Modeling the Effects of Nitrogen Fertilizer and Multiple Weed Interference on Soybean Yield
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiments
2.2. Model Development
2.3. Statistical Analyses
3. Results
3.1. Effect of Nitrogen on Soybean-Weed Competition under Single Weed Interference
3.2. Effect of Nitrogen on Soybean-Weed Competition under Multiple Weed Interference
3.3. Responses of Weed-Free Soybean Yield and Multiple-Weed Competitiveness to Nitrogen
3.4. Combined Model for Soybean Yield Affected by Multiple-Weed Competitiveness and Applied Nitrogen
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Salvagiotti, F.; Cassman, K.G.; Specht, J.E.; Walters, D.T.; Weiss, A.; Dobermann, A. Nitrogen uptake, fixation and response to fertilizer N in soybeans: A review. Field Crops Res. 2008, 108, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Osborne, S.L.; Riedell, W.E. Starter nitrogen fertilizer impact on soybean yield and quality in the Northern Great Plains. Agron. J. 2006, 98, 1569–1574. [Google Scholar] [CrossRef] [Green Version]
- Li, J.R. The scientific knowledge of applying fertilizer technique for soybean. J. Jili Agric. Sci. Technol. Coll. 2005, 14, 32–35. (In Chinese) [Google Scholar]
- Liu, X.; Jin, J.; Wang, G.; Herbert, S.J. Soybean yield physiology and development of high-yielding practices in Northeast China. Field Crops Res. 2008, 105, 157–171. [Google Scholar] [CrossRef]
- Development of Agriculture and Market Regulation of Agricultural Products, Raw Materials and Food: Improving Living Standards of Rural Population of Primorsky Krai. Available online: http://www.agrodv.ru/ (accessed on 18 May 2016).
- China June Crop Area and Production Report. Available online: http://www.informaecon.com/samplereports/ChinaSampleReport.pdf (accessed on 23 May 2016).
- Sinegovskii, M.; Yuan, S.; Sinegovskaya, V.; Han, T. Current status of the soybean industry and research in the Russian Federation. Soybean Sci. 2018, 37, 1–7. [Google Scholar]
- Song, J.S.; Kim, J.W.; Im, J.H.; Lee, K.J.; Lee, B.W.; Kim, D.S. The effects of single- and multiple-weed interference on soybean yield in the Far-Eastern region of Russia. Weed Sci. 2017, 65, 371–380. [Google Scholar] [CrossRef]
- Chauhan, B.S.; Abugho, S.B. Effects of water regime, nitrogen fertilization, and rice plant density on growth and reproduction of lowland weed Echinochloa crus-galli. Crop. Prot. 2013, 54, 142–147. [Google Scholar] [CrossRef]
- Leskovsek, R.; Datta, A.; Simoncic, A.; Knezevic, S.Z. Influence of nitrogen and plant density on the growth and seed production of common ragweed (Ambrosia artemisiifolia L.). J. Pest Sci. 2012, 85, 527–539. [Google Scholar] [CrossRef]
- Ampong-Nyarko, K.; De Datta, S.K. Effects of nitrogen application on growth, nitrogen use efficiency and rice-weed interaction. Weed Res. 1993, 33, 269–276. [Google Scholar] [CrossRef]
- Buchanan, G.A.; McLaughlin, R.D. Influence of nitrogen on weed competition in cotton. Weed Sci. 1975, 23, 324–328. [Google Scholar] [CrossRef]
