Wood Vinegar as a Complex Growth Regulator Promotes the Growth, Yield, and Quality of Rapeseed
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Soil Characteristics
2.2. Experimental Materials
2.3. Experimental Design
2.4. Evaluation of Wood Vinegar Contents
2.5. Measurement of Morphological Indices
2.6. SPAD Measurement
2.7. Assessment of Photosynthetic Parameters
2.8. Investigation of Soluble Protein, Chlorophyll, Malondialdehyde, Proline, Superoxide Dismutase, Peroxidase, and Catalase
2.9. Determination of Yield Components and Quality Indices
2.10. Assessment of Sclerotinia Sclerotiorum and Peronospora Parasitica
2.11. Data Processing and Statistical Analysis
3. Results
3.1. Wood Vinegar Mainly Contains Phenols and Organic Acids
3.2. Wood Vinegar and Its Compounds with Three Regulating Substances Can Increase Rapeseed Yield
3.3. Effect of Wood Vinegar and Its Compounds with Three Regulating Substances on the Morphology of Rapeseed
3.4. Effect of Wood Vinegar and Its Compounds with Three Regulating Substances on the Biomass and Leaf Area of Rapeseed
3.5. Response of Photosynthetic Rates of Rapeseed to Wood Vinegar and Its Compounds with Three Regulating Substances
3.6. Wood Vinegar and Its Compounds with Three Regulating Substances Improved the Stress Resistance of Rapeseed at Low Temperature
3.7. Wood Vinegar and Its Compounds with Three Regulating Substances Reduced the Incidence of Sclerotinia Sclerotiorum and Peronospora Parasitica
4. Discussion
4.1. The Main Components and Functions of Wood Vinegar
4.2. The Combined Effect of Wood Vinegar and Other Regulatory Substances
4.3. Wood Vinegar Can Improve the Abiotic Stress Resistance of Rapeseed
4.4. Wood Vinegar Can Improve the Disease Resistance of Crops
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kuai, J.; Yang, Y.; Sun, Y.; Zhou, G.; Zuo, Q.; Wu, J.; Ling, X. Paclobutrazol increases canola seed yield by enhancing lodging and pod shatter resistance in Brassica napus L. Field Crops Res. 2015, 180, 10–20. [Google Scholar] [CrossRef]
- Davies, P.J. (Ed.) The Plant Hormones: Their Nature, Occurrence, and Functions. In Plant Hormones; Springer: Dordrecht, The Netherlands, 2010; pp. 1–15. [Google Scholar]
- Pan, S.; Rasul, F.; Li, W.; Tian, H.; Mo, Z.; Duan, M.; Tang, X. Roles of plant growth regulators on yield, grain qualities and antioxidant enzyme activities in super hybrid rice (Oryza sativa L.). Rice 2013, 6, 9. [Google Scholar] [CrossRef] [PubMed]
- Aftab, T.; Khan, M.M.; Idrees, M.; Naeem, M.; Hashmi, N. Effects of gibberellic acid on growth, photosynthetic efficiency and artemisinin content of Artemisia annua L. Plant Sci. Biotechnol. 2010, 5, 25–29. [Google Scholar]
- Idrees, M.; Aftab, T.; Naeem, M.; Hashmi, N. Salicylic acid-induced physiological and biochemical changes in lemongrass varieties under water stress. J. Plant Interact. 2010, 5, 293–303. [Google Scholar] [CrossRef]
- Zheng, L.; Wu, W.; Yan, C.; Zhang, Y.; Xu, Y.; Xu, R.; Wang, H.; Cui, N.; Chen, Z. Effects of plant growth regulators on photosynthetic rate and yield components of rice. Crops 2011, 3, 63–66. [Google Scholar]
- Arnao, M.B.; Hernández, J. Melatonin: Plant growth regulator and/or biostimulator during stress. Trends Plant Sci. 2014, 19, 789–797. [Google Scholar] [CrossRef]
- Kariali, E.; Mohapatra, P.K. Hormonal regulation of tiller dynamics in differentially-tillering rice cultivars. Plant Growth Regul. 2007, 53, 215–223. [Google Scholar] [CrossRef]
