Effects of Light Quality Treatments during the Grain Filling Period on Yield, Quality, and Fragrance in Fragrant Rice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Description of Experiment
2.2. Experiment Design
2.3. Sampling and Measurements
2.3.1. Determination of 2AP Content in Grain
2.3.2. Determination of Proline, P5C, and GABA Content
2.3.3. Antioxidant Enzyme Activity and MDA Content
2.3.4. Determination of Dry Weight, Grain Yield
2.3.5. Determination of Grain Quality
2.4. Statistical Analysis
3. Results
3.1. AP Content
3.2. Proline, P5C, and GABA Content in Leaves and Grain
3.3. Yield, Yield-Related Traits, and Biomass
3.4. Antioxidant Enzyme Activity and MDA Content in Leaves
3.5. Grain Quality
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, Q.Y.; Yousaf, L.; Xue, Y.; Shen, Q. Changes in flavor of fragrant rice during storage under different conditions. J. Sci. Food Agric. 2020, 100, 3435–3444. [Google Scholar] [CrossRef]
- Lorieux, M.; Petrov, M.; Huang, N.; Guiderdoni, E.; Ghesquière, A. Aroma in rice: Genetic analysis of quantitative trait. Theor. Appl. Genet. 1996, 93, 1145–1151. [Google Scholar] [CrossRef]
- Hien, N.L.; Yoshihashi, T.; Sarhadi, W.A.; Hirata, Y. Sensory test for aroma and quantitative analysis of 2-acetyl-1-pyrroline in Asian aromatic rice varieties. Plant Prod. Sci. 2006, 9, 294–297. [Google Scholar] [CrossRef]
- Kong, L.L.; Luo, H.W.; Mo, Z.W.; Pan, S.G.; Tang, X.R. Grain yield, quality and 2-acetyl-1-pyrroline of fragrant rice in response to different planting seasons in South China. Phyton 2020, 89, 705–714. [Google Scholar] [CrossRef]
- Poonlaphdecha, J.; Maraval, I.; Roques, S.; Audebert, A.; Boulanger, R.; Bry, X.; Gunata, Z. Effect of timing and duration of salt treatment during growth of a fragrant rice variety on yield and 2-acetyl-1-pyrroline, proline, and GABA levels. J. Agric. Food Chem. 2012, 60, 3824–3830. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.W.; Du, B.; He, L.X.; He, J.; Hu, L.; Pan, S.G.; Tang, X.R. Exogenous application of zinc (Zn) at the heading stage regulates 2-acetyl-1-pyrroline (2-AP) biosynthesis in different fragrant rice genotypes. Sci. Rep. 2019, 9, 19513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okpala, N.E.; Potcho, M.P.; An, T.; Ahator, S.D.; Duan, L.X.; Tang, X.R. Low temperature increased the biosynthesis of 2-AP, cooked rice elongation percentage and amylose content percentage in rice. J. Cereal Sci. 2020, 93, 102980. [Google Scholar] [CrossRef]
- Fitzgerald, M.; McCouch, S.; Hall, R.D. Not just a grain of rice: The quest for quality. Trends Plant Sci. 2009, 14, 133–139. [Google Scholar] [CrossRef]
- Xie, W.J.; Kong, L.L.; Ma, L.; Ashraf, U.; Pan, S.G.; Duan, M.Y.; Tian, H.; Wu, L.M.; Tang, X.R.; Mo, Z.W. Enhancement of 2-acetyl-1-pyrroline (2AP) concentration, total yield, and quality in fragrant rice through exogenous γ-aminobutyric acid (GABA) application. J. Cereal Sci. 2020, 91, 102900. [Google Scholar] [CrossRef]