- Dhima, K.V.; Eleftherohorinos, I.G. Influence of nitrogen on competition between winter cereals and sterile oat. Weed Sci. 2001, 49, 77–82. [Google Scholar] [CrossRef]
- Kim, D.S.; Marshall, E.J.P.; Brain, P.; Caseley, J.C. Modelling the effects of sub-lethal doses of herbicide and nitrogen fertilizer on crop-weed competition. Weed Res. 2006, 46, 492–502. [Google Scholar] [CrossRef]
- Naderi, R.; Ghadiri, H. Competition of wild mustard (Sinapis arvense L.) densities with rapeseed (Brassica napus L.) under different levels of nitrogen fertilizer. J. Agric. Sci. Tech. 2011, 13, 45–51. [Google Scholar]
- Wells, G.J. Annual weed competition in wheat crops: The effect of weed density and applied nitrogen. Weed Res. 1979, 19, 185–191. [Google Scholar] [CrossRef]
- Shafagh-Kolvanagh, J.; Zehtab-Salmasi, S.; Javanshir, A.; Moghaddam, M.; Nasab, A.D.M. Effects of nitrogen and duration of weed interference on grain yield and SPAD (chlorophyll) value of soybean (Glycine max (L.) Merrill.). J. Food Agric. Environ. 2008, 6, 368–373. [Google Scholar]
- Berti, A.; Zanin, G. Density equivalent: A method for forecasting yield loss caused by mixed weed populations. Weed Res. 1994, 34, 327–332. [Google Scholar] [CrossRef]
- Cousens, R. A simple model relating yield loss to weed density. Ann. Appl. Biol. 1985, 107, 239–252. [Google Scholar] [CrossRef]
- Kim, D.S.; Marshall, E.J.P.; Caseley, J.C.; Brain, P. Modelling interactions between herbicide dose and multiple weed species interference in crop-weed competition. Weed Res. 2006, 46, 175–184. [Google Scholar] [CrossRef]
- Lindquist, J.L.; Dieleman, J.A.; Mortensen, D.A.; Johnson, G.A.; Wyse-Pester, D.Y. Economic importance of managing spatially heterogeneous weed population. Weed Technol. 1998, 12, 7–13. [Google Scholar] [CrossRef]
- Song, J.S.; Chung, J.H.; Lee, K.J.; Kwon, J.; Kim, J.W.; Im, J.H.; Kim, D.S. Herbicide-based weed management for soybean production in the Far Eastern region of Russia. Agronomy 2020, 10, 1823. [Google Scholar] [CrossRef]
- Goyal, S.S.; Huffaker, R.C. Nitrogen toxicity in plants. In Nitrogen in Crop Production; Hauck, R.D., Ed.; ASA-CSSA-SSSA Inc.: Madison, WI, USA, 1984; pp. 97–118. [Google Scholar]
- Chism, W.J.; Birch, J.B.; Bingham, S.W. Nonlinear regressions for analyzing growth stage and quinclorac interactions. Weed Technol. 1992, 6, 898–903. [Google Scholar] [CrossRef]
- Genstat Committee. Reference Manual (Genstat Release 6.1); VSN International: Oxford, UK, 2002. [Google Scholar]
- Afza, R.; Hardason, G.; Zapata, F.; Danso, S.K.A. Effects of delayed soil and foliar N fertilization on yield and N2 fixation of soybean. Plant Soil 1987, 97, 361–368. [Google Scholar] [CrossRef]
- Caliskan, S.; Ozkaya, I.; Caliskan, M.E.; Arslan, M. The effects of nitrogen and iron fertilization on growth, yield and fertilizer use efficiency of soybean in a Mediterranean-type soil. Field Crops Res. 2008, 108, 126–132. [Google Scholar] [CrossRef]