- Wei, W.; Li, Q.; Chu, Y.; Reiter, R.J.; Yu, X.; Zhu, D.; Zhang, W.; Ma, B.; Lin, Q.; Zhang, J. Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. J. Exp. Bot. 2015, 66, 695–707. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Chen, B.; Ding, F. Gluconate enhanced the water uptake and improved the growth of rice seedlings under PEG-induced osmotic stress. Plant Physiol. Biochem. 2020, 156, 514–523. [Google Scholar] [CrossRef]
- Gourkhede, P.H.; Patil, V.D.; Pathrikar, D.T. Effect of foliar feeding of gluconate and EDTA chelated plant nutrients on yield, quality and nutrient concentration in Bt cotton. Cotton Res. Dev. Assoc. 2017, 31, 74–81. [Google Scholar]
- Nasri, M.; Khalatbari, M.; Farahani, H.A. Zn-foliar application influence on quality and quantity features in Phaseolous vulgaris under different levels of N and K fertilizers. Adv. Environ. Biol. 2011, 5, 839–846. [Google Scholar]
- Yu, L.; Lin, A.; Li, T.; Yuan, L.; Zhao, Q. Effects of spraying low molecular organic compounds on growth and nutrients uptake of rape (Brassica Chinensis L.). J. Plant Nutr. Fertil. 2014, 20, 1560–1568. [Google Scholar]
- Tiilikkala, K.; Fagernäs, L.; Tiilikkala, J. History and use of wood pyrolysis liquids as biocide and plant protection product. Open Agric. 2010, 4, 111–118. [Google Scholar] [CrossRef] [Green Version]
- Zhang, A.; Bian, R.; Pan, G.; Cui, L.; Hussain, Q.; Li, L.; Zheng, J.; Zheng, J.; Zhang, X.; Han, X.; et al. Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: A field study of 2 consecutive rice growing cycles. Field Crops Res. 2012, 127, 153–160. [Google Scholar] [CrossRef]
- Grewal, A.; Abbey Gunupuru, L.R. Production, prospects and potential application of pyroligneous acid in agriculture. J. Anal. Appl. Pyrolysis 2018, 135, 152–159. [Google Scholar] [CrossRef]
- Bilehal, D.; Li, L.; Kim, Y.H. Gas Chromatography-Mass Spectrometry Analysis and Chemical Composition of the Bamboo-Carbonized Liquid. Food Anal. Methods 2012, 5, 109–112. [Google Scholar] [CrossRef]
- Qin, W.; Ma, X.; Zhao, Z.; Zhang, S.; Liu, S. Antioxidant activities and chemical profiles of pyroligneous acids from walnut shell. J. Anal. Appl. Pyrolysis 2010, 88, 149–154. [Google Scholar]
- Ma, X.; Wei, Q.; Zhang, S.; Shi, L.; Zhao, Z. Isolation and bioactivities of organic acids and phenols from walnut shell pyroligneous acid. J. Anal. Appl. Pyrolysis 2011, 91, 338–343. [Google Scholar] [CrossRef]
- Ma, C.; Song, K.; Yu, J.; Yang, L.; Zhao, C.; Wang, W.; Zu, G.; Zu, Y. Pyrolysis process and antioxidant activity of pyroligneous acid from Rosmarinus officinalis leaves. J. Anal. Appl. Pyrolysis 2013, 104, 38–47. [Google Scholar] [CrossRef]
- Flematti, G.R.; Ghisalberti, E.L.; Dixon, K.W.; Trengove, R.D. A compound from smoke that promotes seed germination. Science 2004, 305, 977. [Google Scholar] [CrossRef]
- Nelson, D.C.; Flematti, G.R.; Ghisalberti, E.L.; Dixon, K.W.; Smith, S.M. Regulation of seed germination and seedling growth by chemical signals from burning vegetation. Annu. Rev. Plant Biol. 2012, 63, 107–130. [Google Scholar] [CrossRef] [Green Version]
- Chalermsan, Y.; Peerapan, S. Wood vinegar: By-product from rural charcoal kiln and its role in plant protection. Asian J. Food Ag-Ind. 2009, 2, 189–195. [Google Scholar]
- Simma, B.; Polthanee, A.; Goggi, A.S. Wood vinegar seed priming improves yield and suppresses weeds in dryland direct-seeding rice under rainfed production. Agron. Sustain. Dev. 2017, 37, 56. [Google Scholar] [CrossRef] [Green Version]