- Gao, Z.F.; Xie, W.J.; Ashraf, U.; Li, Y.Z.; Ma, L.; Gui, R.F.; Pan, S.G.; Tian, H.; Duan, M.Y.; Wang, S.L. Exogenous γ-aminobutyric acid (GABA) application at different growth stages regulates 2-acetyl-1-pyrroline, yield, quality and antioxidant attributes in fragrant rice. J. Plant Interact. 2020, 15, 139–152. [Google Scholar] [CrossRef]
- Mo, Z.W.; Lei, S.; Ashraf, U.; Khan, I.; Li, Y.; Pan, S.G.; Duan, M.Y.; Tian, H.; Tang, X.R. Silicon fertilization modulates 2-acetyl-1-pyrroline content, yield formation and grain quality of aromatic rice. J. Cereal Sci. 2017, 75, 17–24. [Google Scholar] [CrossRef]
- Mo, Z.W.; Ashraf, U.; Tang, Y.J.; Li, W.; Pan, S.G.; Duan, M.Y.; Tian, H.; Tang, X.R. Nitrogen application at the booting stage affects 2-acetyl-1-pyrroline, proline, and total nitrogen contents in aromatic rice. Chil. J. Agric. Res. 2018, 78, 165–172. [Google Scholar] [CrossRef] [Green Version]
- Mo, Z.W.; Li, Y.H.; Nie, J.; He, L.X.; Pan, S.G.; Duan, M.Y.; Tian, H.; Xiao, L.Z.; Zhong, K.Y.; Tang, X.R. Nitrogen application and different water regimes at booting stage improved yield and 2-acetyl-1-pyrroline (2AP) formation in fragrant rice. Rice 2019, 12, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mo, Z.W.; Tang, Y.J.; Ashraf, U.; Pan, S.G.; Duan, M.Y.; Tian, H.; Wang, S.L.; Tang, X.R. Regulations in 2-acetyl-1-pyrroline contents in fragrant rice are associated with water-nitrogen dynamics and plant nutrient contents. J. Cereal Sci. 2019, 88, 96–102. [Google Scholar] [CrossRef]
- Liu, X.W.; Huang, Z.L.; Li, Y.Z.; Xie, W.J.; Li, W.; Tang, X.R.; Ashraf, U.; Kong, L.L.; Wu, L.M.; Wang, S.L.; et al. Selenium-silicon (Se-Si) induced modulations in physio-biochemical responses, grain yield, quality, aroma formation and lodging in fragrant rice. Ecotoxicol. Environ. Saf. 2020, 196, 110525. [Google Scholar] [CrossRef]
- Liu, Q.H.; Wu, X.; Chen, B.C.; Ma, J.Q.; Gao, J. Effects of low light on agronomic and physiological characteristics of rice including grain yield and quality. Rice Sci. 2014, 21, 243–251. [Google Scholar] [CrossRef]
- Venkateswarlu, B. Influence of low light intensity on growth and productivity of rice, Oryza sativa, L. Plant Soil 1977, 46, 713–719. [Google Scholar] [CrossRef]
- Wang, L.; Deng, F.; Ren, W.J. Shading tolerance in rice is related to better light harvesting and use efficiency and grain filling rate during grain filling period. Field Crop. Res. 2015, 180, 54–62. [Google Scholar] [CrossRef]
- Mo, Z.W.; Li, W.; Pan, S.G.; Fitzgerald, T.; Xiao, F.; Tang, Y.J.; Wang, Y.L.; Duan, M.Y.; Tian, H.; Tang, X.R. Shading during the grain filling period increases 2-acetyl-1-pyrroline content in fragrant rice. Rice 2015, 8, 9. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.Z.; Liang, L.X.; Fu, X.M.; Gao, Z.F.; Liu, H.C.; Tan, J.T.; Potcho, M.P.; Pan, S.G.; Tian, H.; Duan, M.Y.; et al. Light and water treatment during the early grain filling stage regulates yield and aroma formation in aromatic rice. Sci. Rep. 2020, 10, 14830. [Google Scholar] [CrossRef]
- Sasakawa, H.; Yamamoto, Y. Effects of red, far red, and blue light on enhancement of nitrate reductase activity and on nitrate uptake in etiolated rice seedlings. Plant Physiol. 1979, 63, 1098–1101. [Google Scholar] [CrossRef]
