Glyphosate Resistance Confirmation and Field Management of Red Brome (Bromus rubens L.) in Perennial Crops Grown in Southern Spain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Molecular Characterization of Bromus spp.
2.3. Resistant Fast Screening by Shikimic Acid Accumulation Assay
2.4. Glyphosate Dose–Response Curves Assay
2.5. Glyphosate Foliar Retention Assay
2.6. Chemical Alternatives In Situ
2.7. Statistical Analyses
3. Results
3.1. Bromus spp. Molecular Characterization
3.2. Resistant Fast Screening by Shikimic Acid Accumulation Assay
3.3. Glyphosate Dose–Response Curves
3.4. Foliar Retention Assay
3.5. Chemical Alternatives In Situ
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Busi, R.; Powles, S.B.; Beckie, H.J.; Renton, M. Rotations and mixtures of soil-applied herbicides delay resistance. Pest Manag. Sci. 2020, 76, 487–496. [Google Scholar] [CrossRef] [PubMed]
- Holländer, H.; Amrhein, N. The site of the inhibition of the shikimate pathway by glyphosate. Plant Physiol. 1980, 66, 823–829. [Google Scholar] [CrossRef] [Green Version]
- Steinrücken, H.C.; Amrhein, N. The herbicide glyphosate is a potent inhibitor of 5-enolpyruvylshikimic acid-3-phosphate synthase. Biochem. Biophys. Res. Commun. 1980, 94, 1207–1212. [Google Scholar] [CrossRef]
- Sammons, R.D.; Gaines, T.A. Glyphosate resistance: State of knowledge. Pest Manag. Sci. 2014, 70, 1367–1377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duke, S.O.; Powles, S.B. Glyphosate: A once-in-a-century herbicide. Pest Manag. Sci. 2008, 64, 319–325. [Google Scholar] [CrossRef]
- Powles, S.B.; Yu, Q. Evolution in ction: Plants resistant to herbicides. Annu. Rev. Plant Biol. 2010, 61, 317–347. [Google Scholar] [CrossRef] [Green Version]
- Délye, C.; Jasieniuk, M.; Le Corre, V. Deciphering the evolution of herbicide resistance in weeds. Trends Genet. 2013, 29, 649–658. [Google Scholar] [CrossRef] [PubMed]
- Owen, M.D. Weed species shifts in glyphosate-resistant crops. Pest Manag. Sci. 2008, 64, 377–387. [Google Scholar] [CrossRef]
- Heap, I. Global perspective of herbicide-resistant weeds. Pest Manag. Sci. 2014, 70, 1306–1315. [Google Scholar] [CrossRef] [PubMed]
- Gaines, T.A.; Duke, S.O.; Morran, S.; Rigon, C.A.G.; Tranel, P.J.; Küpper, A.; Dayan, F.E. Mechanisms of evolved herbicide resistance. J. Biol. Chem. 2020, 295, 10307–10330. [Google Scholar] [CrossRef]
- Owen, M.D.; Zelaya, I.A. Herbicide-resistant crops and weed resistance to herbicides. Pest Manag. Sci. 2005, 61, 301–311. [Google Scholar] [CrossRef]
- Powles, S.B.; Lorraine-Colwill, D.F.; Dellow, J.J.; Preston, C. Evolved resistance to glyphosate in rigid ryegrass (Lolium rigidum) in Australia. Weed Sci. 1998, 46, 604–607. [Google Scholar] [CrossRef]
- Heap, I. International Survey of Herbicide Resistant Weeds. Available online: http://www.weedscience.org (accessed on 15 January 2020).