- Jeong, K.W.; Kim, B.S.; Ultra, V.U.; Lee, S.C. Effects of Rhizosphere Microorganisms and Wood Vinegar Mixtures on Rice Growth and Soil Properties. Korean J. Crop. Sci. 2015, 60, 355–365. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Qiu, L.; Song, Q.; Wang, S.; Wang, Y.; Ge, Y. Root Proteomics Reveals the Effects of Wood Vinegar on Wheat Growth and Subsequent Tolerance to Drought Stress. Int. J. Mol. Sci. 2019, 20, 943. [Google Scholar] [CrossRef] [Green Version]
- Gu, S.; Zhu, K.; Geng, M.; Jiang, X.; Xu, Z.; Hu, L. Leaf spray of wood vinegar and its effect on rapeseed seedling growth. Chin. J. Oil Crop Sci. 2020, 42, 453–460. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Porra, R.J.; Thompson, W.A.; Kriedemann, P.E. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: Verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim. Biophys. Acta Bioenerg. 1989, 975, 384–394. [Google Scholar] [CrossRef]
- Zhou, W.; Leul, M. Uniconazole-induced alleviation of freezing injury in relation to changes in hormonal balance, enzyme activities and lipid peroxidation in winter rape. Plant Growth Regul. 1998, 26, 41–47. [Google Scholar] [CrossRef]
- Shan, D.; Huang, J.; Yang, Y.; Guo, Y.; Wu, C.; Yang, G.; Gao, Z.; Zheng, C. Cotton GhDREB1 increases plant tolerance to low temperature and is negatively regulated by gibberellic acid. New Phytol. 2007, 176, 70–81. [Google Scholar] [CrossRef]
- Hwang, S.Y.; Lin, H.W.; Chern, R.H.; Lo, H.F.; Li, L. Reduced susceptibility to waterlogging together with high-light stress is related to increases in superoxide dismutase and catalase activities in sweet potato. Plant Growth Regul. 1999, 27, 167–172. [Google Scholar] [CrossRef]
- Duan, Y.; Liu, S.; Ge, C.; Feng, X.; Chen, C.; Zhou, M. In vitro inhibition of Sclerotinia sclerotiorum by mixtures of azoxystrobin, sham, and thiram. Pestic. Biochem. Physiol. 2012, 103, 101–107. [Google Scholar] [CrossRef]
- Mungkunkamchao, T.; Kesmala, T.; Pimratch, S.; Toomsan, B.; Jothityangkoon, D. Wood vinegar and fermented bioextracts: Natural products to enhance growth and yield of tomato (Solanum lycopersicum L.). Sci. Hortic. 2013, 154, 66–72. [Google Scholar] [CrossRef]
- Shen, F.; Lu, J.; Tai, J. Study on the effect of wood vinegar on rice germination and growth. J. Agric. Sci. Yanbian Univ. 2002, 24, 26–29. [Google Scholar]
- Kim, J.M.; To, T.K.; Matsui, A.; Tanoi, K.; Kobayashi, N.I.; Matsuda, F. Acetate-mediated novel survival strategy against drought in plants. Nat. Plants 2017, 3, 17097. [Google Scholar] [CrossRef]
- Lin, K.; Ye, F.; Lin, Y.; Li, Q. Research progress on the mechanism of phenolic substances on soil and plants. J. Eco-Agric. 2010, 5, 1130–1137. [Google Scholar]
- Yan, Y.; Lu, X.; Li, L.; Zheng, J.; Pan, G. The composition of straw pyrolysis wood vinegar and its effect on the growth and quality of pepper. J. Nanjing Agric. Univ. 2011, 5, 58–62. [Google Scholar]
- Zhang, L.; Wang, L.; Liu, X.; Guo, D. The effect of wood vinegar as foliar fertilizer on tomato growth. Zhejiang Agric. Sci. 2019, 2, 231–233. [Google Scholar]
- Zhou, J.; Teixeira da Silva, J.; Ma, G. Effects of smoke water and karrikin on seed germination of 13 species growing in China. Open Life Sci. 2014, 9, 1108–1116. [Google Scholar] [CrossRef]
- Chiwocha, S.D.S.; Dixon, K.W.; Flematti, G.R.; Ghisalberti, E.L.; Merritt, D.J.; Nelson, D.C.; Riseborough, J.A.M.; Smith, S.M.; Stevens, J.C. Karrikins: A new family of plant growth regulators in smoke. Plant Sci. 2009, 177, 252–256. [Google Scholar] [CrossRef]