- Parada, R.Y.; Mon-Nai, W.; Ueno, M.; Kihara, J.; Arase, S. Red-light-induced resistance to brown spot disease caused by bipolaris oryzae in rice. J. Phytopathol. 2015, 163, 116–123. [Google Scholar] [CrossRef]
- Asahina, M.; Tamaki, Y.; Sakamoto, T.; Shibata, K.; Nomura, T.; Yokota, T. Blue light-promoted rice leaf bending and unrolling are due to up-regulated brassinosteroid biosynthesis genes accompanied by accumulation of castasterone. Phytochemistry 2014, 104, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Ryo, M.; Keiko, O.K.; Kazuhiro, F.; Eiji, G.; Kenji, K. Photosynthetic characteristics of rice leaves grown under red light with or without supplemental blue light. Plant Cell Physiol. 2004, 45, 1870–1874. [Google Scholar]
- Counce, P.A.; Keisling, T.C.; Mitchell, A. A uniform, objective, and adaptive system for expressing rice development. Crop Sci. 2000, 40, 436–443. [Google Scholar] [CrossRef] [Green Version]
- Fang, L.Z.; Ma, Z.Y.; Wang, Q.B.; Nian, H.; Ma, Q.B.; Huang, Q.L.; Mu, Y.H. Plant growth and photosynthetic characteristics of soybean seedlings under different LED lighting quality conditions. J. Plant Growth Regul. 2020. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Miller, G.; Honig, A.; Stein, H.; Suzuki, N.; Mittler, R.; Zilberstein, A. Unraveling Δ1-pyrroline-5-carboxylate-proline cycle in plants by uncoupled expression of proline oxidation enzymes. J. Biol. Chem. 2009, 284, 26482–26492. [Google Scholar] [CrossRef] [Green Version]
- Mezl, V.A.; Knox, W.E. Properties and analysis of a stable derivative of pyrroline-5-carboxylic acid for use in metabolic studies. Anal. Biochem. 1976, 74, 430–440. [Google Scholar] [CrossRef]
- Zhao, D.W.; Pu, X.Y.; Zeng, Y.W.; Li, B.X.; Du, J.; Yang, S.M. Determination of the γ-aminobutyric acid in barley. J. Triticeae Crop. 2009, 29, 69–72, (In Chinese with English abstract). [Google Scholar]
- Kong, L.L.; Ashraf, U.; Cheng, S.R.; Rao, G.S.; Mo, Z.W.; Tian, H.; Pan, S.G.; Tang, X.R. Short-term water management at early filling stage improves early-season rice performance under high temperature stress in South China. Eur. J. Agron. 2017, 90, 117–126. [Google Scholar] [CrossRef]
- Li, S.Y.; Jiang, H.L.; Wang, J.J.; Wang, Y.D.; Pan, S.G.; Tian, H.; Duan, M.Y.; Wang, S.L.; Tang, X.R.; Mo, Z.W. Responses of plant growth, physiological, gas exchange parameters of super and non-super rice to rhizosphere temperature at the tillering stage. Sci. Rep. 2019, 9, 10618. [Google Scholar] [CrossRef]
- Buthelezi, M.N.D.; Soundy, P.; Jifon, J.; Sivakumar, D. Spectral quality of photo-selective nets improves phytochemicals and aroma volatiles in coriander leaves (Coriandrum sativum L.) after postharvest storage. J. Photochem. Photobiol. B Biol. 2016, 161, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Wang, B.; Wang, X.; Ni, B.B.; Zuo, Z.J. Variations in aroma and specific flavor in strawberry under different colored light-quality selective plastic film. Flavour Fragr. J. 2020, 35, 1–10. [Google Scholar] [CrossRef]
- Tu, Z.P.; Lin, X.Z.; Huang, Q.M.; Cai, W.J.; Ye, L.Y. Photosynthetic characterisation of rice varieties in relation to growth irradiance. Funct. Plant Biol. 1988, 15, 277–286. [Google Scholar] [CrossRef]