- Malone, J.M.; Morran, S.; Shirley, N.; Boutsalis, P.; Preston, C. EPSPS gene amplification in glyphosate-resistant Bromus diandrus. Pest Manag. Sci. 2016, 72, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Davies, L.R.; Hull, R.; Moss, S.; Neve, P. The first cases of evolving glyphosate resistance in UK poverty brome (Bromus sterilis) populations. Weed Sci. 2019, 67, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Acedo, C.; Llamas, F. The Genus Bromus L. (Poaceae) in the Iberian Peninsula; J. Cramer: Berlín-Stutgart, Germany, 1999; ISBN 9783443780043. [Google Scholar]
- Smith, P. Bromus. In Flora Europea; Tutin, T.G., Heywood, V.H., Burges, N.A., Moore, D.M., Valentine, D.H., Walters, S.M., Webb, D.A., Eds.; Cambridge University Press: Cambridge, UK, 1980; pp. 182–189. [Google Scholar]
- Fortune, P.M.; Pourtau, N.; Viron, N.; Ainouche, M.L. Molecular phylogeny and reticulate origins of the polyploid Bromus species from section Genea (Poaceae). Am. J. Bot. 2008, 95, 454–464. [Google Scholar] [CrossRef]
- Salo, L.F. Population dynamics of red brome (Bromus madritensis subsp. rubens): Times for concern, opportunities for management. J. Arid Environ. 2004, 57, 291–296. [Google Scholar] [CrossRef]
- Rivas Ponce, M.A. Nuevos datos para la diagnosis de Bromus rubens L. y B. madritensis L. (Poaceae). Lagascalia 1988, 15, 89–93. [Google Scholar]
- Horn, K.J.; Bishop, T.B.B.; Clair, S.B.S. Precipitation timing and soil heterogeneity regulate the growth and seed production of the invasive grass red brome. Biol. Invasions 2017, 19, 1339–1350. [Google Scholar] [CrossRef]
- Francia Martínez, J.R.; Durán Zuazo, V.H.; Martínez Raya, A. Environmental impact from mountainous olive orchards under different soil-management systems (SE Spain). Sci. Total Environ. 2006, 358, 46–60. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Moreno, P.T.; Alcántara-de la Cruz, R.; Smeda, R.J.; De Prado, R. Differential Resistance Mechanisms to Glyphosate Result in Fitness Cost for Lolium perenne and L. multiflorum. Front. Plant Sci. 2017, 8, 1796. [Google Scholar] [CrossRef] [Green Version]
- Pujadas-Salva, A. Flora Arvense y Ruderal de la Provincia de Córdoba; University of Cordoba: Córdoba, Spain, 1986. [Google Scholar]
- Ramakrishnan, A.P.; Coleman, C.E.; Meyer, S.E.; Fairbanks, D.J. Microsatellite markers for Bromus tectorum (cheatgrass). Mol. Ecol. Notes 2002, 2, 22–23. [Google Scholar] [CrossRef]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Schuelke, M. An economic method for the fluorescent labeling of PCR fragments. Nat. Biotechnol. 2000, 18, 233–234. [Google Scholar] [CrossRef] [PubMed]
- Rohlf, F.J. NTSYS-pc Numerical Taxonomy and Multivariate Analysis System. Version 2.02; Exeter Publications: Setauket, NY, USA, 1998. [Google Scholar]
- Vázquez-García, J.G.; Castro, P.; Torra, J.; Alcántara-de la Cruz, R.; De Prado, R. Resistance evolution to EPSPS Inhibiting Herbicides in False Barley (Hordeum murinum) Harvested in Southern Spain. Agronomy 2020, 10, 992. [Google Scholar] [CrossRef]