- Zhai, M.; Shi, G.; Wang, Y.; Mao, G.; Wang, D.; Wang, Z. Chemical Compositions and Biological Activities of Pyroligneous Acids from Walnut Shell. Bioresources 2015, 10, 1715–1729. [Google Scholar] [CrossRef] [Green Version]
- Mao, K.; Li, S.; Li, B.; Wu, W.; Yuan, S.; Niu, Y.; Du, H.; Zhang, L. Effects of wood vinegar on the growth, yield and quality of upper leaves of Nanzheng flue-cured tobacco. J. Southwest Agric. 2019, 3, 645–652. [Google Scholar]
- Kulkarni, M.G.; Ascough, G.D.; Verschaeve, L.; Baeten, K.; Arruda, M.P.; Staden, J.V. Effect of smoke-water and a smoke-isolated butenolide on the growth and genotoxicity of commercial onion. Sci. Hortic. 2010, 124, 434–439. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, H.; Meng, J.; Yang, Q.; Zhang, X.; Kang, Z.; Zhou, G. Effect of the combined action of wood vinegar and sodium naphthaleneacetate on photosynthetic characteristics and yield of peanuts. Agric. Res. Arid. Areas 2017, 1, 185–191. [Google Scholar]
- Zheng, L.; Yuan, X.; Shao, D.; Tian, S.; Chen, J.; Shi, H.; Guo, P. The effect of spraying gibberellin during the filling stage on the agronomic characteristics and yield of millet. Shanxi Agric. Sci. 2014, 5, 455–457. [Google Scholar]
- Ke, X.; Xu, P.; Yin, L.H.; Wang, Z.H.; Zhang, P.P.; Diao, J.J.; Zuo, Y.H.; Zheng, D.F. Exogenous application of melatonin delays leaf senescence in adzuki bean. J. Heilongjiang Bayi Agric. Univ. 2015, 27, 52–55. [Google Scholar]
- Theerakulpisut, P.; Kanawapee, N.; Panwong, B. Seed priming alleviated salt stress effects on rice seedlings by improving Na+/K+ and maintaining membrane integrity. Int. J. Plant Biol. 2016, 7, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Quan, S. Application of wood vinegar to control diseases. J. Agric. Sci. Yanbian Univ. 1994, 2, 113–116. [Google Scholar]
- Mao, Q.; Ding, F.; Zhao, Z.; Ma, X. Preparation of apricot tree vinegar and its antibacterial activity and chemical composition analysis. J. Northwest A F Univ. 2009, 37, 91–96. [Google Scholar]
- Zeng, J.; Hai, M.; Wang, X. The effect of Dabuxilatu wood vinegar on the quality and disease of organic tobacco. Agric. Sci. Bull. 2014, 7, 162–167. [Google Scholar]
- Zhang, L.; Wang, L.D.; Gong, W. Chemical constituents and antibacterial activity of jujube kernel vinegar. Food Sci. 2016, 37, 123–127. [Google Scholar]
- Wei, Q.; Ma, X.; Xu, M. Chemical composition analysis and antibacterial test of poplar vinegar. For. Sci. 2008, 44, 98–102. [Google Scholar]
Retention Time (min) | Compounds | Relative Content (%) | Formula | Molar Mass (g mol−1) |
---|---|---|---|---|
Organic acids | 26.97 | |||
1.93 | Formic acid | 0.39 | CH2O2 | 46 |
3.16 | Acetic acid | 22.99 | C2H4O2 | 60 |
4.76 | Propanoic acid | 0.38 | C3H6O2 | 74 |
5.59 | 2-Hydroxy-2-met-propanoic acid | 0.11 | C5H10O3 | 118 |
9.93 | Butyric acid | 2.55 | C4H8O2 | 88 |
7.21 | 2-Oxo-n-valericacid | 0.55 | C5H8O3 | 116 |
Ketones | 10.53 | |||
2.24 | 2-Butanone | 0.37 | C4H8O | 72 |
3.58 | Acetoin | 0.3 | C4H8O2 | 88 |
4.8 | 1-Hydroxy-2-butanone | 0.28 | C4H8O2 | 88 |
5.31 | Cyclopentanone | 0.62 | C5H8O | 84 |
6.15 | 1-Hydroxy-3-methyl-2-butanone | 0.21 | C5H10O2 | 102 |
6.5 | 2-Cyclopenten | 1.61 | C5H6O | 82 |
8.81 | 2-Methyl-2-cyclopenten−1-one | 1.44 | C6H8O | 96 |
12.47 | 2,5-Dihydro-3,5-dimeth-2-furanone | 0.66 | C6H8O2 | 112 |
13.8 | 2,3-Dimeth-2-cyclopenten−1-one | 1.25 | C7H10O | 110 |
13.96 | 3-Methyl−1,2-cyclopentanedione | 1.14 | C6H8O2 | 112 |
15.85 | 3-Ethyl-2-methyl-2-cyclopenten−1-one | 0.22 | C7H10O2 | 126 |