- Taylor, R.S.; Weaver, D.B.; Wood, C.W.; van Santen, E. Nitrogen application increases yield and early dry matter accumulation in late-planted soybean. Crop Sci. 2005, 45, 854–858. [Google Scholar] [CrossRef]
- Blackshaw, R.E.; Brandt, R.N. Nitrogen fertilizer rate effects on weed competitiveness is species dependent. Weed Sci. 2008, 56, 743–747. [Google Scholar] [CrossRef]
- Kazemeini, S.A.; Naderi, R.; Aliabadi, H.K. Effects of different densities of wild oat (Avena fatua L.) and nitrogen rates on oilseed rape (Brassica napus L.) yield. J. Ecol. Environ. 2013, 36, 167–172. [Google Scholar] [CrossRef] [Green Version]
- Cousens, R. Theory and reality of weed control thresholds. Plant Prot. Q. 1987, 2, 13–20. [Google Scholar]
- Zanin, G.; Berti, A.; Toniolo, L. Estimation of economic thresholds for weed control in winter wheat. Weed Res. 1993, 33, 459–467. [Google Scholar] [CrossRef]
Nitrogen (kg N ha−1) | Weed Species | Parameter Estimates | Pseudo R2 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Y0 | β | |||||||||
2013 | 2014 | Pooled | 2013 | 2014 | Pooled | 2013 | 2014 | Pooled | ||
0 | A | 1.62 | 1.44 | 1.61 | 0.052 | 0.085 | 0.093 | 0.86 | 0.91 | 0.81 |
(0.095) | (0.086) | (0.096) | (0.0104) | (0.0132) | (0.0159) | |||||
B | 1.52 | 1.39 | 1.55 | 0.066 | 0.086 | 0.086 | 0.84 | 0.97 | 0.89 | |
(0.169) | (0.058) | (0.085) | (0.0259) | (0.0114) | (0.0177) | |||||
C | 1.64 | 1.40 | 1.56 | 0.047 | 0.063 | 0.046 | 0.80 | 0.92 | 0.65 | |
(0.101) | (0.079) | (0.131) | (0.0122) | (0.0089) | (0.0130) | |||||
12 | A | 1.73 | 1.81 | 1.77 | 0.130 | 0.118 | 0.127 | 0.86 | 0.84 | 0.84 |
(0.122) | (0.138) | (0.090) | (0.0324) | (0.0249) | (0.0206) | |||||
B | 1.74 | 1.82 | 1.78 | 0.135 | 0.148 | 0.142 | 0.96 | 0.86 | 0.90 | |
(0.085) | (0.163) | (0.093) | (0.0353) | (0.0582) | (0.0354) | |||||
C | 1.72 | 1.82 | 1.75 | 0.040 | 0.089 | 0.063 | 0.89 | 0.81 | 0.80 | |
(0.107) | (0.157) | (0.102) | (0.0079) | (0.0251) | (0.0125) | |||||
24 | A | 2.10 | 1.96 | 2.04 | 0.232 | 0.220 | 0.203 | 0.95 | 0.98 | 0.94 |
(0.104) | (0.048) | (0.070) | (0.0396) | (0.0175) | (0.0236) | |||||
B | 2.07 | 1.96 | 2.02 | 0.413 | 0.307 | 0.384 | 0.86 | 0.99 | 0.94 | |
(0.170) | (0.041) | (0.080) | (0.1170) | (0.0477) | (0.0664) | |||||
C | 2.18 | 1.96 | 2.08 | 0.082 | 0.093 | 0.090 | 0.88 | 0.95 | 0.92 | |
(0.141) | (0.073) | (0.077) | (0.0205) | (0.0106) | (0.0112) | |||||
36 | A | 2.39 | 2.16 | 2.26 | 0.545 | 0.594 | 0.529 | 0.98 | 0.98 | 0.98 |
(0.097) | (0.058) | (0.056) | (0.0839) | (0.1040) | (0.0603) | |||||
B | 2.40 | 2.16 | 2.25 | 0.438 | 0.291 | 0.369 | 0.91 | 0.94 | 0.92 | |
(0.184) | (0.105) | (0.096) | (0.1010) | (0.0568) | (0.0557) | |||||
C | 2.41 | 2.17 | 2.27 | 0.113 | 0.093 | 0.100 | 0.93 | 0.96 | 0.94 | |
(0.157) | (0.074) | (0.075) | (0.0218) | (0.0095) | (0.0100) |
Year | Parameter β | ||||||||
---|---|---|---|---|---|---|---|---|---|
Ambrosia artemisiifolia (β1i) | Echinochloa crus-galli (β2i) | Beckmannia syzigachne (β3i) | |||||||