- González-Torralva, F.; Rojano-Delgado, A.M.; Luque de Castro, M.D.; Mülleder, N.; De Prado, R. Two non-target mechanisms are involved in glyphosate-resistant horseweed (Conyza canadensis L. Cronq.) biotypes. J. Plant Physiol. 2012, 169, 1673–1679. [Google Scholar] [CrossRef]
- Ritz, C.; Baty, F.; Streibig, J.C.; Gerhard, D. Dose-response analysis using R. PLoS ONE 2015, 10, e0146021. [Google Scholar] [CrossRef] [Green Version]
- O’Hanlon, P.C.; Peakall, R.; Briese, D.T. A review of new PCR-based genetic markers and their utility to weed ecology. Weed Res. 2000, 40, 239–254. [Google Scholar] [CrossRef]
- Zhu, X.C.; Wu, H.W.; Raman, H.; Lemerle, D.; Stanton, R.; Burrows, G.E. Evaluation of simple sequence repeat (SSR) markers from Solanum crop species for Solanum elaeagnifolium. Weed Res. 2012, 52, 217–223. [Google Scholar] [CrossRef]
- Ngo, T.D.; Malone, J.M.; Boutsalis, P.; Gill, G.; Preston, C. EPSPS gene amplification conferring resistance to glyphosate in windmill grass (Chloris truncata) in Australia. Pest Manag. Sci. 2018, 74, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-García, J.G.; Golmohammadzadeh, S.; Palma-Bautista, C.; Rojano-Delgado, A.M.; Domínguez-Valenzuela, J.A.; Cruz-Hipólito, H.E.; De Prado, R. New Case of False-Star-Grass (Chloris distichophylla) Population Evolving Glyphosate Resistance. Agronomy 2020, 10, 377. [Google Scholar] [CrossRef] [Green Version]
- Bracamonte, E.R.; Fernández-Moreno, P.T.; Bastida, F.; Osuna, M.D.; Alcántara-de la Cruz, R.; Cruz-Hipolito, H.E.; De Prado, R. Identifying Chloris species from cuban citrus orchards and determining their glyphosate-resistance status. Front. Plant Sci. 2017, 8, 1977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bracamonte, E.; da Silveira, H.M.; Alcántara-de la Cruz, R.; Domínguez-Valenzuela, J.A.; Cruz-Hipolito, H.E.; De Prado, R. From tolerance to resistance: Mechanisms governing the differential response to glyphosate in Chloris barbata. Pest Manag. Sci. 2018, 74, 1118–1124. [Google Scholar] [CrossRef]
- Ngo, T.D.; Krishnan, M.; Boutsalis, P.; Gill, G.; Preston, C. Target-site mutations conferring resistance to glyphosate in feathertop Rhodes grass (Chloris virgata) populations in Australia. Pest Manag. Sci. 2017, 74, 1094–1100. [Google Scholar] [CrossRef]
- Adu-Yeboah, P.; Malone, J.M.; Fleet, B.; Gill, G.; Preston, C. EPSPS gene amplification confers resistance to glyphosate resistant populations of Hordeum glaucum Stued (northern barley grass) in South Australia. Pest Manag. Sci. 2020, 76, 1214–1221. [Google Scholar] [CrossRef] [PubMed]
- Gaines, T.A.; Zhang, W.; Wang, D.; Bukun, B.; Chisholm, S.T.; Shaner, D.L.; Nissen, S.J.; Patzoldt, W.L.; Tranel, P.J.; Culpepper, A.S.; et al. Gene amplification confers glyphosate resistance in Amaranthus palmeri. Proc. Natl. Acad. Sci. USA 2010, 107, 1029–1034. [Google Scholar] [CrossRef] [Green Version]