20.48 | 2-Hydroxy-3-propyl-2-cyclopenten−1-one | 0.38 | C8H12O2 | 140 |
29.38 | 1-(4-Hydroxy-3-methoxyphenyl)-ethanone | 0.48 | C9H10O3 | 166 |
30.66 | 1-(4-Hydroxy-3-methoxyphenyl)-2-propanone | 1.29 | C10H12O3 | 180 |
36.34 | 1-(4-Hydroxy-3,5-dimethoxyphenyl)-ethanone | 0.28 | C10H12O4 | 196 |
Esters | 3.85 | |||
2.37 | Ethylacetate | 0.67 | C4H8O2 | 88 |
9.24 | Gamma-butyrolactone | 2.34 | C4H6O2 | 86 |
11.32 | Methyl2-furoate | 0.09 | C6H6O3 | 126 |
14.73 | 2,6-Dimethyl−1-cyclohexen−1-ylacetate | 0.75 | C10H16O2 | 168 |
Furan derivatives | 1.48 | |||
5.51 | Tetrahydro-2-furanol | 0.41 | C4H8O2 | 88 |
4.33 | 2-Methoxytetrahydrofuran | 0.19 | C5H10O2 | 102 |
8.98 | 1-(2-Furanyl)-ethanone | 0.88 | C6H6O2 | 110 |
Alkanes compounds | 3.36 | |||
5.79 | Methoxymethyl-oxirane | 0.07 | C4H8O2 | 88 |
9.17 | 3-Bromo-pentane | 0.59 | C5H11Br | 150 |
15.63 | Bicyclo [2.2.2] octane | 2.7 | C8H14 | 110 |
Aldehydes | 1.72 | |||
10.85 | 5-Methyl-2-furancarboxaldehyde | 0.19 | C6H6O2 | 110 |
26.77 | Vanillin | 1.53 | C8H8O3 | 152 |
Phenols and derivatives | 43.19 | |||
11.95 | Phenol | 5.91 | C6H6O | 94 |
14.64 | O-cresol | 2.41 | C7H8O | 108 |
15.48 | 3-Methylphenol | 3.74 | C7H8O | 108 |
15.73 | Guaiacol | 2.75 | C7H8O2 | 124 |
18.03 | 2,4-Dimethylphenol | 0.89 | C8H10O | 122 |
18.11 | 2,5-Dimethylphenol | 0.39 | C8H10O | 122 |
18.65 | 4-Ethyl-phenol | 0.47 | C8H10O | 122 |
18.82 | 3,5-Dimethylphenol | 0.37 | C8H10O | 122 |
19.03 | 2,3-Dimethylphenol | 0.22 | C8H10O | 122 |
19.5 | 2-Methoxy-4-methylphenol | 2.04 | C8H10O2 | 138 |
19.6 | 3,4-Dimethylphenol | 0.27 | C8H10O | 122 |
20.01 | Catechol | 8.95 | C6H6O2 | 110 |
22.07 | 4-Methyl−1,2-benzenediol | 4.81 | C7H8O2 | 124 |
22.51 | 4-Ethyl-2-methoxyphenol | 1.32 | C9H12O2 | 152 |
25.14 | 2,6-Dimethoxy-phenol | 3.56 | C8H10O3 | 154 |
25.23 | 2,5-Dimethyl−1,4-benzenediol | 0.9 | C8H10O2 | 138 |
25.37 | 3,4-Dimethoxy-phenol | 0.29 | C8H10O3 | 154 |
26.29 | 4-Ethylcatechol | 1.8 | C8H10O2 | 138 |
28.13 | 1,2,4-Trimethoxybenzene | 1.65 | C9H12O3 | 168 |
30.44 | 1,2,3-Trimethoxy-5-methyl-benzene | 0.45 | C10H14O3 | 182 |
Nitrogen compounds | 1.46 | |||
21.93 | Pyridine | 1.46 | C5H5N | 79 |
Year | Treatment | Branch Number Per Plant | Pods Number on the Main Stem | Branch Pods Number Per Plant | Pods Number Per Plant | Seeds Number Per Pod | Seed Weight (g/1000) | Yield Per Plant (g) | Total Yield (kg ha−1) |
---|---|---|---|---|---|---|---|---|---|
2018–2019 | CK | 4.20 c | 69.07 b | 87.37 d | 156.43 c | 17.25 b | 2.85 a | 13.00 c | 1967.60 c |
M | 6.20 b | 71.83 b | 137.77 c | 209.60 b | 20.13 ab | 2.88 a | 14.96 b | 2172.40 b | |
T1 | 9.27 a | 88.30 a | 206.60 a | 294.90 a | 20.56 a | 2.97 a | 17.25 a | 2375.10 a | |
T2 | 6.87 b | 81.23 a | 164.37 b | 245.60 ab | 20.91 a | 2.85 a | 16.46 ab | 2340.80 ab | |
T3 | 7.80 ab | 86.27 a | 181.90 ab | 268.17 ab | 20.03 ab | 2.86 a | 16.06 ab | 2218.30 ab | |
Mean | 6.87 A | 79.34 A | 172.66 A | 234.94 A | 19.78 B | 2.88 A | 15.55 A | 2214.84 A | |
2019–2020 | CK | 6.40 a | 65.60 a | 118.56 b | 184.16 b | 22.07 c | 2.83 a | 11.50 c | 2001.70 b |
M | 7.20 a | 66.90 a | 142.32 ab | 209.22 ab | 22.71 c | 2.85 a | 13.54 bc | 2176.70 ab | |
T1 | 7.20 a | 71.70 a | 164.16 a | 235.86 a | 28.40 a | 2.91 a | 19.49 a | 2316.70 a | |
T2 | 6.72 a | 68.13 a | 156.37 ab | 224.50 a | 27.08 a | 2.90 a | 17.63 ab | 2308.30 a | |
T3 | 6.56 a | 69.40 a | 147.41 ab | 216.81 a | 24.97 b | 2.90 a | 15.70 b | 2188.30 ab | |
