. H., Kwon, S. -J., Ha, B. -K., Kang, S. -Y., Kim, J. -B., & Ahn, J. -W. (2021). Single Nucleotide Polymorphism (SNP) Discovery and Association Study of Flowering Times, Crude Fat and Fatty Acid Composition in Rapeseed (Brassica napus L.) Mutant Lines Using Genotyping-by-Sequencing (GBS). Agronomy, 11(3), 508. https://doi.org/10.3390/agronomy11030508