- Hinge, V.R.; Patil, H.B.; Nadaf, A.B. Aroma volatile analyses and 2AP characterization at various developmental stages in Basmati and Non-Basmati scented rice (Oryza sativa L.) cultivars. Rice 2016, 9, 38. [Google Scholar] [CrossRef]
- Xie, W.J.; Ashraf, U.; Zhong, D.T.; Lin, R.B.; Xian, P.Q.; Zhao, T.; Feng, H.Y.; Wang, S.L.; Duan, M.Y.; Tang, X.R.; et al. Application of γ-aminobutyric acid (GABA) and nitrogen regulates aroma biochemistry in fragrant rice. Food Sci. Nutr. 2019, 7, 3784–3796. [Google Scholar] [CrossRef] [PubMed]
- Park, S.T.; Kim, S.Y.; Park, D.S.; Park, S.K.; Kim, S.M.; Hwang, W.H. Effect of seeding rates and LED light quality on seedling growth of rice in seedling raising shelf. J. Korean Soc. Int. Agric. 2010, 22, 312–318. [Google Scholar]
- Guo, Y.S.; Gu, A.S.; Cui, J. Effects of light quality on rice seedlings growth and physiological characteristics. Chin. J. Appl. Ecol. 2011, 22, 1485–1492, (In Chinese with English abstract). [Google Scholar]
- Ohashi, K.K.; Matsuda, R.; Goto, T.; Fujiwara, K. Growth of rice plants under red light with or without supplemental blue light. Soil Sci. Plant Nutr. 2006, 52, 444–452. [Google Scholar] [CrossRef]
- Borowski, E.; Michalek, S.; Rubinowska, K.; Hawrylak-Nowak, B.; Grudziński, W. The effects of light quality on photosynthetic parameters and yield of lettuce plants. Acta Sci. Pol. Hortorum Cultus 2015, 14, 177–188. [Google Scholar]
- Zheng, D.M.; Lin, Z.B.; Chen, Y.Q.; Lin, B.Y. Effect of different light qualities on the yield and quality of cherry tomato. J. Shangxi Agric. Univ. (Nat. Sci. Ed.) 2016, 36, 567–571, (In Chinese with English abstract). [Google Scholar]
- Xu, F.; Shi, L.Y.; Chen, W.; Cao, S.F.; Su, X.G.; Yang, Z.F. Effect of blue light treatment on fruit quality, antioxidant enzymes and radical-scavenging activity in strawberry fruit. Sci. Hortic. 2014, 175, 181–186. [Google Scholar] [CrossRef]
- Zheng, W.; Liu, W.C.; He, S.L.; He, D.; Shang, W.Q.; Song, Y.L. Effects of different light quality ratios of LED red/blue light on growth and antioxidant enzyme activities of Photinia fraseri plantlets in vitro. J. Northwest A F Univ. (Nat. Sci. Ed.) 2018, 46, 49–56, (In Chinese with English abstract). [Google Scholar]
- Ueno, M.; Imaoka, A.; Kihara, J.; Arase, S. Effects of light quality on induction of tryptamine-mediated resistance in lesion mimic mutant of rice infected with magnapor the grisea. J. Phytopathol. 2007, 155, 228–235. [Google Scholar] [CrossRef]
- Dong, C.; Fu, Y.M.; Liu, G.; Liu, H. Growth, Photosynthetic Characteristics, Antioxidant Capacity and Biomass Yield and Quality of Wheat (Triticum aestivum L.) Exposed to LED Light Sources with Different Spectra Combinations. J. Agron. Crop Sci. 2014, 200, 219–230. [Google Scholar] [CrossRef]
Parameters | F Values | ||
---|---|---|---|
Variety (V) | Treatment (T) | V×T | |
2AP content in grains at 15 d AT | 1614.85 ** | 7.65 ** | 4.01 * |
2AP content in grains at MS | 5.92 ns | 19.21 ** | 4.46 * |
P5C content in grains at 15 d AT | 21.43 * | 44.45 ** | 11.00 ** |
P5C content in grains at MS | 307.20 ** | 163.31 ** | 19.36 ** |