Mean | 6.82 A | 68.35 B | 145.76 A | 214.11 A | 25.05 A | 2.88 A | 15.57 A | 2198.34 A | |
ANO | Y | ns | ** | ns | ns | ** | ns | ns | ns |
VA | T | * | * | ** | ** | ** | ns | ** | * |
T × Y | ns | * | * | * | ns | ns | * | ns |
Year | Treatment | Oil Content (%) | Protein Content (%) | Glucosinolate (umole/g) | Linolenic Acid (%) | Linoleic Acid (%) | Oleic Acid (%) |
---|---|---|---|---|---|---|---|
2018- | CK | 44.80 a | 18.92 b | 24.91 a | 6.47 a | 16.90 a | 67.50 a |
2019 | M | 44.31 a | 21.13 a | 24.00 ab | 7.05 a | 16.80 a | 66.88 a |
T1 | 44.75 a | 19.49 ab | 23.60 ab | 6.51 a | 17.08 a | 67.00 a | |
T2 | 44.91 a | 19.17 ab | 21.41 b | 6.26 a | 17.15 a | 68.00 a | |
T3 | 45.10 a | 19.40 ab | 22.81 b | 6.62 a | 17.49 a | 66.62 a | |
Mean | 44.77 B | 19.62 A | 23.35 B | 6.58 B | 17.08 B | 67.20 A | |
2019- | CK | 46.59 a | 17.79 a | 31.57 a | 7.08 a | 17.47 a | 69.08 a |
2020 | M | 47.04 a | 17.73 a | 30.93 a | 7.22 a | 17.54 a | 66.98 a |
T1 | 47.99 a | 17.78 a | 30.48 ab | 7.27 a | 17.88 a | 66.65 a | |
T2 | 47.99 a | 17.58 a | 28.05 b | 7.32 a | 17.84 a | 68.24 a | |
T3 | 46.49 a | 18.40 a | 29.99 b | 7.48 a | 18.36 a | 66.70 a | |
Mean | 47.22 A | 17.86 B | 30.20 A | 7.27 A | 17.82 A | 67.53 A | |
ANO | Y | ** | ** | ** | ** | ** | ns |
VA | T | ns | ns | ** | ns | ns | ns |
T × Y | ns | * | * | ns | ns | ns |
Year | Treatment | Plant Height (cm) | Root Collar Diameter (mm) | ||||||
---|---|---|---|---|---|---|---|---|---|
Seedling Stage | Bolting Stage | Flowering Stage | Pod Stage | Seedling Stage | Bolting Stage | Flowering Stage | Pod Stage | ||
2018- | CK | 11.56 a | 27.67 b | 152.56 b | 159.89 c | 4.57 b | 8.60 c | 10.68 a | 11.44 b |
2019 | M | 12.11 a | 29.56 b | 159.00 b | 168.06 bc | 5.53 a | 10.59 ab | 12.75 a | 13.25 ab |
T1 | 12.44 a | 44.33 a | 170.00 a | 175.17 a | 5.94 a | 11.91 a | 14.27 a | 14.33 a | |
T2 | 12.44 a | 35.56 ab | 165.50 ab | 173.00 ab | 5.87 a | 11.35 ab | 13.38 a | 14.33 a | |
T3 | 12.11 a | 32.11 b | 161.83 ab | 172.50 b | 5.80 a | 11.10 b | 12.95 a | 13.65 a | |
Mean | 12.13 B | 33.85 A | 161.78 A | 169.72 A | 5.54 A | 10.71 A | 12.81 A | 13.40 B | |
2019- | CK | 12.67 a | 25.00 b | 142.33 b | 165.86 b | 4.81 b | 10.34 b | 13.17 b | 14.70 b |
2020 | M | 12.67 a | 33.50 a | 149.00 ab | 170.92 ab | 5.15 a | 11.57 a | 13.82 ab | 15.17 b |
T1 | 12.67 a | 37.33 a | 160.33 a | 178.35 a | 5.55 a | 12.38 a | 14.68 a | 16.10 a | |
T2 | 13.67 a | 35.00 a | 153.33 ab | 177.65 a | 5.29 a | 11.27 ab | 13.70 ab | 15.48 ab | |
T3 | 13.33 a | 34.50 a | 151.00 ab | 174.54 a | 5.43 a | 11.49 a | 13.71 ab | 15.51 ab | |
Mean | 13.00 A | 33.07 A | 151.20 B | 173.46 A | 5.25 A | 11.41 A | 13.82 A | 15.39 A | |
ANO | Y | ** | ns | ** | ns | ns | ns | ns | ** |
VA | T | ns | ** | ** | ** | * | ** | * | ** |
T × Y | ns | * | * | * | ns | ns | ns | ** |
Year | Treatment | Number of Total Leaves | Number of Green Leaves | ||||||
---|---|---|---|---|---|---|---|---|---|
Seedling Stage | Bolting Stage | Flowering Stage | Pod Stage | Seedling Stage | Bolting Stage | Flowering Stage | Pod Stage | ||
2018–2019 | CK | 8.44 a | 15.11 b | 22.89 b | 24.11 b | 4.89 b | 8.00 c | 13.22 a | 1.78 b |
M | 8.56 a | 15.22 b | 24.67 ab | 25.22 ab | 5.22 b | 8.17 bc | 13.56 a | 5.33 a | |
T1 | 9.00 a | 15.89 ab | 24.56 ab | 25.67 a | 5.56 ab | 10.00 a | 13.33 a | 2.94 ab | |
T2 | 8.89 a | 16.33 a | 25.67 a | 25.56 a | 5.78 ab | 9.33 ab | 14.89 a | 4.11 ab | |
T3 | 9.44 a | 15.5 ab | 24.56 ab | 26.44 a | 6.33 a | 8.67 b | 13.33 a | 4.78 a | |