- Alcántara-de la Cruz, R.; Fernández-Moreno, P.T.; Ozuna, C.V.; Rojano-Delgado, A.M.; Cruz-Hipolito, H.E.; Domínguez-Valenzuela, J.A.; Barro, F.; De Prado, R. Target and Non-target Site Mechanisms Developed by Glyphosate-Resistant Hairy beggarticks (Bidens pilosa L.) Populations from Mexico. Front. Plant Sci. 2016, 7, 1492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Carvalho, L.B.; Costa Aguiar Alves, P.L.D.; González-Torralva, F.; Cruz-Hipolito, H.E.; Rojano-Delgado, A.M.; De Prado, R.; Gil-Humanes, J.; Barro, F.; Luque de Castro, M.D. Pool of Resistance Mechanisms to Glyphosate in Digitaria insularis. J. Agric. Food Chem. 2012, 60, 615–622. [Google Scholar] [CrossRef] [PubMed]
- Jussaume, R.A.; Ervin, D. Understanding weed resistance as a wicked problem to improve weed management decisions. Weed Sci. 2016, 64, 559–569. [Google Scholar] [CrossRef]
- Shaner, D.L.; Beckie, H.J. The future for weed control and technology. Pest Manag. Sci. 2014, 70, 1329–1339. [Google Scholar] [CrossRef]
- Owen, M.D.K. Diverse approaches to herbicide-resistant weed management. Weed Sci. 2016, 64, 570–584. [Google Scholar] [CrossRef] [Green Version]
- Bracamonte, E.; Fernández-Moreno, P.T.; Barro, F.; De Prado, R. Glyphosate-resistant Parthenium hysterophorus in the Caribbean Islands: Non target site resistance and target site resistance in relation to resistance levels. Front. Plant Sci. 2016, 7, 1845. [Google Scholar] [CrossRef] [Green Version]
- Hatterman-Valenti, H.; Pitty, A.; Owen, M. Environmental effects on velvetleaf (Abutilon theophrasti) epicuticular wax deposition and herbicide absorption. Weed Sci. 2011, 59, 14–21. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Malone, J.M.; Boutsalis, P.; Shirley, N.; Preston, C. Temperature influences the level of glyphosate resistance in barnyardgrass (Echinochloa colona). Pest Manag. Sci. 2016, 72, 1031–1039. [Google Scholar] [CrossRef]
- Brunharo, C.A.; Patterson, E.L.; Carrijo, D.R.; de Melo, M.S.; Nicolai, M.; Gaines, T.A.; Nissen, S.J.; Christoffoleti, P.J. Confirmation and mechanism of glyphosate resistance in tall windmill grass (Chloris elata) from Brazil. Pest Manag. Sci. 2016, 72, 1758–1764. [Google Scholar] [CrossRef]
- Vila-Aiub, M.M.; Neve, P.; Roux, F. A unified approach to the estimation and interpretation of resistance costs in plants. Heredity 2011, 107, 386–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yanniccari, M.; Vila-Aiub, M.; Istilart, C.; Acciaresi, H.; Castro, A.M. Glyphosate resistance in perennial ryegrass (Lolium perenne L.) is associated with a fitness penalty. Weed Sci. 2016, 64, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Elezovic, I.; Datta, A.; Vrbnicanin, S.; Glamoclija, D.; Simic, M.; Malidza, G.; Knezevic, S.Z. Yield and yield components of imidazolinone-resistant sunflower (Helianthus annuus L.) are influenced by pre-emergence herbicide and time of post-emergence weed removal. Field Crop. Res. 2012, 128, 137–146. [Google Scholar] [CrossRef]
- Reeves, J.; Hoyle, J. Late Pre-Emergent Control of Annual Bluegrass with Flazasulfuron & Indaziflam. Kansas Agric. Exp. Stn. Res. Rep. 2016, 2. [Google Scholar] [CrossRef] [Green Version]
- Kukorelli, G.; Reisinger, P.; Pinke, G. ACCase inhibitor herbicides–selectivity, weed resistance and fitness cost: A review. Int. J. Pest Manag. 2013, 59, 165–173. [Google Scholar] [CrossRef]
- Cox, R.; Anderson, V. Increasing native diversity of cheatgrass-dominated rangeland through assisted succession. J. Range Manag. 2004, 57, 203–2010. [Google Scholar] [CrossRef]