l1 | m1 | R2 | l2 | m2 | R2 | l3 | m3 | R2 | |
2013 | 0.052 | 1.067 | 0.99 | 0.114 | 1.041 | 0.72 | 0.037 | 1.032 | 0.87 |
(0.0071) | (0.0044) | (0.0606) | (0.0178) | (0.0082) | (0.0077) | ||||
2014 | 0.046 | 1.073 | 0.98 | 0.119 | 1.028 | 0.65 | 0.072 | 1.009 | 0.49 |
(0.0144) | (0.0099) | (0.0438) | (0.0130) | (0.0082) | (0.0043) | ||||
Pooled | 0.053 | 1.065 | 0.97 | 0.124 | 1.034 | 0.76 | 0.050 | 1.021 | 0.94 |
(0.0185) | (0.0111) | (0.0598) | (0.0165) | (0.0053) | (0.0039) |
Nitrogen (kg N ha−1) | Parameters | Pseudo R2 | |||||||
---|---|---|---|---|---|---|---|---|---|
Y0 | β | ||||||||
2013 | 2014 | Pooled | 2013 | 2014 | Pooled | 2013 | 2014 | Pooled | |
0 | 1.65 | 1.38 | 1.63 | 0.066 | 0.076 | 0.079 | 0.75 | 0.73 | 0.81 |
(0.105) | (0.093) | (0.071) | (0.0129) | (0.0097) | (0.0084) | ||||
12 | 1.71 | 1.79 | 1.75 | 0.094 | 0.141 | 0.121 | 0.87 | 0.80 | 0.82 |
(0.092) | (0.106) | (0.073) | (0.0129) | (0.0182) | (0.0117) | ||||
24 | 2.11 | 1.99 | 2.07 | 0.254 | 0.313 | 0.295 | 0.88 | 0.89 | 0.89 |
(0.110) | (0.080) | (0.066) | (0.0348) | (0.0256) | (0.0213) | ||||
36 | 2.40 | 2.14 | 2.25 | 0.472 | 0.454 | 0.463 | 0.85 | 0.87 | 0.86 |
(0.153) | (0.093) | (0.082) | (0.0630) | (0.0391) | (0.0341) |
Parameters | Pseudo R2 | |||||
---|---|---|---|---|---|---|
Y0i | βi | |||||
a | b | c | d | l | m | |
1.65 | 0.016 | 2.96 × 10−18 | 1.05 × 10−20 | 0.081 | 1.05 | 0.86 |
(0.064) | (0.357) | (0.207) | (0.0013) | (0.0062) | (0.003) |
Nitrogen (kg N ha−1) | Parameters and ETs a | |||||||
---|---|---|---|---|---|---|---|---|
Cn ($ ha−1) | Ch ($ ha−1) | Ca ($ ha−1) | Yo (Mg ha−1) | P ($ Mg−1) | L | H | ET b | |
0 | 0 | 87.2 | 17.7 | 1.65 | 650 | 0.075 | 0.90 | 1.46 |
12 | 16.2 | 87.2 | 17.7 | 1.84 | 650 | 0.125 | 0.90 | 0.90 |
24 | 32.3 | 87.2 | 17.7 | 2.03 | 650 | 0.202 | 0.90 | 0.57 |
36 | 48.5 | 87.2 | 17.7 | 2.22 | 650 | 0.311 | 0.90 | 0.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, J.-S.; Im, J.-H.; Kim, J.-W.; Kim, D.-G.; Lim, Y.; Yook, M.-J.; Lim, S.-H.; Kim, D.-S. Modeling the Effects of Nitrogen Fertilizer and Multiple Weed Interference on Soybean Yield. Agronomy 2021, 11, 515. https://doi.org/10.3390/agronomy11030515
Song J-S, Im J-H, Kim J-W, Kim D-G, Lim Y, Yook M-J, Lim S-H, Kim D-S. Modeling the Effects of Nitrogen Fertilizer and Multiple Weed Interference on Soybean Yield. Agronomy. 2021; 11(3):515. https://doi.org/10.3390/agronomy11030515
Chicago/Turabian StyleSong, Jong-Seok, Ji-Hoon Im, Jin-Won Kim, Dong-Gil Kim, Yeonhwa Lim, Min-Jung Yook, Soo-Hyun Lim, and Do-Soon Kim. 2021. "Modeling the Effects of Nitrogen Fertilizer and Multiple Weed Interference on Soybean Yield" Agronomy 11, no. 3: 515. https://doi.org/10.3390/agronomy11030515
APA StyleSong, J. -S., Im, J. -H., Kim, J. -W., Kim, D. -G., Lim, Y., Yook, M. -J., Lim, S. -H., & Kim, D. -S. (2021). Modeling the Effects of Nitrogen Fertilizer and Multiple Weed Interference on Soybean Yield. Agronomy, 11(3), 515. https://doi.org/10.3390/agronomy11030515