Mean | 8.87 A | 15.61 A | 24.47 A | 25.4 A | 5.56 B | 8.83 B | 13.67 B | 3.79 A | |
2019–2020 | CK | 9.00 a | 14.94 b | 22.00 c | 24.88 b | 6.30 a | 10.00 c | 13.33 b | 2.35 b |
M | 9.00 a | 16.26 a | 23.67 b | 25.63 a | 6.30 a | 11.00 b | 14.33 ab | 4.87 a | |
T1 | 9.33 a | 16.26 a | 24.00 ab | 26.34 a | 6.53 a | 13.00 a | 15.33 a | 3.14 b | |
T2 | 9.00 a | 16.00 a | 25.00 a | 26.28 a | 6.30 a | 13.67 a | 15.33 a | 3.88 ab | |
T3 | 9.00 a | 16.00 a | 23.67 b | 25.91 a | 6.30 a | 11.67 b | 15.00 a | 2.79 b | |
Mean | 9.07 A | 15.89 A | 23.67 A | 25.81 A | 6.35 A | 11.87 A | 14.66 A | 3.41 A | |
ANO | Y | ns | ns | ns | ns | ** | ** | * | ns |
VA | T | ns | ** | ** | * | ns | ** | * | ** |
T × Y | ns | ns | ns | ns | ns | ** | ns | * |
Year | Treatment | Dry Weight (g) | Fresh Weight (g) | ||||||
---|---|---|---|---|---|---|---|---|---|
Seedling Stage | Bolting Stage | Flowering Stage | Pod Stage | Seedling Stage | Bolting Stage | Flowering Stage | Pod Stage | ||
2018–2019 | CK | 1.56 b | 6.46 b | 15.22 c | 30.83 b | 12.09 c | 56.75 b | 111.67 c | 141.11 c |
M | 2.48 a | 9.56 ab | 21.48 b | 35.70 ab | 19.88 b | 95.60 a | 168.33 b | 178.33 b | |
T1 | 2.66 a | 12.75 a | 29.88 a | 40.65 a | 24.61 ab | 120.64 a | 220.00 a | 226.67 a | |
T2 | 2.69 a | 11.80 a | 24.3 ab | 36.20 ab | 21.37 ab | 117.88 a | 182.22 ab | 211.67 a | |
T3 | 2.66 a | 10.41 ab | 23.05 ab | 35.99 ab | 25.77 a | 106.60 a | 177.78 ab | 191.67 ab | |
Mean | 2.41 A | 10.20 B | 22.79 B | 35.87 A | 20.74 A | 99.49 B | 172.00 B | 189.89 A | |
2019–2020 | CK | 1.44 b | 9.62 b | 23.17 b | 31.98 b | 11.35 b | 86.75 b | 160.54 b | 173.69 b |
M | 1.73 ab | 13.94 a | 24.34 ab | 35.89 a | 15.15 a | 126.03 ab | 177.84 ab | 195.84 ab | |
T1 | 1.99 a | 15.82 a | 26.16 a | 38.38 a | 16.85 a | 145.75 a | 197.29 a | 213.73 a | |
T2 | 1.74 ab | 14.06 a | 25.91 a | 37.78 a | 16.37 a | 126.75 ab | 194.35 a | 201.29 a | |
T3 | 1.87 a | 14.14 a | 25.71 a | 37.77 a | 16.70 a | 125.00 ab | 190.52 a | 204.61 a | |
Mean | 1.75 B | 13.52 A | 25.06 A | 36.36 A | 15.28 B | 122.06 A | 184.11 A | 197.83 A | |
ANO | Y | ** | ** | * | ns | ** | ** | * | ns |
VA | T | ** | ** | ** | ** | ** | ** | ** | ** |
T × Y | * | * | * | ns | ** | ** | ns | * |
Year | Treatment | LAI | PAI | SPAD | |||||
---|---|---|---|---|---|---|---|---|---|
Seedling Stage | Bolting Stage | Flowering Stage | Pod Stage | Seedling Stage | Bolting Stage | Flowering Stage | Pod Stage | ||
2018- | CK | 2.31 c | 3.59 b | 3.94 b | 3.34 b | 44.85 a | 51.40 a | 52.01 a | 35.90 b |
2019 | M | 3.02 b | 4.32 a | 4.63 a | 4.04 a | 44.83 a | 52.04 a | 53.42 a | 42.83 a |
T1 | 3.57 a | 4.79 a | 4.81 a | 3.56 b | 44.50 a | 51.43 a | 54.26 a | 42.67 a | |
T2 | 3.31 ab | 4.67 a | 4.75 a | 3.94 a | 44.90 a | 53.13 a | 52.19 a | 42.53 a | |
T3 | 3.34 ab | 4.60 a | 4.72 a | 3.58 b | 44.93 a | 51.82 a | 52.68 a | 41.37 a | |
Mean | 3.11 A | 4.39 A | 4.57 A | 3.69 A | 44.80 A | 51.96 A | 52.91 A | 41.06 B | |
2019- | CK | 2.41 c | 3.05 b | 3.50 b | 3.08 b | 42.57 a | 51.73 a | 52.05 a | 40.31 b |
2020 | M | 2.53 bc | 4.25 a | 4.22 a | 4.10 a | 43.47 a | 52.73 a | 54.86 a | 45.24 a |
T1 | 3.21 a | 4.70 a | 4.86 a | 3.47 b | 43.23 a | 54.97 a | 53.39 a | 44.81 a | |
T2 | 2.95 b | 4.40 a | 4.53 a | 3.31 b | 41.60 a | 54.30 a | 52.41 a | 44.13 a | |
T3 | 3.01 ab | 4.70 a | 4.75 a | 3.54 ab | 42.50 a | 53.83 a | 53.94 a | 43.29 a | |
Mean | 2.82 B | 4.22 A | 4.37 A | 3.50 A | 42.67 B | 53.51 A | 53.33 A | 43.56 A | |
ANO | Y | * | ns | ns | ns | ** | ns | ns | ** |