Proline content in grains at 15 d AT | 78.69 ** | 284.52 ** | 379.34 ** |
Proline content in grains at MS | 60.24 ** | 13.01 ** | 16.75 ** |
GABA content in grains at 15 d AT | 160.84 ** | 68.39 ** | 8.68 ** |
GABA content in grains at MS | 0.05 ns | 11.00 ** | 2.46 ns |
P5C content in leaves at 15 d AT | 20.52 * | 10.24 ** | 16.57 ** |
P5C content in leaves at MS | 27.32 * | 7.30 ** | 12.81 ** |
Proline content in leaves at 15 d AT | 4.55 ns | 4.39 * | 14.77 ** |
Proline content in leaves at MS | 0.00 ns | 19.47 ** | 52.53 ** |
GABA content in leaves at 15 d AT | 6.61 ns | 2.74 ns | 5.84 ** |
GABA content in leaves at MS | 2.08 ns | 3.82 * | 6.09 ** |
Grain yield | 1.22 ns | 5.52 ** | 1.24 ns |
Panicle number per pot | 6.69 ns | 0.63 ns | 0.21 ns |
Grain number per panicle | 34.91 ** | 6.25 ** | 2.97 ns |
Filled grain percentage | 37.37 ** | 2.46 ns | 0.18 ns |
1000-grain weight | 73.91 ** | 2.00 ns | 1.38 ns |
Stem and leaf dry weight | 0.36 ns | 2.74 ns | 1.71 ns |
Total dry weight | 2.06 ns | 0.44 ns | 2.69 ns |
Harvest index | 0.12 ns | 5.01 * | 0.94 ns |
SOD activity in leaves at 15 d AT | 21.52 * | 5.14 ** | 4.48 * |
SOD activity in leaves at MS | 146.87 ** | 85.22 ** | 82.41 ** |
POD activity in leaves at 15 d AT | 75.09 ** | 12.74 ** | 16.96 ** |
POD activity in leaves at MS | 17.85 * | 12.86 ** | 7.47 ** |
CAT activity in leaves at 15 d AT | 89.15 ** | 72.89 ** | 26.29 ** |
CAT activity in leaves at MS | 602.45 ** | 128.04 ** | 191.53 ** |
MDA content in leaves at 15 d AT | 1.59 ns | 10.07 ** | 9.62 ** |
MDA content in leaves at MS | 187.36 ** | 49.06 ** | 17.40 ** |
Brown rice rate | 451.20 * | 28.42 ** | 34.15 ** |
Milled rice rate | 2.38 ns | 0.83 ns | 0.36 ns |
Head rice rate | 105.56 ns | 4.54 ns | 1.19 ns |
Chalk rice percentage | 2361.90 ** | 66.05 ** | 14.61 ** |
Chalkiness | 1536.13 ** | 75.36 ** | 14.45 ** |
Length-to-width ratio | 16418.8 ** | 48.53 ** | 15.31 ** |
Protein | 346.69 ** | 30.50 ** | 8.35 ** |
Amylose | 7224.03 ** | 1611.82 ** | 1731.09 ** |
Alkali value | 1225.00 ** | 13.53 ** | 24.73 ** |
Variety | Treatment | Panicle Number per Pot | Grains per Panicle | Filled Grain Percentage (%) | 1000-Grain Weight (g) | Grain Yield (g pot−1) | Stem and Leaves Dry Weight (g pot−1) | Total Dry Weight (g pot−1) | Harvest Index |
---|---|---|---|---|---|---|---|---|---|
Xiangyaxiangzhan | CK | 15.25 ± 0.25 a | 87.61 ± 4.02 b | 87.20 ± 2.44 b | 20.68 ± 0.19 a | 24.84 ± 1.58 c | 45.14 ± 2.71 a | 69.98 ± 2.25 a | 0.36 ± 0.03 a |
L1 | 16.00 ± 0.41 a | 98.95 ± 1.71 a | 92.56 ± 0.40 a | 19.85 ± 0.30 a | 28.53 ± 0.45 ab | 40.95 ± 3.80 a | 69.49 ± 3.81 a | 0.41 ± 0.03 a | |
L2 | 16.00 ± 0.98 a | 87.71 ± 1.69 b | 91.76 ± 0.73 a | 20.20 ± 0.52 a | 25.51 ± 0.63 bc | 42.32 ± 1.69 a | 67.83 ± 1.67 a | 0.38 ± 0.01 a | |
L3 | 15.50 ± 0.50 a | 102.34 ± 3.10 a | 92.97 ± 1.49 a | 19.70 ± 0.29 a | 29.46 ± 1.36 a | 43.77 ± 1.65 a | 73.23 ± 0.29 a | 0.40 ± 0.02 a | |
Yuxiangyouzhan | CK | 16.58 ± 0.55 a | 100.09 ± 3.96 b | 67.92 ± 4.08 a | 22.02 ± 0.12 a | 25.03 ± 1.94 b | 52.14 ± 3.98 a | 77.17 ± 3.81 a | 0.33 ± 0.03 b |