- Morris, C.; Morris, L.R.; Surface, C. Spring Glyphosate application for selective control of downy brome (Bromus tectorum L.) on Great Basin Rangelands. Weed Technol. 2016, 30, 297–302. [Google Scholar] [CrossRef]
- Park, K.W.; Mallory-Smith, C.A. Physiological and molecular basis for ALS inhibitor resistance in Bromus tectorum biotypes. Weed Res. 2004, 44, 71–77. [Google Scholar] [CrossRef]
- Ball, D.A.; Frost, S.M.; Bennett, L.H. ACCase-inhibitor herbicide resistance in downy brome (Bromus tectorum) in Oregon. Weed Sci. 2007, 55, 91–94. [Google Scholar] [CrossRef]
- Brewster, B.D.; Spinney, R.L. Control of seedling grasses with postemergence grass herbicides. Weed Technol. 1989, 3, 39–43. [Google Scholar] [CrossRef]
- Reinhardt Piskackova, T.A.; Reberg-Horton, C.; Richardson, R.J.; Jennings, K.M.; Leon, R.G. Integrating emergence and phenology models to determine windows of action for weed control: A case study using Senna obtusifolia. Field Crop. Res. 2020, 258, 107959. [Google Scholar] [CrossRef]
Code | Location | Crops | History of Application (Years) a | Coordinates |
---|---|---|---|---|
Br1 | Malaga | Young olive | organic | 37.105500, −4.551778 |
Br2 | Cordoba | Orchard | >10 | 37.646157, −4.311400 |
Br3 | Granada | Railway | Tank mix b | 37.389201, −3.582310 |
Br4 | Granada | Orchard | 20 | 37.394245, −3.566320 |
Br5 | Granada | Orchard | >15 | 37.393319, −3.564946 |
Br6 | Cordoba | Almond | >10 | 37.736953, −4.645727 |
Br7 | Cordoba | Almond | >15 | 37.737263, −4.645049 |
Br8 | Cordoba | Orchard | >15 | 37.708111, −4.789167 |
Br9 | Granada | Orchard | 10–15 | 37.394377, −3.570889 |
Br10 | Cordoba | Almond | >15 | 37.737492, −4.646091 |
Br11 | Cordoba | Young olive | 3 | 37.681839, −4.632792 |
Br12 | Granada | Orchard | 10–15 | 37.393853, −3.572896 |
Br13 | Cordoba | No crop | >15 | 37.631281, −4.280830 |
Br14 | Cordoba | Orchard | >15 | 37.710540, −4.790917 |
Br15 | Cordoba | Orchard | 10–15 | 37.707483, −4.789220 |
Br16 | Malaga | Olive | >15 | 36.983067, −4.950822 |
Br17 | Malaga | Olive | >15 | 36.979917, −4.939506 |
Br18 | Malaga | Olive | 10–15 | 37.035831, −4.590087 |
Br19 | Malaga | Olive | 20 | 36.978790, −4.649318 |
Br20 | Malaga | Olive | 20 | 37.051456, −4.354452 |
Active Ingredient a | Commercial Name b | Doses (g ae/ai ha−1) | Timing |
---|---|---|---|
Untreated | - | - | - |
Flazasulfuron + glyphosate | Terafit® WG + Roundup Energy® SL | 50 + 1080 | Pre-emergence |
Diflufenican + iodosulfuron + glyphosate | Musketeer® OF + Roundup Energy® SL | 150 + 10 + 1080 | Pre-emergence |
Chlorotoluron + diflufenican | Anibal® SC | 1800+ 113 | Pre-emergence |
Diflufenican + glyphosate | Zarpa® SC | 280 + 1120 | Pre-emergence |
Glyphosate | Roundup Energy® SL | 1080 | Postemergence |
Glyphosate | Roundup Energy® SL | 1800 | Postemergence |
Flazasulfuron + glyphosate | Chikara Duo® WG | 20 + 860 | Postemergence |
Glyphosate + propaquizafop | Roundup Energy® SL + Ágil® EC | 1080 + 150 | Postemergence |
Glyphosate + quizalofop | Roundup Energy® SL + Leopard® EC | 1080+ 100 | Postemergence |