VA | T | ** | ** | * | ** | ns | ns | ns | ** |
T × Y | * | ns | ns | ns | ns | ns | ns | * |
Year | Treatment | A (µmol m−2 s−1) | gs (µmol m−2 s−1) | ||||
---|---|---|---|---|---|---|---|
Seedling Stage | Bolting Stage | Flowering Stage | Seedling Stage | Bolting Stage | Flowering Stage | ||
2018–2019 | CK | 14.80 b | 24.73 a | 16.74 b | 0.13 a | 0.30 a | 0.25 a |
M | 16.21 ab | 25.36 a | 19.45 ab | 0.13 a | 0.35 a | 0.28 a | |
T1 | 18.00 a | 25.59 a | 20.05 ab | 0.15 a | 0.38 a | 0.39 a | |
T2 | 16.49 ab | 24.75 a | 20.59 ab | 0.13 a | 0.38 a | 0.39 a | |
T3 | 16.98 ab | 24.10 a | 22.49 a | 0.14 a | 0.36 a | 0.34 a | |
Mean | 16.50 B | 24.91 A | 19.86 A | 0.14 B | 0.35 B | 0.33 A | |
2019–2020 | CK | 14.89 b | 22.65 c | 16.13 b | 0.14 b | 0.39 a | 0.22 a |
M | 16.27 ab | 23.63 bc | 17.65 ab | 0.17 ab | 0.46 a | 0.28 a | |
T1 | 19.70 a | 27.08 a | 19.81 a | 0.20 a | 0.47 a | 0.35 a | |
T2 | 18.87 a | 25.95 ab | 18.57 ab | 0.17 ab | 0.46 a | 0.34 a | |
T3 | 17.14 ab | 24.18 b | 17.79 ab | 0.18 ab | 0.43 a | 0.30 a | |
Mean | 17.37 A | 24.70 A | 17.99 B | 0.17 A | 0.44 A | 0.30 A | |
ANO | Y | ** | ns | ** | ** | ** | ns |
VA | T | ** | * | ** | ns | ns | ns |
T × Y | * | ns | * | ns | ns | ns |
Year | Treatment | Soluble Protein (mg/g) | Chlorophyll Content (mg/g) | MDA (umol/g) | Proline (ug/g) | SOD (U/mg prot) | POD (U/mg prot) | CAT (U/mg prot) |
---|---|---|---|---|---|---|---|---|
2018–2019 | CK | 56.55 b | 1.30 c | 4.99 a | 176.56 c | 0.86 b | 1.55 a | 4.54 a |
M | 65.34 ab | 1.54 a | 4.85 a | 472.16 a | 1.04 a | 1.37 a | 3.89 b | |
T1 | 67.35 a | 1.42 b | 4.76 a | 345.74 b | 1.02 a | 1.36 a | 3.82 b | |
T2 | 64.36 ab | 1.36 bc | 4.54 a | 297.60 b | 1.00 a | 1.31 a | 3.95 ab | |
T3 | 68.37 a | 1.45 ab | 4.81 a | 255.44 bc | 1.01 a | 1.30 a | 3.73 b | |
2019–2020 | CK | 63.90 b | 1.46 b | 4.50 a | 139.80 b | 1.05 b | 2.00 a | 3.03 a |
M | 66.96 a | 2.04 a | 4.22 a | 196.48 a | 1.20 a | 1.75 a | 2.42 b |
Year | Treatment | Rate of Incidence of Sclerotinia sclerotiorum (%) | Rate of Reduction of Sclerotinia sclerotiorum (%) | Rate of Incidence of Peronospora parasitica (%) | Rate of Reduction of Peronospora parasitica (%) |
---|---|---|---|---|---|
2018–2019 | CK | 57.33 a | 0 | 40.00 a | 0 |
M | 50.67 ab | 6.66 | 36.67 a | 3.33 | |
T1 | 40.00 bc | 17.33 | 36.00 ab | 4.00 | |
T2 | 44.00 b | 13.33 | 35.33 ab | 4.63 | |
T3 | 34.67 c | 22.66 | 28.67 b | 11.33 | |
2019–2020 | CK | 45.00 a | 0 | 33.33 a | 0 |
M | 40.50 a | 4.50 | 27.50 a | 5.83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, K.; Gu, S.; Liu, J.; Luo, T.; Khan, Z.; Zhang, K.; Hu, L. Wood Vinegar as a Complex Growth Regulator Promotes the Growth, Yield, and Quality of Rapeseed. Agronomy 2021, 11, 510. https://doi.org/10.3390/agronomy11030510
Zhu K, Gu S, Liu J, Luo T, Khan Z, Zhang K, Hu L. Wood Vinegar as a Complex Growth Regulator Promotes the Growth, Yield, and Quality of Rapeseed. Agronomy. 2021; 11(3):510. https://doi.org/10.3390/agronomy11030510
Chicago/Turabian StyleZhu, Kunmiao, Sicheng Gu, Jiahuan Liu, Tao Luo, Zaid Khan, Kangkang Zhang, and Liyong Hu. 2021. "Wood Vinegar as a Complex Growth Regulator Promotes the Growth, Yield, and Quality of Rapeseed" Agronomy 11, no. 3: 510. https://doi.org/10.3390/agronomy11030510
APA StyleZhu, K., Gu, S., Liu, J., Luo, T., Khan, Z., Zhang, K., & Hu, L. (2021). Wood Vinegar as a Complex Growth Regulator Promotes the Growth, Yield, and Quality of Rapeseed. Agronomy, 11(3), 510. https://doi.org/10.3390/agronomy11030510