L1 | 17.25 ± 0.48 a | 105.26 ± 3.92 ab | 76.37 ± 4.58 a | 22.28 ± 0.20 a | 29.90 ± 2.15 a | 43.45 ± 3.85 ab | 73.34 ± 2.13 a | 0.41 ± 0.04 a | |
L2 | 16.50 ± 0.29 a | 113.48 ± 3.91 a | 73.19 ± 5.63 a | 21.95 ± 0.24 a | 30.39 ± 2.43 a | 45.44 ± 4.39 ab | 75.83 ± 4.38 a | 0.40 ± 0.03 ab | |
L3 | 16.50 ± 0.65 a | 114.64 ± 3.40 a | 73.12 ± 3.53 a | 21.68 ± 0.21 a | 30.38 ± 1.91 a | 38.06 ± 3.39 b | 68.44 ± 3.35 a | 0.45 ± 0.03 a |
Variety | Treatment | Brown Rice Rate (%) | Milled Rice Rate (%) | Head Rice Rate (%) | Chalky Rice Percentage (%) | Chalkiness (%) | Length-to- Width Ratio | Protein Content (%) | Amylose Content (%) | Alkali Value |
---|---|---|---|---|---|---|---|---|---|---|
Xiangyaxiangzhan | CK | 78.98 ± 0.00 a | 71.04 ± 0.20 a | 50.71 ± 0.00 a | 22.40 ± 1.47 a | 11.19 ± 0.57 a | 2.72 ± 0.03 c | 7.93 ± 0.03 a | 20.70 ± 0.15 a | 6.27 ± 0.03 a |
L1 | 77.36 ± 0.04 b | 70.08 ± 0.81 a | 46.16 ± 1.81 ab | 4.80 ± 0.37 b | 1.70 ± 0.11 c | 3.06 ± 0.01 a | 7.37 ± 0.03 b | 16.97 ± 0.09 b | 6.20 ± 0.00 ab | |
L2 | 77.52 ± 0.28 b | 69.81 ± 1.28 a | 45.65 ± 0.90 ab | 3.80 ± 0.37 c | 1.31 ± 0.08 c | 2.91 ± 0.03 b | 7.13 ± 0.07 c | 17.03 ± 0.12 b | 6.17 ± 0.03 b | |
L3 | 77.40 ± 0.02 b | 70.91 ± 1.94 a | 41.78 ± 1.85 b | 17.00 ± 0.84 c | 7.94 ± 0.58 b | 3.07 ± 0.03 a | 7.47 ± 0.03 b | 17.03 ± 0.09 b | 6.03 ± 0.03 c | |
Yuxiangyouzhan | CK | 79.31 ± 0.08 b | 73.67 ± 3.81 a | 72.30 ± 4.49 a | 76.59 ± 1.10 a | 37.80 ± 0.82 a | 1.76 ± 0.01 c | 6.60 ± 0.06 a | 26.50 ± 0.00 b | 5.97 ± 0.09 b |
L1 | 79.67 ± 0.07 a | 72.40 ± 2.50 a | 71.00 ± 2.35 a | 51.26 ± 2.19 c | 22.13 ± 1.08 c | 1.92 ± 0.03 a | 6.47 ± 0.03 ab | 26.53 ± 0.03 ab | 6.60 ± 0.06 a | |
L2 | 79.31 ± 0.04 b | 71.35 ± 0.77 a | 69.28 ± 0.60 a | 58.46 ± 2.13 b | 26.64 ± 0.96 b | 1.94 ± 0.04 a | 6.30 ± 0.10 b | 26.60 ± 0.00 a | 6.73 ± 0.07 a | |
L3 | 79.14 ± 0.01 b | 71.33 ± 1.21 a | 69.43 ± 1.20 a | 52.56 ± 2.70 bc | 23.99 ± 1.82 bc | 1.85 ± 0.01 b | 6.23 ± 0.09 b | 26.57 ± 0.03 ab | 6.53 ± 0.07 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, H.; Xie, W.; Pan, S.; Liu, X.; Tian, H.; Duan, M.; Wang, S.; Tang, X.; Mo, Z. Effects of Light Quality Treatments during the Grain Filling Period on Yield, Quality, and Fragrance in Fragrant Rice. Agronomy 2021, 11, 531. https://doi.org/10.3390/agronomy11030531
Xie H, Xie W, Pan S, Liu X, Tian H, Duan M, Wang S, Tang X, Mo Z. Effects of Light Quality Treatments during the Grain Filling Period on Yield, Quality, and Fragrance in Fragrant Rice. Agronomy. 2021; 11(3):531. https://doi.org/10.3390/agronomy11030531
Chicago/Turabian StyleXie, Huijia, Wenjun Xie, Shenggang Pan, Xuwei Liu, Hua Tian, Meiyang Duan, Shuli Wang, Xiangru Tang, and Zhaowen Mo. 2021. "Effects of Light Quality Treatments during the Grain Filling Period on Yield, Quality, and Fragrance in Fragrant Rice" Agronomy 11, no. 3: 531. https://doi.org/10.3390/agronomy11030531
APA StyleXie, H., Xie, W., Pan, S., Liu, X., Tian, H., Duan, M., Wang, S., Tang, X., & Mo, Z. (2021). Effects of Light Quality Treatments during the Grain Filling Period on Yield, Quality, and Fragrance in Fragrant Rice. Agronomy, 11(3), 531. https://doi.org/10.3390/agronomy11030531