Code | d * | b * | GR50 (g ae ha−1) | RF | d * | b * | LD50 (g ae ha−1) | RF |
---|---|---|---|---|---|---|---|---|
Br1 | 89.92 | 4.71 | 140.64 ± 5.86 | - | 101.17 | 3.80 | 229.87 ± 8.85 | - |
Br2 | 96.30 | 1.66 | 856.06 ± 54.09 | 6.09 | 100.27 | 7.37 | 1706.78 ± 18.78 | 7.42 |
Br3 | 102.30 | 2.84 | 148.33 ± 6.62 | 1.05 | 102.19 | 3.26 | 274.22 ± 7.46 | 1.19 |
Br4 | 88.54 | 2.99 | 1031.76 ± 55.51 | 7.34 | 99.92 | 7.76 | 2100.40 ± 80.12 | 9.14 |
Br5 | 99.43 | 1.24 | 955.96 ± 54.08 | 6.80 | 100.62 | 5.16 | 1766.50 ± 73.58 | 7.68 |
Br6 | 91.57 | 2.42 | 785.70 ± 42.36 | 5.59 | 99.36 | 7.12 | 1427.68 ± 18.57 | 6.21 |
Br7 | 93.65 | 4.01 | 736.51 ± 28.04 | 5.24 | 98.62 | 3.20 | 1378.60 ± 27.07 | 6.00 |
Br8 | 89.79 | 3.39 | 875.52 ± 35.49 | 6.23 | 100.41 | 6.11 | 1759.61 ± 24.00 | 7.65 |
Br9 | 94.28 | 3.37 | 611.65 ± 24.35 | 4.35 | 99.84 | 5.32 | 1284.82 ± 25.16 | 5.59 |
Br10 | 99.03 | 1.47 | 955.35 ± 62.06 | 6.79 | 100.27 | 1.27 | 1702.52 ± 34.02 | 7.41 |
Br11 | 94.70 | 1.48 | 226.21 ± 20.95 | 1.61 | 96.01 | 2.31 | 563.46 ± 38.95 | 2.45 |
Br12 | 93.20 | 3.23 | 634.08 ± 26.68 | 4.51 | 98.18 | 5.24 | 1320.45 ± 33.26 | 5.74 |
Br13 | 90.69 | 3.18 | 919.97 ± 42.06 | 6.54 | 98.64 | 8.49 | 1658.63 ± 22.88 | 7.22 |
Br14 | 97.60 | 1.89 | 926.95 ± 54.08 | 6.59 | 100.86 | 5.79 | 1570.29 ± 26.83 | 6.83 |
Br15 | 99.25 | 1.77 | 767.66 ± 57.86 | 5.46 | 99.22 | 4.77 | 1428.05 ± 42.49 | 6.21 |
Br16 | 95.23 | 3.96 | 855.78 ± 27.87 | 6.08 | 100.43 | 4.68 | 1292.96 ± 42.77 | 5.62 |
Br17 | 95.74 | 4.21 | 825.43 ± 17.74 | 5.87 | 100.33 | 3.47 | 1180.57 ± 43.28 | 5.14 |
Br18 | 96.68 | 4.60 | 669.84 ± 15.58 | 4.76 | 100.93 | 3.67 | 1080.33 ± 36.33 | 4.70 |
Br19 | 90.88 | 6.80 | 1070.97 ± 33.16 | 7.61 | 100.23 | 5.61 | 2024.47 ± 27.90 | 8.81 |
Br20 | 94.56 | 8.07 | 983.50 ± 17.23 | 7.00 | 99.00 | 6.73 | 1757.68 ± 31.79 | 7.65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vázquez-García, J.G.; Castro, P.; Cruz-Hipólito, H.E.; Millan, T.; Palma-Bautista, C.; De Prado, R. Glyphosate Resistance Confirmation and Field Management of Red Brome (Bromus rubens L.) in Perennial Crops Grown in Southern Spain. Agronomy 2021, 11, 535. https://doi.org/10.3390/agronomy11030535
Vázquez-García JG, Castro P, Cruz-Hipólito HE, Millan T, Palma-Bautista C, De Prado R. Glyphosate Resistance Confirmation and Field Management of Red Brome (Bromus rubens L.) in Perennial Crops Grown in Southern Spain. Agronomy. 2021; 11(3):535. https://doi.org/10.3390/agronomy11030535
Chicago/Turabian StyleVázquez-García, José G., Patricia Castro, Hugo E. Cruz-Hipólito, Teresa Millan, Candelario Palma-Bautista, and Rafael De Prado. 2021. "Glyphosate Resistance Confirmation and Field Management of Red Brome (Bromus rubens L.) in Perennial Crops Grown in Southern Spain" Agronomy 11, no. 3: 535. https://doi.org/10.3390/agronomy11030535
APA StyleVázquez-García, J. G., Castro, P., Cruz-Hipólito, H. E., Millan, T., Palma-Bautista, C., & De Prado, R. (2021). Glyphosate Resistance Confirmation and Field Management of Red Brome (Bromus rubens L.) in Perennial Crops Grown in Southern Spain. Agronomy, 11(3), 535. https://doi.org/10.3390/agronomy11030535